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We investigate the short-time dynamics of a delta-function potential barrier on an initially confined wave
packet. There are mainly two conclusions: �A� At short times the probability density of the first particles that
passed through the barrier is unaffected by it. �B� When the barrier is absorptive �i.e., its potential is imaginary�
it affects the transmitted wave function at shorter times than a real potential barrier. Therefore, it is possible to
distinguish between an imaginary and a real potential barrier by measuring its effect at short times only on the
transmitting wave function.
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I. INTRODUCTION

One of the methods in imaging a turbid or a diffusive
medium with optical radiation is the time-gating technique
�1–5�. In this technique a temporally narrow pulse is injected
into the medium. Owing to the diffusivity of the medium,
when the pulse exits the medium it becomes considerably
wider. However, if the first arriving photons are separated
from the rest of the pulse, then it is possible to use these, so
called, ballistic �or quasiballistic� photons to reconstruct the
ballistic image of the medium.

Therefore, by employing a short time-gating technique the
multiscattering effect can be eliminated. Indeed, such meth-
ods were employed in recognizing hidden objects and infor-
mative signals in diffusive media �6�. Naively, one might
expect that this technique can be implemented for electron
imaging to “see” absorptive objects inside the scattering me-
dium. That is, one can send a short pulse of electrons to one
end of the medium, while at the other end only the first
arriving electrons will be measured. By doing so, all the
noise caused by the multiscattering should be eliminated. On
the other hand, the presence of absorptive regions �like
imaginary potentials �7�� will be felt in the amount of the
early arriving electrons. However, electrons are governed by
the Schrödinger equation, and unlike the Maxwell wave
equation, has a parabolic dispersion relation. As a conse-
quence, any localized wave packet suffers from strong dis-
persion, since each spectral component propagates at a dif-
ferent velocity. The fastest particles are the most energetic
ones, which pass through the medium unaffected, since the
barrier’s potential energy is negligible compared to their ki-
netic energy. In particular, when the medium is a certain
barrier �or well�, we conclude that when only the first-
arriving particles are measured, there should be no trace of
the barrier’s presence. It does not matter what shape or
height the barrier has—the first particles that pass though the

barrier should be indifferent to it. Thus, one may argue that
the time-gating technique cannot be implemented to electron
imaging, at least not in its naive form. However, we show
that the short-time measurement reveals information about
the nature of the barrier—whether it is imaginary or real.

There is a peculiar distinction between an absorbing me-
dium �e.g., an imaginary potential� and a nonabsorbing one
�e.g., a real potential�. While they both have no effect on the
wave packet �both transmitted and reflected� at t→0, the
imaginary barrier influences the wave packet sooner. In other
words, in the temporal Taylor expansion of the probability
density the imaginary potential appears at a smaller order
than a real potential. It is then clear that we can classify the
barrier as an absorptive one simply by measuring the wave
packet at short times. Note that, in general, it is required to
measure both reflection and transmission coefficients to fig-
ure out if the barrier is absorptive or not.

Recently �8�, it has been demonstrated even experimen-
tally that it is feasible to investigate the one-dimensional
�1D� scattering of a Bose-Einstein condensate by a narrow
defect. Therefore, it seems that there is a good chance of
witnessing these effects in the laboratory in the near future.

In this paper we demonstrate this effect rigorously �both
analytically and by a numerical simulation� for the delta
function potential. That is, we show that it is possible to
identify an absorptive potential by measuring the short time
dynamics of only the transmitted wave function.

The initial state we consider is a wave packet, which is
confined to one side of the barrier. It is then demonstrated
that the wave function at the other side is independent of the
barrier for short times, while the temporal dependence de-
pends on the exact nature of the barrier �absorptive or not�.

II. SYSTEM DESCRIPTION AND DYNAMICS

Evidently, in order to confine the initial wave packet to
one side of the barrier, there has to be a certain singularity in
the wave packet. In this paper we focus on a step function to
simplify the problem; however, it has been demonstrated
elsewhere that most of the conclusions are valid, even in the
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continuous case, provided the measurements are taken at
specific ranges �see Ref. �9��. It is also demonstrated at the
end of the paper that the main conclusions are valid even
when the initial wavepacket is a Gaussian. For simplicity we
take a 1D delta function as the potential barrier.

The system illustration is depicted in Fig. 1. Initially, the
wave packet has the form �7,9,10�

��x,t = 0� = ��− x�exp�ik0x� , �1�

and at a distance L from its front we place a delta-function
barrier V�x�=���x−L� �see Fig. 1�. That is, the Schrödinger
equation reads as

−
�2

�x2� + ���x − L�� = i
��

�t
. �2�

Since the Fourier transform of ��x , t=0� is

��k� =
i

k − k0 + i0
, �3�

then in the free case where L→�, i.e., when the barrier is
absent, the wave packet satisfies

� free�x,t � 0� =
1

2�
� dk ��k�exp�ikx − ik2t� , �4�

while for a finite L the free-space eigenfunctions exp�ikx�
should be replaced with the barrier’s eigenfunctions,

	�k,x� � exp�ikx� +
i�/2

k − i�/2
exp�ik�x − L� + ikL� , �5�

and therefore

��x,t � 0� =
1

2�
� dk ��k�	�k,x�exp�− ik2t� . �6�

Carrying out the integral, one finds �for x
0�

��x,t� =
eix2/4t

2
w�	it
 x

2t
− k0�� +

eiy2/4t

2

i�/2

k0 − i�/2

�
w�	it
 y

2t
− k0�� − w�	it
 y

2t
− i

�

2
��� , �7�

where w�z��exp�−z2�erfc�−iz� �11� and y�L+ �x−L�. In
short times one can expand this expression in powers of t.
Up to t5/2,

��x,t� �	 it

�

eix2/4t

x

1 +

2�k0x − i�
x2 t +

4�k2x2 − 3ik0x − 3�
x4 t2�

+
�it�3/2

	�

eiy2/4t

y2 �
1 +
i��y − 6� + 2k0y

y2 t� , �8�

for x
L,

��x,t� �	 it

�

eix2/4t

x

1 +

2�k0x − i�
x2 t +

4�k2x2 − 3ik0x − 3�
x4 t2

+
i�

x
t −

���x − 6 − 2ik0x�
x3 t2� ,

and to the third order of t,

���x 
 L,t��2 �
t

�x2�1 + 4
k0t

x
+ 4

3�k0x�2 − 5

x4 t2

+
�

x2 t2
8

x
− ��� . �9�

We can see that the barrier’s presence is felt only at the third
order of t.

Even when k0�� and x→�, the barrier’s presence has a
significant influence when the measurement is taken in the
range 4k0x /�2� t�x /�.

On the other hand, for 0
x
L, owing to the reflection
from the barrier, the dependence of the probability density on
the barrier appears at order t3/2, i.e.,

��x,t� �	 i

�

eix2/4t

x
�t1/2 +

2t3/2

x

k0 +

i

x
��

+ i�	 i

�

ei�2L − x�2/4tt3/2

�2L − x�2 , �10�

and

���x,t��2 �
t

�
� 1

x2
1 +
4tk0

x
� −

2�t

x�2L − x�2 sin
L�L − x�
t

�� .

�11�

That is, the dependence �i.e., �� appears in the probability
density in the coefficient of t2. Obviously, this approximation
applies only when the argument L�L−x� / t is not too small.

In Fig. 2 we plot a comparison between the propagation
of the wave packet in case the barrier is absent �upper panel�
and when it is present �lower panel�. In Fig. 3 the difference
between the two �with and without the barrier, i.e.,
� ���2= ���with

2 − ��� free
2 � is plotted. Despite the fact that the

packet passes through the potential, its effect beyond the
barrier x
L is miniscule, and for �x�2�1 the two solutions
are essentially identical. Moreover, the difference between
the x
L and x
L regimes is clear from the figure. In the
latter regime the influence of the potential is felt for longer
distances, but still when �x�2 / t→� its influence decays to
zero.

When the potential is absorptive the Schrödinger equation
may be rewritten as

FIG. 1. System schematic: a semi-infinite wave packet hitting a
delta function potential.
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−
�2

�x2� + i���x − L�� = i
��

�t
, �12�

with the solution

��x,t� =	 it

�

eix2/4t

x

1 +

2�k0x − i� − �x

x2 t + O�t2�� ,

�13�

and the probability density satisfies

���x 
 L,t��2 =
t

�x2
1 + 2
2k0 − �

x
t + O�t2�� . �14�

In this case the potential presence appears in the probability
density at the second order of t �and not the third as in Eq.
�9��.

In case the wave function vanishes initially at x=0
��9,10,12��, i.e., when

��x,t = 0� = ��− x� sin�k0x� , �15�

the general solution is

��x,t� =
eix2/4t
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�16�

In short times one can expand this expressions in powers of
t. Up to t5/2,

��x,t� � −	 i

�

2k0t3/2eix2/4t

x2 
i +
6

x2 t� +	 i

�

2k0t5/2eiy2/4t

y3 � ,

�17�

for x
L,

��x,t� �
t3/2

	i�

eix2/4t

x2 2k0�1 +
it

x

� −

6

x
�� �18�

and

���2 �
4k0

2t3

�x4 + O�t4� . �19�

We can see that the barrier is not felt even at the third order
of t �the coefficient of t3 is independent of ��. Although the
phase of � is sensitive to the barrier, even in the first order of
t, the leading term is proportional to t−1 for large x, i.e.,

arg��� � −
�

4
+

x2

4t
+ �x� − 6�

t

x2 . �20�

III. THE CONTINUOUS CASE: GAUSSIAN
DYNAMICS

The fact that we used a singular initial wave function may
raise skepticism about the physical validity of the conclu-
sions. However, the main conclusions of the semi-infinite
plane wave can be deduced even when the initial wave
packet is a continuous wave function, such as a Gaussian.
However, owing to the finite spectral width of the Gaussian,
high energy particles are very rare in the packet, and there-
fore at short times there is not enough energy to make any
substantial difference. The variations in the wave packet at

FIG. 2. A comparison between the solution with �lower panel�
and without �upper panel� the barrier, which is represented by the
horizontal line at x=1. The initial state is represented by the dashed
line. The parameters in this case are L=1, k0=30, t=0.04, and
�=3.

FIG. 3. The difference between the solution when the barrier is
present and when it is absent. Clearly, as �x�2 / t�1 the two solutions
are identical.
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t→0 is negligible. Therefore, we should expect to find the
same conclusions only in a certain intermediate period �as in
Ref. �9��.

If the initial wavepacket is a Gaussian, i.e.,

��x,t = 0� =	 2

�

1

�
exp�− 
 x

�
�2

+ ik0x� , �21�

then

��x 
 L,t � 0� =
1

	2�
� dk

exp�− �k − k0�2�2/4 + ikx − ik2t�
1 − i�/2k

,

�22�

and carrying out the integration, one finds

��x 
 L,t � 0� = 
 1
	2�s

−
�

	8
w
i

�s

2
−

��2k0/2 + ix�
2s

��
�exp
1

4

��2k0/2 + ix�2

s2 −
�2k0

2

4
� , �23�

where s�	�2 /4+ it. For small s �i.e., short times�, by fac-
toring out �	2�s�−1 and taking the limit s→0,

��x 
 L,t � 0� �
1

	2�s

1

1 − i
�s2

�2k0/2 + ix

�exp
1

4

��2k0/2 + ix�2

s2 −
�2k0

2

4
� ,

�24�

where for large distances x+L��2k0 can be approximated in
the two extreme cases: t��2 /4 and t��2 /4. In the former
case,

��x 
 L,t � 0� �
	2

	��

1

1 −
��2

4x

exp
−
x2

�2� , �25�

the barrier influence is independent of time, and, in fact, very
far from the barrier x���2 the barrier’s influence is negli-
gible. However, we see here that in the limit t→0, due to the
finite spectral width ��, the presence of the barrier is always
felt. �Note that the singular case 4x=��2 is not consistent
with the above approximation.� This is to be expected, since
in a Gaussian distribution the number of particles with ex-
tremely large enegies is exponentially small.

When t��2 /4,

��x 
 L,t � 0� =
1

	2�it

1

1 − i
�t

x

exp
 i

4

x2

t
−

�2k0
2

4
� ,

we recognize a penetration velocity. When x / t��, the bar-
rier has a large effect, however, if the particles’ velocity is
very large x / t�� the barrier’s influence is negligible.

And similarly, in the temporal period �2 /4� t�x /�, the
difference between real and imaginary barrier is apparent.

For a real barrier,

���x 
 L,t 
 0��2 �
1 − ��t/x�2

2�t
exp
−

�2k0
2

4
� , �26�

while for an imaginary one,

���x 
 L,t 
 0��2 �
1 − 2�t/x

2�t
exp
−

�2k0
2

4
� . �27�

Again, the the influence of the absorptive potential appears
in a lower order term.

IV. SCHEMATIC EXPERIMENTAL REALIZATION

One of the methods of emphasizing the impact of the
potential is by placing the potential barrier �delta function in
our case� in one arm of a Mach-Zehnder interferometer �see
Fig. 4�.

Let us denote by c1 and ic2 the transmission and reflection
coefficients of each of the two interferometers’ beam splitters
�BS1 and BS2 in Fig. 4�. With this notation we assume
�without loss of generality� that both c1 and c2 are real, and
the conservation of energy implies c1

2+c2
2=1. Then, at the

interferometer’s exit,

��x,t� =	 it

�

eix2/4t

x
�
1 +

2�k0x − i�
x2 t +

4�k0
2x2 − 3ik0x − 3�

x4 t2�
��c1

2 − c2
2� + 
 i�

x
t −

���x − 6 − 2ik0x�
x3 t2�c1

2� .

Let us further assume that both BS’ are almost 50:50, i.e.,
c1

2=0.5�1−�� ,c2
2=0.5�1+��, and ��1. In this case, for a

short time,

��x,t� �	 it

�

eix2/4t

x

� +

i�

2x
t� , �28�

and the probability density can be approximated by

���x,t��2 �
t

�x2�
� −
I�

2x
t�2

+ 
R�

2x
t�2� . �29�

Thus, when the potential is real, the potential-dependent term
has a cubic dependence on time,

FIG. 4. Schematic illustration of a Mach-Zehnder interferometer
for barrier classification.
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���x,t��2 �
t

�x2��2 + 
 �

2x
t�2� , �30�

while if the potential is imaginary, the temporal dependence
of the potential-dependent term is parabolic,

���x,t��2 �
t�

�x2
� −
I�

x
t� . �31�

To emphasize the difference, we define � ���2
����2− ��� free

2 as the difference between the probability den-
sity at the interferometer exit when the barrier is present
����2� and when it is absent ���� free

2 �.

In Fig. 5 we plot the temporal evolution of � ���2, which
is measured at the exit of the interferometer �at x=10 from
the barrier� for the two cases �real and imaginary potentials�.
The only difference between the two plots is the potential �i�
instead of ��. While the two plots are similar after long
times, their temporal differences are considerably different
for short times, as Eqs. �30� and �31� imply �like t3 and t2,
respectively�.

V. SUMMARY

The short-time influence of a delta-function potential bar-
rier on an initially confined wave packet was investigated.
The analysis was taken on either compact support and
Gaussian wave function. It was shown that at short times the
barrier presence has a negligible influence, if any, on the
compact support wave packet dynamics. This result applies
also for the probability density of the particles that passed
through the barrier. It was also demonstrated that at short
times an absorptive barrier �i.e., imaginary� has a different
impact on the dynamics than a nonabsorptive �i.e., real� one.
Namely, at short times the effect of an absorptive barrier
appears in the coefficient of the t2 term, while the effect of a
nonabsorptive barrier appears only in the coefficient of the t3

term. Therefore, it is possible to distinguish between an
imaginary and a real potential barrier by measuring its effect
at short times only on the transmitted wave function. There is
no need to measure the transmission and reflection coeffi-
cient simultaneously. It is also demonstrated that a similar
distinction is possible even when the initial wave packet has
a Gaussian shape.
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