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Mass dependence of ultracold three-body collision rates
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We show that many aspects of ultracold three-body collisions can be controlled by choosing the mass ratio
between the collision partners. In the ultracold regime, the scattering length dependence of the three-body rates
can be substantially modified from the equal mass results. We demonstrate that the only nontrivial mass
dependence is due solely to Efimov physics. We have determined the mass dependence of the three-body
collision rates for all heteronuclear combinations relevant for two-component atomic gases with resonant
s-wave interspecies interactions, i.e., three-body systems with two identical bosons or two identical fermions.
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The achievement of quantum degeneracy in ultracold
gases with different atomic species [1] has driven experimen-
tal studies of several novel phenomena. The observation of
interspecies Feshbach resonances in boson-fermion mixtures
[2] allows considerable flexibility for exploring new regimes
by controlling the interspecies interactions. Boson-mediated
Cooper pairing [3], for instance, can substantially increase
the critical temperature for a phase transition to the Bardeen-
Cooper-Schrieffer (BCS) regime. The collapse of the fermi-
onic component as well as the phase separation of both com-
ponents can be studied [4] along with the creation of
ultracold polar molecules [5]. It is worth noting that hetero-
nuclear boson-fermion molecules are composite fermions
which allows a new type of crossover between an atomic
Bose-Einstein condensate and a molecular Fermi-type super-
fluidity [6]. Heteronuclear boson-boson and fermion-fermion
mixtures have also been studied [7], but no Feshbach reso-
nances have yet been reported.

The magnetic field sensitivity of the hyperfine states is the
key to controlling the interatomic interactions in ultracold
gases. By applying an external magnetic field near a di-
atomic Feshbach resonance, the s-wave scattering length a,
which characterizes the low-energy interatomic interactions,
can take any value from the weakly (a¢—0) to the strongly
(Ja| — o) interacting limits. Even though two-body loss pro-
cesses can usually be minimized by using resonances in the
lowest hyperfine states, three-body loss processes can still be
substantial. Fortunately, near the resonance, when |a|>r,
(with ry being the characteristic range of the interatomic in-
teractions) processes such as vibrational relaxation, X +X§
— X+X,, three-body recombination, X+X+X —>X+X;, and
collision-induced dissociation, X+X;HX+X+X, no longer
depend on the details of the interactions and universal pre-
dictions can be made.

Recent experiments have underscored the importance of
knowing the a dependence of three-body rates in order to
determine the atomic and molecular lifetimes. In fact, three-
body losses have been used to locate Feshbach resonances
[2] and to create ultracold molecules [8]. While general re-
sults for threshold [9] and scattering length scaling laws of
three-body equal mass systems [10] have been obtained,
however, there are no similarly general scaling laws for het-
eronuclear systems. The specific case of recombination in a
two-component Fermi gas has been investigated, though, and
found to scale as a® for @ >0, and minima were predicted as
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a function of the mass ratio between the collision partners
[11].

In this paper, we demonstrate that the mass ratio has a
large impact on ultracold threebody collisional losses, allow-
ing a certain degree of control. Using the simple physical
picture developed in Ref. [10], extended to include hetero-
nuclear systems, we have determined that the scattering
length scaling laws can differ substantially from the equal
mass results [10]. For instance, in a system with two identi-
cal fermions that are much heavier than the third atom, re-
laxation of weakly bound heteronuclear molecules scales ap-
proximately as a~’—an even stronger suppression than the
a3 scaling found when all three atoms have equal mass
[10,12]. This scaling was derived in Ref. [12] to explain the
long molecular lifetimes observed experimentally for mol-
ecules formed of fermions in different spin states. It was
their long lifetimes that made further experiments with these
molecules feasible [8,13]. The stronger suppression found
here might open other experimental avenues.

In our picture, the mass dependence enters via the three-
body effective potentials and is associated with Efimov phys-
ics [14]. In fact, we demonstrate here that the only nontrivial
mass dependence is due solely to Efimov physics. We deter-
mine the mass dependence of the collision rates for three-
body systems relevant to all two-component atomic gases
with resonant interspecies s-wave interactions, which
amounts to systems with two identical bosons or two identi-
cal fermions. In this work, we analyze the cases where the
intraspecies interactions are not resonant so that only the
interspecies scattering length is important. We have also as-
sumed that the atoms are spin polarized. These cases, though,
are those most likely to be relevant for current experiments.

For short-range two-body interactions, the ultracold be-
havior of three-body systems can be derived from three-body
effective potentials and couplings [10] which, in the adia-
batic hyperspherical representation, are determined from the
adiabatic equation [15],

Had(R’Q)q)V(R;Q) = UV(R)va(R’Q) (1)

This equation is obtained from the full Schrodinger equation
by fixing the hyperradius R, leaving only dynamics in the
hyperangles ) through H,. By expanding the total wave
function on the adiabatic basis ®,, the Schrodinger equation
(in atomic units) is reduced to:
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where E is the total energy, F, is the hyperradial wave func-
tion, and v is a collective index that represents all quantum
numbers necessary to label each channel. In the present case,
the three-body reduced mass is w=m//8(6+2) where m is
the mass of the distinguishable particle and & is the ratio of
the different atom mass to the identical atom mass. This
equation describes the collective radial motion under the in-
fluence of the effective potential W, as well as any inelastic
transitions controlled by the nonadiabatic couplings V.

In the limit |a| > r,, the effective potentials W, depend
crucially on Efimov physics [10,14]. In Ref. [10], we de-
scribed a scheme that uses this fact to classify all equal-mass
three-body systems with resonant s-wave pairwise interac-
tions. In this scheme, each system falls into one of two cat-
egories: those with an attractive dipole (R™?) potential in the
range ry<R < |a| and those only with repulsive dipole poten-
tials. Which category a particular system falls into depends
on its symmetry J7 (total angular momentum J and parity )
and the identical particle permutational symmetry, i.e.,
whether they are bosons or fermions. For heteronuclear sys-
tems, this basic classification scheme still holds, and the ex-
tension of the analysis of the three-body rates requires only
slight modifications which, in turn, come almost entirely
from the & dependence of the dipole potential strengths.

For each category, there are three distinct regions in R that
characterize the effective potentials (for a schematic picture,
see Fig. 1 in Ref. [10]): R=<r, ry<
where as=[/8(6+2)/(5+1)]"?a. Replacing a by ain these
definitions is the first mass-dependent modification of our

tentials can be derived analytically [16]. They are associated
with molecular channels, which represent atom-molecule
scattering, and with three-body continuum channels, which
represent collisions of three free atoms, and are given respec-
tively by

AN +4)+15/4

SR 3)

W,=E,; + W and W, =
The molecular bound state energy E,;s is labeled by the rovi-
brational quantum numbers v and /’; [ is the atom-molecule
relative angular momentum; and A labels the eigenstates of
the hyperangular kinetic energy.

For ry< R <|ag4, the potentials for the molecular and con-
tinuum channels [Eq. (3)] are modified due to Efimov phys-
ics, establishing our classification scheme. In the first cat-
egory, an attractive dipole potential occurs in the highest
vibrationally excited s-wave molecular channel for a>0 and
in the lowest continuum channel for a <0. The potentials for
all higher-lying channels are repulsive. These potentials are
conveniently parameterized by the coefficients s, and s,

z 1 2

and W,(R) =

W,(R) = (4)

2R2 2R2

In the second category, the potentials for the weakly bound
molecular channel and the continuum channels are repulsive
and parametrized by coefficients p, and p,:
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In both categories, however, deeply bound molecular chan-
nels are essentially independent of a. In the above equations,
the coefficients s, s,, po, and p, depend on the number of
resonant pairs, the number of identical particles, and the
mass ratio & between collision partners [14]. For R=<r, the
potentials depend on the details of the interatomic interac-
tions and can lead to resonance effects due to three-body
shape or Feshbach resonances.

In the adiabatic hyperspherical representation, inelastic
transitions at ultracold temperatures proceed via tunneling in
the initial collision channel to where the coupling V,,,
peaks—the coupling, of course, drives the transition. We
have previously shown that a simple WKB approximation to
the tunneling probability through the potentials given by Eqs.
(3)—(5) is sufficient to determine both the threshold and the
scattering length scaling laws for equal mass three-body col-
lisions [10]. For heteronuclear systems, ag, ¢, §,, Po, and p,
generate the only nontrivial mass dependence in the three-
body rates and follow directly from Efimov’s analysis.

For systems and symmetries from our first category [with
an attractive potential (4)], relaxation for a>0 is

sinh(27)
o 2
rel @ M Eeop sin?[ s, In(ag/ry) + ®] + sinh?(7) a5

(6)

and for a<0, Vo u'EL o', E.ou=E~E, is the colli-
sion energy, ® is an unknown short-range phase [10], and 7
labels parameters related to the inelastic transition probabil-
ity at small distances [17]. These parameters can depend on
the masses nontrivially and can lead to resonance effects,
depending upon details of the interactions. Recombination
for a>0 and ¢ <0 is given by

2s
1 v
K; oc,u)‘ lE)‘[sm [so ln< )+<IJ} (—0) }a?‘”,
o as

sinh(27) a2 ™)
sin?[so In(|ag/ro) + ] +sinh2(5) " ©

K3 o M)\—IE}\

For systems and symmetries from our second category [with
a repulsive potential (5)], relaxation for a>0 is

Via & W Elgy(rolag)™oay™, (8)

while it is Vo u!~'EL r2*! for a<0. Recombination for
a>0 and a<0 is given by

2pg 2p,

r 1y

Ko M)‘"E"[l +A,7<a—0) +B,7<a—°> ]a?“‘,
2 6

Ky o M ENrgf|ag])*Pola g™ 9)

The mass dependence of s, and p, can substantially
modify the a dependence of the three-body rates. The coef-
ficients s, and p,, however, do not affect the scaling laws.
Figure 1 shows s, and p, for systems with two identical
bosons (BBX, d=my/mg) and with two identical fermions
(FFX, 6=my/my). These coefficients are determined analyti-
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FIG. 1. Mass dependence of s, and p,, for (a) two identical
boson and (b) two identical fermion systems.

cally following Ref. [14] after proper symmetrization. It is
important to notice that for J> 0 the effective potentials can
change from attractive to repulsive and vice versa, changing
the category in which the system is classified, and thus modi-
fying its collisional properties. It happens, for instance, for
2* BBX systems at 8,~0.0259 [Fig. 1(a)] and for 1~ FFX
systems at 8,~0.0735 [Fig. 1(b)].

For bosonic systems BBX, the dominant contribution for
relaxation and recombination is J"=0% with /=0 and A=0,
and is described by Egs. (6) and (7) due to the presence of an
attractive dipole potential. In this case, the variations of s
with & [Fig. 1(a)] changes the number of Efimov states.
These variations manifest themselves in the three-body rates
through the locations of the minima and peaks in Egs. (6)
and (7). We note that the mass dependence in this case does
not modify the scaling laws.

In contrast, for fermionic systems FFX, the power-law
behavior does change with mass for the dominant contribu-
tions to relaxation (J"=0" with /=0) and recombination
(J™=1~ with A=1). These changes follow from the mass de-
pendence of the repulsive dipole potential due to p, [Fig.
1(b)] combined with Egs. (8) and (9). It follows that relax-
ation for FX+F collisions scales as a'~2” for a>0 and is
suppressed for all & since 2 < p,<4 [Fig. 1(b)], approaching
its greatest suppression, a’’, as 6—0 and its least, a—>, as
60— . Suppression of FX+F collisions can thus be much
stronger than a3, found for 8=1 FF'+F collisions of fer-
mionic atoms in different spin states [10,12]. Extremely
long-lived heteronuclear molecules in ultracold boson-
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fermion and fermion-fermion mixtures might thus be pos-
sible. The modifications to the recombination scaling law
occurs for <0 and 6=0.0735 where it scales as a®70 with
0=<po=<2 [Fig. 1(b)]; otherwise it scales as a®, leading to an
asymmetry between a >0 and a <0. The strongest asymme-
try is obtained when 6— %, where recombination scales as
a® and |a?, respectively, so that greater collisional stability
against recombination might be expected for a <O.

As mentioned above, recombination for FFX systems
with 6=0.0735 was studied in Ref. [11] and found to scale
as a® for a>0 which agrees with our prediction. It was also
predicted that the recombination rate oscillates as a function
of & with zeros at 6=0.0735, 0.1160, and as §— < (note that
the mass ratio in [11] is 1/6). These zeros were ascribed to a
decoupling of the three-body continuum and bound channels
[11], leading to elastic scattering only, and have also been
interpreted as interference effects [17]. In our formulation,
however, no such zeros are predicted. In fact, in this range of
o, the potentials for both continuum and bound channels, Eq.
(5), are repulsive and interference effects are expected to be
suppressed by tunneling. Further, we have noticed through
representative numerical calculations that the continuum and
bound channels never decouple and that the nonadiabatic
coupling peaks at R=r, and R=a, in accord with our model
[10]. While we have observed minima in our calculations,
they do not correspond to the minima discussed in Ref. [11].
They are most likely a consequence ofusing a two-body po-
tential with finite @, and we expect them to disappear in the
limit a — o0 considered in [11]. Preliminary numerical results
support this expectation.

Table I summarizes the threshold and scattering length
scaling laws for the three-body rates, including dissociation
D;. The three dominant partial waves (as determined by their
energy dependence) are shown for each process. The table
thus indicates the terms expected to be important for finite
energies or |a| —o. For BBX systems, these contributions
are not expected to be important for relaxation with @ >0 or
recombination with a<<0. For FFX systems, however, the
higher partial waves are comparatively more important.

In two-component ultracold atomic gases with resonant
interspecies interactions, the important three-body processes
are those that involve both atomic species, assuming that
intraspecies interactions are not resonant. In this case, there
are only two relevant systems and the competition between
the collision rates for each system as well as the density of

TABLE 1. Threshold and scattering length scaling laws for three-body rates. For 2* BBX and 1~ FFX
systems the rates are given for <8, and §> §,. Boldface indicates the leading contribution at threshold.

Vrel K3 (D3)

J7 E a>0 E a>0 a<0
BBX 0* const a const(E?) at |a|*

1~ ECOl] a3_2p0 E(E3) a6 |a|6_2p0

o+ B2, &, a5 E2(EY) &, db lal8, |a[8-270
FFX 0* const a'=?po EX(EY) a® |a|®=2Po

1~ Eo @, a0 E(E%) a®, a° lal®,]a|®=2¢0

2+ Ezoll a>=2po EZ(E4) a8 |a|8—2p(]
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each species determines the atomic and molecular lifetimes.
In boson-fermion mixtures, for instance, relaxation for BF
+F collisions decreases with a while for BF+B it increases.
In this case, if all bosons are bound in BF molecules, the
molecules are expected to be long lived. Otherwise, the mol-
ecules will be rapidly quenched by collisions with the
bosonic atoms.

Vibrational relaxation, as we have shown, can be con-
trolled by choosing the atomic species according to their
mass, and consequently, the molecular lifetime can be sub-
stantially modified. We show in Table II the suppression pre-
dicted for BF+F collisions of commonly used alkali-metal
atoms. The table includes systems used in recent experi-
ments: 2*Na—°Li and ¥Rb-*K [2], as well as "Li-°Li. [6].
We have included H due to the prospects for using it for
sympathetic cooling [18]. Molecule-molecule collisions also
contribute to the molecular lifetime [12], but in boson-
fermion mixtures the molecules are composite fermions so
that only p-wave molecule-molecule collisions occur. In this
case, molecule-molecule collisions are suppressed for ultra-
cold temperatures, and atom-molecule collisions are ex-
pected to be dominant.

In this paper, we have explored the mass dependence of
the ultracold three-body collision rates and derived its energy
and scattering length dependence for all cases relevant for
two-component quantum gases with resonant interspecies in-
teractions, assuming nonresonant intraspecies interactions. In
the process, we have demonstrated that the mass dependence
in three-body collisions is intimately related with Efimov
physics. In bosonic systems, the mass dependence affects the
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TABLE II. Scattering length scaling laws for relaxation (a>0)
of BF+F collisions in boson-fermion mixtures based solely on
mass.

B-F VEIHE
1330s- 0L a=300
I33CS_40K a—3_06
8"Rb-OLi a3
87Rb740K a{;, 12
2Na-CLi a3
23N a—40K a_3_63
"Li-°Li a3
7Li—40K a—4‘83
H—6Li a—4‘89
H_40K a—6‘85

features due to Efimov physics, but leaves the dominant scat-
tering length scaling laws unchanged. In fermionic systems,
however, the mass dependence modifies the scattering length
scaling laws substantially from the equal mass results. The
stronger suppression found for relaxation of weakly bound
heteronuclear molecules in boson-fermion mixtures, suggests
the possibility of long-lived heteronuclear fermionic mol-
ecules.
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