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We investigate the phase separation of resonantly interacting fermions in a trap with imbalanced spin
populations, both at zero and at finite temperatures. We directly minimize the thermodynamical potential under
the local density approximation instead of using the gap equation, as the latter may give unstable solutions. On
the BEC side of the resonance, one may cross three different phases from the trap center to the edge; while on
the BCS side or at resonance, typically only two phases show up. We compare our results with the recent
experiment, and the agreement is remarkable.
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The recent experimental realizations of condensation and
superfluidity in Fermi gases near a Feshbach resonance have
provided a new platform for the controlled study of many-
body physics in the strongly correlated region �1�. A signifi-
cant advance in this direction is illustrated by two very re-
cent experiments �2,3�, which study the Fermi superfluidity
with the controlled population imbalance of different spin
components. With increasing population imbalance, a phase
transition from the superfluid to the normal state has been
observed �2�, and the phase separation of the Fermi gas in the
trap has been identified �2,3�.

The Cooper pairing in the Fermi gas, which is essential
for the Fermi condensate and the superfluidity, requires an
equal number of atoms from both spin components. If the
atomic gas has an imbalanced population in its two spin
states, inevitably some of the atoms will be unpaired, which
triggers the competition between the Cooper pairing and the
population imbalance. Such a competition may lead to vari-
ous new phenomena �4–8�, which have recently raised
strong interest �6–8�.

In this Rapid Communication, we present our study on the
trapped fermions across a Feshbach resonance with a popu-
lation imbalance. Compared with other recent theoretical
works �6–8�, we demonstrate the following results: �i� We
consider a wide resonance with parameters corresponding to
the recent 6Li experiment, and calculate the pairing gap and
the density distribution, which can be directly compared with
the experiment. �ii� We take into account the trapping poten-
tial, and show that the trap favors the phase separation,
which is critical for the understanding of the recent experi-
ments �2,3�. Some of the coexisting or unstable phases in a
homogeneous gas �8� necessarily become phase separated
even if a very weak trap is turned on. �iii� We investigate the
effect of the population imbalance both at zero and at finite
temperatures. At zero temperature, the BCS superfluid state
requires an equal number of atoms from both spin compo-
nents; but at finite temperature T it allows population imbal-
ance carried by the quasiparticle excitations. This key differ-
ence significantly relaxes the competition between the
population imbalance and the Cooper pairing at finite T,
which helps to explain the robustness of the superfluid state
in the recent experiment �2�. �iv� We directly minimize the
thermodynamical potential to find out the stable configura-
tion of the system, and caution the use of the gap equation in

the case of population imbalance. In the region with compe-
tition between different phases, the gap equation often gives
incorrect results or unstable solutions.

To describe the fermions across a Feshbach resonance, we
take the following two-channel Hamiltonian �9–11�:

H = �
k,�

��k − ���ak,�
† ak,� + �

q
��q/2 + � − �↑ − �↓�bq

†bq

+ �/�V�
q,k

�bq
†aq/2−k,↓aq/2+k,↑ + h.c.�,

+ U/V �
q,k,k�

aq/2+k,↑
† aq/2−k,↓

† aq/2−k�,↓aq/2+k�,↑, �1�

where �k=k2 / �2m� �m is the atom mass and �=1�, �� is the
chemical potential for the spin-� component ��= ↑ ,↓ labels
the two spin states�, V is the quantization volume, and ak,�

†

and bq
† are the creation operators for the fermionic atoms

�open channel� and the bosonic molecules �closed channel�,
respectively. The bare atom-molecule coupling rate �, the
bare background scattering rate U, and the bare detuning �
are connected with the physical ones �p ,Up ,�p through the
standard renormalization relations �11�, and the values of
�p ,Up ,�p are determined from the scattering parameters
�see, e.g., the explicit expressions in Ref.�12��. We take the
local density approximation so that �↑=�r+h, �↓=�r−h,
�r=�−V�r�, where V�r� is the external trap potential
�slowly varying in r�, and � ,h are determined from the total
atom number N=N↑+N↓ and the population imbalance
�= �N↑−N↓ � /N through the number equations below.

For simplicity, we first take a mean-field approach
by assuming �bq	= �b0		q0=−� /�V�k�a−k,↓ak,↑	 / ��−2�r�
�the last equality comes from the Heisenberg equation for the
operator bq�. At this level, we neglect the pair/molecule fluc-
tuation, an approximation that is valid near zero temperature
or in the BCS limit. Later we will discuss how to incorporate
the pair/molecule fluctuation directly into the final equations.
We also neglect here the possibility of a non-zero-
momentum pairing �the FFLO state �4�, with the pair mo-
mentum q�0�. This is motivated by the fact that the FFLO
state is stable only within a narrow parameter window deep
in the BCS region �8� and is absent in the recent 6Li experi-
ments �2,3�.
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With the mean-field approximation, one can then find out
the thermodynamical potential 
=−T ln�tr�e−H/T�� at tem-
perature T �the Boltzmann constant is taken to be 1�. It is
given by the expression


 = − �2V/UT − T�
k


ln�1 + exp�− �Ek↓�/T��

+ ln�1 + exp�− Ek↑/T�� − ��k − �↓ − ��Ek↓�Ek↓�/T� ,

�2�

where the parameter UT�U−�2 / ��−2�r�, the quasiparticle
excitation energy Ek↑,↓=���k−�r�2+ ���2
h, and the gap
�=��b0	 /�V+U /V�k�a−k,↓ak,↑	=z�b0	 /�V (z��−U��
−2�r� /�). The � function is defined as ��x�=1 for x�0 and
��x�=0 otherwise. Note that different from the equal-
population case, the excitation energies Ek� are different for
the �= ↑ ,↓ branches. Without loss of generality, we take
h�0 so that Ek↑�0 always; while for a certain range of h,
the sign of Ek↓ depends on the momentum k. When Ek↓
�0, the atoms at that momentum are actually not paired �and
thus have no contribution to �� as pairing is energetically
unfavorable �that is why we have �Ek↓� and ��Ek↓� in Eq.
�2��. This case corresponds to the so-called breached pair
state �13�. From the variational condition �
 /����2=0, we
get the gap equation

1

UTp
= −

1

V�
k

1 − f�Ek↑� − f�Ek↓�

Ek↑ + Ek↓
−

1

2�k
� , �3�

where the parameter 1 /UTp�1/ �Up−�p
2 / ��p−2�r��=1/UT

+ �1/V��k�1/ �2�k�� �the latter equality comes from the
renormalization relation between � ,� ,U and �p ,�p ,Up
�11��. From the relation �
 /���=−nr�V, where nr� is the
density of the spin-� component, we get the number equa-
tions

nr� =
1

V�
k

�uk
2 f�Ek,�� + vk

2 f�− Ek,−��� +
���2

z2 , �4�

where the parameters uk
2 = (Ek+ ��k−�r�) /2Ek, vk

2 = �Ek− ��k

−�r�� /2Ek, Ek=���k−�r�2+ ���2, the Fermi distribution
f�E��1/ �1+eE/T�, and we take −↑ =↓ and vice versa. The
last term ���2 /z2 in nr� comes from the contribution of the
molecule �closed-channel� population, which is small near a
wide resonance. The atom densities nr↑ and nr↓ are con-
nected with the total atom number and the population imbal-
ance through N=�d3r�nr↑+nr↓� and �=�d3r	nr /N�	nr
�nr↓−nr↑�.

The mean-field approach above neglects the pair/molecule
fluctuation. With this fluctuation taken into account, there
will be a noncondensed fraction of the pairs, which also con-
tributes to the gap for the fermionic quasiparticles �11�. So
the gap now is replaced by ���2= ��s�2+ ��pg�2, where ��s�2
=z2 � �b0	�2 /V and ��pg�2=z2mnc /V �11�, with ��b0	�2 and mnc

representing the condensed and the noncondensed molecule
numbers, respectively. With the interpretation of ��� as the
total gap, the gap and the number equations above remain
valid with the pair fluctuation �note that the contribution to
nr� from the noncondensed molecules mnc is automatically

taken into account by the last term in Eq. �4��. If one wants
to break up � to find out the superfluid order parameter �s
and the pseudogap �pg, one needs to know the dispersion
relation for the pair/molecule excitations. Here, to compare
with the experiments �2,3�, we only calculate the total gap �
and the atom density distributions nr�. For that purpose, the
above gap and number equations suffice, and we do not need
to specify the pair dispersion relation. Note that the total gap
� is the quantity directly measurable through the radio-
frequency spectroscopy �15�.

The gap and the number equations above are, in principle,
sufficient to determine the distribution of ��� and nr�. How-
ever, different from the equal-population case, the solution of
this set of equations turns out to be subtle, as they often give
unstable phases or incorrect results. To understand this, we
examine the behavior of the thermodynamical potential 

under the variations of some system parameters. Note that
the gap equation should give an optimal value of ���, which
minimizes 
. However, with a population imbalance, the
potential 
 has a double-well structure in many cases. In
Fig. 1, we show 
 as a function of ��� as we change the
chemical potential �r �from the trap center to the edge�, the
potential difference h �with varying population imbalance�,
the system temperature T, and the field detuning �p. One can
see that the double-well structure shows up, in particular on
the BCS side or in the low-temperature, large-imbalance
cases. Typically, one minimum of the double wells corre-
sponds to �� � =0 �the normal state� and the other has a non-
zero ���. When 
 has a double-well structure, the gap equa-
tion can give an incorrect result in several different ways:

FIG. 1. �Color online� The thermodynamical potential 
 as a
function of the total gap ��� with varying �a� h �the chemical po-
tential difference�, �b� �p �the field detuning�, �c� � �the chemical
potential�, and �d� T �the temperature�. We have used TF=EF

=kF
2 /2m as the unit of energy/temperature, where kF= �3�2n0�1/3 is

a convenient inverse length scale corresponding to a density n0=3
�1013 cm−3, typical for the 6Li experiments. The parameters �p ,Up

take the standard values for the 6Li atoms with �p
�n0=−0.6EF and

Upn0=−82EF. The other parameters for �a�–�d� are given by �a��
=0.5EF, �=0, T=0.01TF; �b� �=0.5EF, h=−0.35EF, T=0.01TF; �c�
h=−0.35EF, �=0, T=0.01TF; and �d� �=0.5EF, h=−0.35EF, �=0.
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first, it may pick up a solution corresponding to the maxi-
mum of 
 �the gap equation is satisfied at that point�, which
is obviously not stable; second, it can choose the shallow
well, which gives a metastable but not the optimal configu-
ration; and finally, the gap equation �3� is usually not satis-
fied with �� � =0 even if the latter is the minimum of 
 �as
�
 /����2�0 at that point�. In this case, the numerical pro-
gram gives an incorrect result in an uncontrollable way.

To overcome the above problems, we always check the
stability of the solution by finding out all the minima of the
thermodynamical potential 
. Note that although the meta-
stable state at the bottom of a shallow well of 
 does not
give the ground state configuration, it has a finite relaxation
time and may appear in real experiments under certain cir-
cumstances �similar to the superheating or supercooling phe-
nomena in a classical phase transition�. So, in that sense, the
state of the system may not be unique. To avoid this com-
plexity, in the following we assume the system to be in its
equilibrium configuration by choosing the solution corre-
sponding to the global minimum of the thermodynamical
potential 
.

Through minimization of the thermodynamical potential,
we have calculated the gap and the density distributions for
trapped fermions �14� with different magnetic field detun-
ings, at both zero and finite temperatures. Figure 2 shows
some typical results. To summarize, we find that the gas is
separated into several different phases from the trap center to
the edge, with the number of phases and their boundaries
sensitive to the detuning �p, the population imbalance �, and
the temperature T. At zero temperature and on the BEC side
of the resonance with a small population imbalance, there are
typically three different phases: the superfluid phase occu-
pies the center of the trap, where all the particles are paired

with no population imbalance �the SF phase�. Further out
from the center, when the pairing gap becomes smaller than
the chemical potential difference �h�, there is a second phase,
in which the particles are paired except for a finite region of
the momentum shell �the breached pair phase �6�, or in short,
the BP phase�. This BP phase is characterized by a nonzero
���, but with excessive fermions in the breached momentum
shell, which gives a finite population imbalance. In Fig. 2�a�,
the middle region with ��� and 	nr both nonzero corresponds
to such a phase. Toward the edge of the trap, where the
pairing gap has already vanished, only the normal Fermi sea
is left, with different Fermi surfaces for different spin com-
ponents. As the population imbalance increases, the SF phase
at the center of the trap depletes and yields to the surround-
ing BP phase and the normal Fermi sea. At the resonance or
further out to the BCS side, this picture is different in that
there are now only two stable phases, the SF phase and the
normal phase, as shown in Fig. 2�b� �the BP phase in the
middle loses its stability�. As the population imbalance in-
creases and reaches a critical value, the system undergoes a
SF-normal phase transition, and the trap is left with only the
normal Fermi gas.

At finite temperature, the main difference is that there are
fermionic excitations in the SF phase, which carry popula-
tion imbalance of the spin components. As a result, it be-
comes easier to satisfy the population imbalance constraint,
as with a fixed imbalance ratio �, the corresponding chemi-
cal potential difference �h� becomes significantly smaller.
This helps to stabilize the SF phase in the case of imbalanced
population. Because of this feature, we cannot use 	nr to
distinguish the SF and the BP phases anymore, so the bound-
ary between them becomes obscure. The population differ-
ence 	nr is peaked at the point where the gap ��� vanishes,
marking the only distinguishable phase separation between

FIG. 2. �Color online� The gap ��� � � and the differential density
���� and 	nr� distributions for the trapped fermions, both at zero and
at finite temperature. The x axis is the distance from the trap center,
in the unit of kFr. The solid curves represent ��� �the left y axis� and
the dashed ones are for 	nr �the right y axis�. The other parameters
are given by �a�, �c� �=−111.48EF, h=−111.52EF; and �b�, �d� �
=0.5EF, h=−0.1EF. The corresponding population imbalance ratio
� and the total atom number N are �a� 1%, 3.1�105; �b� 6%, 3.9
�107; �c� 69%, 7.9�105; and �d� 17%, 4.0�107, respectively.

FIG. 3. �Color online� The atom density distributions in a trap,
calculated with parameters corresponding to the recent MIT experi-
ment �2� with T�0.1EF, and ��2100EF �B−B0�56.3G�.
The solid, the dashed, and the dashed-dotted curves correspond
to the imbalance ratio ��46% �the corresponding �=0.5EF,
h=−0.12EF�, ��86% �the corresponding �=0.43EF, h=−0.23EF�,
and �=0 ��=0.5EF, h=0�, respectively, with the total atom number
N�2.7�107 in all the cases. �c�, �d� show the column integrated
density distributions corresponding to �a�, �b�.
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the paired phase �SF or BP� and the normal phase �see
Figs. 3�c� and 3�d��. At higher temperatures, the paired phase
in the trap shrinks and finally disappears at the pair disasso-
ciation temperature T* �the superfluidity should disappear be-
fore that with Tc�T* �11��. In Figs. 2�c� and 2�d�, we show
the distribution of ��� and 	nr at a typical temperature of
0.1EF, for the BEC and the resonance-BCS sides, respec-
tively.

Finally, to compare with the recent MIT experiment �2�,
we calculate the density distributions nr�, with all the param-
eters roughly the same as those in the experiment �the ex-
perimental temperature may have some uncertainties�. The
results are plotted in Fig. 3. It shows a pretty good agreement
with the experimental data �Fig. 3 of Ref. �2��, at least semi-
quantitatively. In particular, the calculation shows that the
distribution 	nr has a dip at the trap center with a moderate
population imbalance ��=46% �; while the dip disappears
when � becomes large �86%�, which agrees exactly with the
experimental findings.

In summary, we have studied the effects of trap and tem-
perature on fermions across a wide Feshbach resonance with
population imbalance. We propose to directly minimize the
thermodynamical potential in order to overcome the instabil-
ity problem associated with the solution of the gap equation.
We establish a general phase separation picture for the
trapped fermions across the whole resonance region, at both
zero and finite temperatures. We have also compared our
calculation with a recent experiment, and recovered some of
the main experimental findings.

Note added. Recently, two preprints �16,17� appeared in
arXiv, where a similar problem is investigated at zero tem-
perature with different theoretical approaches.
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