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We report on the experimental demonstration of high energy-time entanglement in two-photon states created
in the process of spontaneous parametric down-conversion. We show that the classical variance product, which
we violate by three orders of magnitude, actually represents a lower bound estimate of the number of infor-
mation eigenmodes K. Explicit measurements estimate K to be greater than 100, with theoretical estimates
predicting a value of as high as 1�106. These results provide incentive for the practical feasibility of large
bandwidth quantum information processing, particularly in cryptography over large distances.
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Many impressive advances have been made in the field of
quantum key distribution �1,2� �QKD�, however, in terms of
practical bandwidths and communicable distances there is
still a long way to go before this technology can be used
effectively for the secure communication of streaming im-
ages or other such high bandwidth applications. Recently
there has been interest in developing high-dimensional en-
tangled states for use in QKD systems due to the higher
information bandwidth which would become available �3–6�.
Analogous to the classical case, higher dimensionality im-
plies greater information content per particle, which for
QKD implies larger alphabets for the same particle transmis-
sion rate, as well as possibly increasing the security tolerance
to noise �7,8�. Of course, for QKD these states would need to
be easily transported over large distances, while at the same
time preserving the entanglement. To this end photonic
sources have been the medium of choice in most experimen-
tal proposals, being easily transportable over existing fiber
optic networks. Additionally, the process of parametric
down-conversion provides a ready source of photon pairs
with a number of entangled quantum states to choose from.
However, for most of these quantum states the entanglement
either cannot be preserved over large distances in fiber, or the
entanglement cannot be easily generalized to significantly
higher dimensions �3,7,9�.

Recently it was shown in Ref. �4� that by artificially dis-
cretizing the two-photon position-momentum entanglement
created in down-conversion it is possible to generate
D-dimensional entangled states, where D is an estimate of
the number of exploitable information eigenmodes of the
system. Exciting though this prospect is, the entanglement
cannot be preserved over large distances using current fiber
optic technology. Similar to position and momentum, energy
and time are conjugate variables which obey the single par-
ticle Heisenberg uncertainty relation ��E�2��t�2��2 /4, also
known as the time-bandwidth product, where �E and �t are
the measured single particle energy and time uncertainties,
respectively �10�. The joint uncertainties �E12=��E1+E2�
and �t12=��t1− t2� of two entangled particles, on the other
hand, can violate the classical separability bound �11,12�

��E12�2��t12�2 � �2. �1�

Such states are called energy-time entangled states. Some
efforts have successfully used two-photon energy-time en-

tanglement generated in the down-conversion process to per-
form quantum key distribution, and to generalize the scheme
to higher dimensional states �5,13�. Energy-time entangle-
ment has already been demonstrated to be well preserved
over large distances and currently seems to be the most
promising of the available candidates �5,13,14�. By using the
ideas proposed in Ref. �4� with currently available energy-
time entangled sources we show that it should be possible to
generate D-dimensional entanglement with D�100 and pos-
sibly as high as D�1�106, where the estimates are specific
to our experimental parameters. In doing so, we also demon-
strate an experimental violation of the classical variance
product in Eq. �1� by three orders of magnitude, and show
that this variance product actually represents a lower bound
on the dimensionality of entanglement.

A schematic of the experiment is shown in Fig. 1. The
energy-time entangled photons are created in the collinearly
phasematched spontaneous parametric down-conversion pro-
cess of a 2 mm long �-barium borate �BBO� crystal which is
pumped by a 30 mW, cw, 390 nm laser beam. The down-
converted signal and idler photons are separated from the
pump by a dichroic mirror, and from each other via a polar-
izing beam splitter. They are then coupled into two single
mode fibers. Each photon is then sent to two distinct arms of
our setup �signal to arm A and idler to arm B in Fig. 1�,
where it is manually routed to either one arm of a Franson
interferometer �15,16� or a monochromator. Using these two
measurement devices we measure the two-photon coherence
time and energy correlations, respectively, and hence, esti-
mate the dimensionality of entanglement as well as the vari-
ance product. In the spirit of spacelike separated detectors we
use a Franson interferometer �15� even though the same in-
formation could be obtained using the Hong Ou Mandel in-
terferometer �17�.

The Franson interferometer consists of two unbalanced
Michelson interferometers, one in arm A and one in arm B.
Each Michelson interferometer possesses a long and a short
arm, with a time delay of �A and �B between the two arms in
each Michelson, respectively. The time delays are much
longer than the single photon coherence length, ensuring that
no single-photon interference occurs. Additionally, this al-
lows us to postselect long-long and short-short coincidence
events, as detailed later. The time delay �A is varied by vary-
ing the length of the long arm in arm A with an automated
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linear stage. Let us consider the expected photocoincidence
rate P��A ,�B� which is detected at the output of the Franson
interferometer as a function of the time delays �A and �B
�18–20�

P �� � ��0�aA�tA�aB�tB��		�2dtAdtB, �2�

where �		=

�ts , ti�e−i��p/2��ti+ts�as
†�ts�ai

†�ti��0	dtsdti is the bi-
photon wave function in the time domain, where 
�ts , ti� is
given by


�ts,ti� = �� �ts − ti�
�/� f�

�e−2���ts + ti��
2

�3�

for a biphoton state generated in spontaneous parametric
downconversion, ��x� is a rectangular function such that
��x�=1 if �x��1 and ��x�=0 otherwise, � f is half the zero-
to-zero down-conversion bandwidth, � is the angular fre-
quency spectrum width of the cw laser, as

† and ai
† are the

signal and idler creation operators, and aA and aB are the
annihilation operators at the two detectors. In deriving Eq.
�3� we have taken advantage of the fact that the cw pump has
a much narrower spectrum than the phase-matching function,
hence, we have already assumed that the signal and idler
frequencies are anticorrelated with respect to each other
about �p /2, where �p is the cental pump frequency �19,21�.
Consequently, the time at which the signal and idler are cre-
ated in the nonlinear crystal �birth time� will be correlated to
each other �19�. For the Franson interferometer, aA and aB
can be written in terms of the signal and idler annihilation
operators

aA�t� = �as�t� + as�t + �A��/2, �4�

aB�t� = �ai�t� + ai�t + �B��/2. �5�

Using the creation and annihilation operator commutation
relations �aj�tj� ,ak

†�tk��=� jk��tj − tk� and rejecting the long-
short and short-long events through post-selection, Eq. �2�
can be simplified to give

P��A,�B� = 2 + 2 cos��p

2
��A + �B���� �

�/� f�
� , �6�

where ��x� is a triangular function such that ��x�=1− �x� if
�x��1 and ��x�=0 otherwise, and �=�A−�B. The triangular
function is a result of the convolution of two square func-
tions in this interference effect. We thus expect an oscillating
fringe pattern in the measured coincidences of the Franson
interferometer with a period of 4 /�p and a triangular enve-
lope of a full width at half maximum �FWHM� equal to the
biphoton coherence time  /� f of the down-converted pho-
tons �19,22�. The Franson interferometer therefore consti-
tutes a nonlocal measure of the biphoton coherence time of
our entangled source.

In the experiment a path mismatch of 90 cm
��A,B�3 ns� was used for both Michelson interferometers,
much larger than the single photon coherence length of
�60 �m. Additionally, the acceptance window of the coin-
cidence circuit was set at 1 ns so that we only observe long-
long or short-short coincidences. We are not interested in
measuring the period of the fringes, but instead in measuring
the envelope over which these fringes occur which represents
the correlation width of the birth time of the down-converted
photons. By incrementally varying the length of the long
Michelson arm in arm A it is possible to chart out the enve-
lope of the interference pattern as shown in Fig. 2. As can be
seen, the results are in excellent agreement with the theoret-
ical envelope predicted for a zero-to-zero phase-matching
width of 20 nm, which gives a biphoton coherence time of
�tAB=100 fs. The individual fringes of the interference have
not been resolved since they are not central to the order-of-
magnitude estimate of the envelope function. It should be
noted that we measure a fringe visibility of 84% which indi-
cates the presence of entanglement via a violation of Bell
inequalities �13�, however, this violation gives no quantita-
tive information on the dimensionality of the entanglement,
which is the motivation of this paper.

Next, we measure the spectral coincidence width of the
signal and idler photons by routing them to the monochro-
mators. The monochromators are set up as shown in Fig. 1,
with overall spectral resolutions of �0.017 nm �i.e.,
8.4 GHz�. By placing a 50 �m slit in the focal plane of the

FIG. 1. Schematic of the two-photon time-energy entangled source and analyzing devices. The Franson interferometer is used to measure
the biphoton coherence time, while the monochromators are used to measure an upper bound of the two-photon spectral correlations. The
beam diameter of the photons in the monochromators is increased to 3.85 mm using a 1:5 telescope, then diffracted off of a diffraction
grating at an incidence angle of �20°. L1 and L2 are lenses of 1 m and 750 mm focal lengths respectively. �A and �B are the path mismatch
in arms A and B of the Franson interferometer, respectively.
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1 m focal-length lens in arm A, we expect to create a “ghost
image” of the slit in the focal plane of the 750 mm focal-
length lens in arm B �11,23�. A smaller width was not chosen
due to the low observed coincidence count rates. By
performing a knife edge test in the focal plane of the
750 mm lens in arm B and observing coincidences we can
thus measure the spectral correlations of the photons. The
result of the knife edge test is shown in Fig. 3 where we
measured a ghost slit width of 54 �m, which corresponds
to a conditional spectral correlation width of ���A��B
=0.048 nm ��24 GHz� �11�. We would like to stress that
this measurement is not optimized since it is near the limits
of the resolution of the monochromators and only represents
an upper bound. The true correlation width is expected to be
much less, determined by the bandwidth of the pump.
We have thus measured the upper limit of the spectral
correlations of the down-converted photons to be ���A��B
=0.048 nm.

Let us reiterate what we have obtained. We have mea-
sured the joint birth time uncertainty �biphoton coherence

time� �tAB of the entangled photons, which is relevant to the
Mancini et al. separability criterion �11,12�. On the other
hand, we have measured the conditional spectral uncertainty
��EA�EB

which is relevant to the Einstein-Podolsky-Rosen
�EPR� criterion �11�. We do not expect the conditional un-
certainties of time and energy to vary over the range of in-
terest. Therefore, although conditional and joint uncertainties
are qualitatively different, we shall assume in our case that
their measured values can be used interchangeably to reason-
able approximation. Using the energy and time
correlation widths measured in the experiment, we
can estimate the energy-time variance product to be
���EA�EB

�2���tA�tB�2���EAB�2��tAB�2�0.000 22�2, which is
a three-order-of-magnitude violation of the EPR and the
Mancini et al. separability criterion �11,12�. Although an im-
pressive result in itself, we would like to point out that the
true violation could be much stronger; the energy correlation
measurement is not optimized. Using the theoretical estimate
of the spectral correlation width of ��si�5�10−6 nm �cal-
culated from a 2 MHz bandwidth servolocked pump�, we
would expect an optimized measurement to give a violation
of the order of 11 orders of magnitude. It should be noted
that these results follow through despite there being no time
operator in the framework of quantum mechanics. Although
this is an interesting and perhaps surprising outcome, it is not
a point of contention for our results and conclusions since
they can just as easily be framed in terms of longitudinal
position x� =ct and momentum p� =�k� =E /c. By straightfor-
ward substitution we can obtain the familiar position-
momentum uncertainty relation ��x��2��p��2��2 /4 and
separability bound ��x�12�2��p�12�2��2. We have framed
this work in terms of energy and time because of the com-
mon usage of this convention in the literature.

Let us now consider the implications of these results
when put into context of the work done in Refs. �4,24�,
where it is shown that the dimensionality D of entanglement
is equal to the Schmidt number K of the Schmidt mode de-
composition of the two-photon wave function. For a wave
function of the form 
�t+ , t−�=A�t+�B�t−�, as in Eq. �3� where
t±= ts± ti, the Schmidt number of the decomposition can in
general be shown to be given by K� 1

2 ��t /�t12+�t12/�t�,
where �t and �t12 are widths associated with the
Gaussian-like functions A�t+� and B�t−�, respectively �24�.
Similarly, the Schmidt decomposition can be performed

in the conjugate basis 
̃�E+ ,E−�= Ã�E+�B̃�E−�, giving K̃
� 1

2 ��E /�E12+�E12/�E�, where �E and �E12 are widths as-

sociated with the Gaussian-like functions B̃�E−� and Ã�E+�,
respectively. In general, because E and t are conjugate vari-
ables, it can be shown that �E�t12�� /2 and �t�E12�� /2.
This is simply a statement of the fact that we cannot use
correlation measurements to gain more information about a
single particle than what is allowed by the Heisenberg uncer-
tainty product. Using this, the Schmidt number becomes

K , K̃�
1
4 �� /�t12�E12�, where the equality holds for when A

and B are Gaussian functions. This is a noteworthy statement
that the variance product in Eq. �1�, i.e., the EPR product, is
actually an estimate of the lower bound of the dimensionality
of the entanglement. For our case, the variance product mea-

FIG. 2. �Color online� Data points depict the typical interference
envelope which is observed in the coincidence rates of the Franson
interferometer as a function of path mismatch. The solid line is the
theoretical triangular envelope function which is calculated for a
square biphoton wave function of coherence time  /� f =100 fs.

FIG. 3. �Color online� Using ghost imaging we estimate the
two-photon spectral correlation width as 0.048 nm �details in text�.
The curve is a theoretical fit to the experimental data �squares�.

EXPERIMENTAL DEMONSTRATION OF HIGH TWO-¼ PHYSICAL REVIEW A 73, 031801�R� �2006�

RAPID COMMUNICATIONS

031801-3



sured above predicts that the dimensionality of entanglement
is D�16. However, since our functions are not both
Gaussian, we use the measured values of the spectral widths
��dc�10 nm and ���A��B

=0.048 nm to obtain the more
accurate estimate of D�100. This is smaller than the esti-
mate of D�3�106 obtained using the temporal widths
�tAB�100 fs and �t�300 ns �from the 100 m pump coher-
ence length�, and therefore implies that the measured number
of exploitable information eigenmodes in our source is of the
order of D�100 �4�. We would like to point out that this
estimate is still low considering that we are limited by the
resolution of the monochromators. The theoretical estimate
of the two-photon correlation width �2 MHz� predicts that
the number of eigenmodes could in reality be as high as
D�1�106. Of course, measurements with much higher
spectral resolution are required to verify this. Nevertheless,
this represents a very large potential information bandwidth
for quantum information applications. Especially in the
realm of quantum cryptography, where evidence strongly
suggests that energy-time entanglement is well preserved
over very large distances in fiber �14,25�, these results
present an exciting prospect for immediate applicability.
High dimensional cryptographic schemes have already been
proposed and experimentally realized �5,26�, however, this
work represents the insight into the orders of magnitude of

improvement which this source might be able to provide.
Considerable practical challenges still remain to be over-

come before this large information bandwidth can be ex-
ploited. For example, a discrete-pixel QKD system with
D�105 �4� would require single photon detectors of subpi-
cosecond timing resolution �compared with contemporary
cutting edge �10 ps resolution�, and monochromators of
�10−4 nm spectral resolution with meters long optics and
�500 nm detectors of nanosecond resolution which span an
uninterupted array of �5 cm �compared with contemporary
�50 �m charge coupled devices �CCDs� with microlens
arrays�. However, whether through technological advance-
ment or clever experimental construction, it is the belief of
the authors that such an achievement, as motivated in this
paper, would be a significant step forward in the attempt to
realize a working QKD system that operates at practically
desirable bandwidths.
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