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Finding control fields �pulse sequences� that can compensate for the dispersion in the parameters governing
the evolution of a quantum system is an important problem in coherent spectroscopy and quantum information
processing. The use of composite pulses for compensating dispersion in system dynamics is widely known and
applied. In this paper, we make explicit the key aspects of the dynamics that makes such a compensation
possible. We highlight the role of Lie algebras and noncommutativity in the design of a compensating pulse
sequence. Finally, we investigate three common dispersions in NMR spectroscopy, namely the Larmor disper-
sion, rf inhomogeneity, and strength of couplings between the spins.
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Many applications in control of quantum systems involve
controlling a large ensemble by using the same control field.
In practice, the elements of the ensemble could show varia-
tion in the parameters that govern the dynamics of the sys-
tem. For example, in magnetic resonance experiments, the
spins of an ensemble may have large dispersion in their natu-
ral frequencies �Larmor dispersion�, strength of applied rf
field �rf inhomogeneity�, and the relaxation rates of the spins
�1�. In solid-state NMR spectroscopy of powders, the ran-
dom distribution of orientations of internuclear vectors of
coupled spins within an ensemble leads to a distribution of
coupling strengths �12�. A canonical problem in control of
quantum ensembles is to develop external excitations that
can simultaneously steer the ensemble of systems with varia-
tion in their internal parameters from an initial state to a
desired final state. These are called compensating pulse se-
quences as they can compensate for the dispersion in the
system dynamics. From the standpoint of mathematical con-
trol theory, the challenge is to simultaneously steer a con-
tinuum of systems between points of interest with the same
control signal. Typical applications are the design of excita-
tion and inversion pulses in NMR spectroscopy in the pres-
ence of Larmor dispersion and rf inhomogeneity �1–10� or
the transfer of coherence or polarization in a coupled spin
ensemble with variations in the coupling strengths �13�. In
many cases of practical interest, one wants to find a control
field that prepares the final state as some desired function of
the parameter, for example slice selective excitation and in-
version pulses in magnetic resonance imaging �14–17�. The
problem of designing excitations that can compensate for
dispersion in the dynamics is a well studied subject in NMR
spectroscopy, and extensive literature exists on the subject of
composite pulses that correct for dispersion in system dy-
namics �1–7�. Composite pulses have recently been used in
quantum information processing to correct for systematic er-
rors in single- and two-qubit operations �18–23�. The focus
of this paper is not to construct a new compensating pulse
sequence but rather to highlight the aspects of system dy-
namics that make such a compensation possible and give

proofs of the existence of a compensating pulse sequence.
Our final goal is to develop a better understanding of what
kind of dispersions can and cannot be corrected.

To fix ideas, consider an ensemble of noninteracting spin
1
2 in a static field B0 along z axis and a transverse rf field,
(A�t�cos ��t� ,A�t�sin ��t�), in the x-y plane. The dispersion
in the amplitude of the rf field is captured by a dispersion
parameter � such that A�t�=�A0�t�, where �� �1−� ,1+��,
for ��0. Similarly dispersion in B0 leads to a spread in the
Larmor frequency �=�B0 �� is the gyromagnetic ratio of the
spins� around a nominal value �0, i.e., �−�0=����−B ,B�.
Let x ,y ,z represent the coordinates of the unit vector in di-
rection of the net magnetization vector of the ensemble. The
Bloch equations for the ensemble take the form

d
dt�x

y
z
� = � 0 − � �u�t�

� 0 − �v�t�
− �u�t� �v�t� 0

��x
y
z
� , �1�

where u�t�=�A0�t�cos ��t� and v�t�=�A0�t�sin ��t�. Let X�t�
denote the unit vector �x�t� ,y�t� ,z�t��. Consider now the
problem of designing controls u�t� and v�t� that simulta-
neously steer an ensemble of such systems with dispersion in
their natural frequency and strength of rf field from an initial
state X�0�= �0,0 ,1� to a final state XF= �1,0 ,0� �8�. This
problem raises interesting questions about controllability,
i.e., showing that in spite of bounds on the strength of rf
field, �u2�t�+v2�t��Amax, there exist excitations (u�t� ,v�t�)
that simultaneously steer all the systems with dispersion in �
and �, to a ball of desired radius r around the final state
�1,0 ,0� in a finite time �which may depend on Amax, B, �,
and r�. Besides steering the ensemble between two points,
we can ask for a control field that steers an initial distribution
of the ensemble to a final distribution, i.e., different elements
of the ensemble now have different initial and final states
depending on the value of their parameters �� ,��. The initial
and final state of the ensemble is described by functions
X0�� ,�� and XF�� ,��, respectively. Consider the problem of
steering an initial distribution X0�� ,�� to within a desired
distance r of a target function XF�� ,�� by appropriate choice
of controls in Eq. �1� �distance between two functions refers
to the standard L2 distance�. If a system with dispersion in
parameters can be steered between states that have depen-
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dency on the dispersion parameter, then we say that the sys-
tem is ensemble-controllable with respect to these param-
eters.

This paper is organized as follows. First, we introduce the
key ideas and, through examples, highlight the role of Lie
brackets and noncommutativity in the design of a compen-
sating control. Next, we study ensemble controllability of the
Bloch equations �1� in the presence of Larmor dispersion and
rf inhomogeneity with bounded controls, u�t� and v�t�. We
conclude the paper with some observations on time-varying
dispersions and questions related to optimal control of inho-
mogeneous ensembles.

Example 1: Main concept. To fix ideas, we begin by con-

sidering Bloch equations Ẋ=��u�t�	y +v�t�	x�X in a rotating
frame with only rf inhomogeneity and no Larmor dispersion,
where

	x = �0 0 0

0 0 − 1

0 1 0
	, 	y = � 0 0 1

0 0 0

− 1 0 0
	, 	z = �0 − 1 0

1 0 0

0 0 0
	

are the generators of rotation around the x, y, and z axis,
respectively. Observe for small dt, the evolution U1�dt�
=exp�−�	y

�dt�exp�−�	x
�dt�exp��	y

�dt�exp��	x
�dt� to

leading order in dt is given by 1+ �dt���	y ,�	x�, i.e., we can
synthesize the generator ��	x ,�	y�=�2	z, by back and forth
maneuver in the directly accessible directions 	x
and 	y.

Similarly, the leading-order term in the evolution U2
=exp�−�	ydt�U1�−�dt�exp��	ydt�U1��dt� is ad�	y

2 ��	x�
= [�	y , ��	y ,�	x�]=−�3	x. Therefore, by successive Lie
brackets, we can synthesize terms of the type �2k+1	x. Now
using 
�	x ,�3	x , . . . ,�2n+1	x� as generators, we can produce
an evolution exp
�k=0

n ck�
2k+1	x�, where n and the coeffi-

cients ck can be chosen so that �k=0
n ck�

2k+1
 for all �
� �1−� ,1+��. Hence we can generate an evolution
exp�
	x� for all � to any desired accuracy. Therefore, we
achieve robustness with dispersion to � by generating suit-
able Lie brackets. Similar arguments show that we can gen-
erate any evolution exp��	y� and as a result any three-
dimensional rotation in a robust way. It is also now easy
to see that we can synthesize rotation � with a desired
functional dependency on the parameter �. Parametrize a
rotation in ��SO�3� by the Euler angles � ,� ,�� such that
�=exp�	x�exp��	y�exp��	x�. Given functions (��� ,
���� ,����) of �, we can find polynomials that approximate
���, ����, and ���� arbitrarily well and use these to generate
a desired rotation ���� as a function of �. Hence there exists
a control field that maps a smooth initial distribution X0��� to
a target distribution XF���.

Remark: Note we have assumed that ��0. The above
system will fail to be ensemble-controllable if �� �−�0 ,�0�,
as we cannot approximate an even function f���=
 with an
odd degree polynomial.

Remark: Complexity of implementation. The key idea in
designing a compensating pulse sequence is to synthesize
higher-order Lie brackets that raise the dispersion parameters
to higher powers. The various powers of the dispersion pa-

rameter can be combined for compensation, as explained
above. We now analyze the time complexity of generating
higher-order Lie brackets. The propagator Uk+1�dt�
=exp�−�	y

�dt�Uk�−�dt�exp��	y
�dt�Uk��dt� to leading or-

der is 1+�k+1ad	y

k+1	xdt, where U0�dt�=exp��	xdt�. Let
Tk+1�dt� be the time required to produce the propagator
Uk+1�dt�, then Tk+1�dt�=2��dt+Tk��dt��, with T0�dt�=dt.

This then gives that Tk�dt� scales as 2kdt1/2k
. Therefore, syn-

thesizing higher-order brackets is expensive. For example,
for dt=10−4, synthesis of U2�dt�1+�3	xdt takes of the or-
der of dt1/4=0.1 units of time, which is 103 times longer than
the evolution exp�−�	xdt�. Thus the construction presented
here is not the most efficient way of achieving a desired level
of compensation, however it depicts in a transparent way the
role of higher-order Lie bracketing.

Example 2: Phase dispersions cannot be compensated.
Consider an ensemble of Bloch equations

X

˙ = A�t�
cos���t� + 
�	x + sin���t� + 
�	y�X
, �2�

where there is a dispersion in the phase of the rf field. The
system is not ensemble-controllable with respect to the dis-
persion 
� �
1 ,
2�.

Proof: The simplest way to see this is to make the change
of coordinates Y
=exp�−	z
�X
. The resulting system then

takes the form Y

˙ =A�t�
cos���t��	x+sin���t��	y�Y
. Since

all Y
 see the same field, they have identical trajectories. As
a result, X
 cannot be simultaneously steered from �0,0 ,1� to
�1,0 ,0�. The lack of ensemble controllability can also be
understood by looking at Lie brackets of the generators.

Equation �2� can be written as X

˙ = 
A�t�cos���t��B1

+A�t�sin���t��B2�X
, where the B1=cos�
�	x+sin�
�	y and
B2=−sin�
�	x+cos�
�	y. Observe that B3= �B1 ,B2�=	z.
Therefore, all iterated brackets of Bi�s are linear in cos�
� and
sin�
� and we cannot raise the dispersion parameters cos�
�
and sin�
� to higher powers and therefore cannot compensate
for the dispersion in 
.

Example 3: Larmor dispersion in the presence of strong rf

field. Now consider the Bloch equations X

˙ = ��	z+u�t�	x

+v�t�	y�X
 with dispersion in the Larmor frequencies. The
system is ensemble-controllable with respect to the disper-
sion parameter �.

Note because of the assumption of strong fields, we can
reverse the evolution of the drift term

exp��	x�exp��	zdt�exp�− �	x� = exp�− �	zdt� . �3�

Now as before, a maneuver exp�−�	z
�dt�exp�−	x

�dt�
�exp��	z

�dt�exp�	x
�dt� produces the bracket direction

��	z ,	x�=�	y to leading order. Similarly ad��	z�
2 	x

= [�	z��	z ,	x�]=−���2	x. Hence, we can generate higher
brackets with even and odd powers of �. To see that
the system is ensemble-controllable, consider the Lie
bracket relation ad��	z�

2n 	x= �−1�n�2n	x and ad��	z�
2n+1 	y

= �−1�n+1�2n+1	x. We can synthesize an evolution
exp��kck�

k	x� and similarly the evolution exp��kdk�
k	y�.

The coefficients ck and dk can be chosen to approximate
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Euler angles (��� ,���� ,����), and as in Example 1, they
have ensemble controllability.

Example 4: Dispersion in coupling strengths. Consider
two coupled qubits with Ising-type interactions with disper-
sion in coupling strengths J. The interaction Hamiltonian
Hc=J�1z�2z, with J�J0�1−� ,1+��, ��0. Although not
necessary, for simplicity of exposition, we assume that we
can produce local unitary transformation on the qubits much
faster than the evolution of couplings. We now show that it is
possible to compensate for dispersion in J and generate any
quantum logic with high fidelity.

By local transformations we can synthesize the effective
Hamiltonian J�1y�2z=exp�i�1x� /2��J�1z�2z�exp�−i�1x� /2�.
Now using B1=−i2�1y�2z and B2=−i2�1z�2z as generators,
we get [JB1�JB1 ,JB2�]=−J3B2. Now using a construction
similar to the one in Example 1, we can synthesize the evo-
lution exp��kckJ

2k+1�1z�2z�, where the coefficients ck are
chosen such that �kckJ

2k+1J0 over the range of dispersion
of J. Hence we have to compensate for dispersion in J.
We also have ensemble controllability with respect to the
parameter J. We can choose coefficients ck to approx-
imate a smooth function of J and hence synthesize A�J�
=exp
−i�a�J��1x�2x+b�J��1y�2y +c�J��1z�2z��. We can write
an arbitrary two-qubit gate with the dependency on J as
U2�J� � U1�J�A�J�V2�J� � V1�J�, where U1 ,V1 and U2 ,V2 are
local unitaries on qubits 1 and 2, respectively. We can syn-
thesize them with an explicit dependence on J as follows.
Using the commutation relations of the type �−iJ2�1y�1z ,
−iJ2�1z�1z�=−iJ2�1x, we can synthesize generators
−i�J2�k�1x, −i�J2�k�1y, −i�J2�k�2x, −i�J2�k�2y �k=0,1 ,2 , . . . �
and use these to synthesize U1�J� ,V1�J� ,U2�J� ,V2�J�.

Remark: Using ideas similar to those above, it is possible
to compensate for dispersion in a more general coupling ten-
sor. Consider the coupling tensor �1x�2x+��1y�2y
+��1z�2z with dispersion in  ,� ,�. Now observe for U
=exp�−i��z� and A=exp�−i��1x�2x+��1y�2y +��1z�2z��,
UAU†A=exp�−i�2�1z�2z�. So we only need to take care of
the dispersion in �, and the construction is similar to the one
before.

We consider again the system �1� but now with bounded
controls, so that we cannot produce rotations of the type
exp�−	x�� in arbitrarily small time as in Eq. �3�. Nonethe-
less, the system is ensemble-controllable as shown below. To
begin with, assume there is no dispersion in the rf-field am-
plitude. Our construction initially follows the well known
algorithm of Shinnar-Roux �16,17�. We then show how this
construction can be extended to show ensemble controllabil-
ity with respect to Larmor dispersion and rf inhomogeneity
in Bloch equations. The solution to the Bloch equation �1� is
a rotation X�T�=RX�0�, where R�SO�3�. We work with
SU�2� representation of these rotations, where a rotation by
angle � around the unit vector �nx ,ny ,nz� has a representa-
tion of the form U= �

�
−�*

* �, where  and � are the Cayley-
Klein parameters satisfying =cos�� /2�− inzsin�� /2�, �
=−i�nx+ iny�sin�� /2�, and *+��*=1. The Bloch equation
then takes the form

U̇ = −
i

2
� � u − iv

u + iv − �
�U .

The rotation U is simply represented by its first column
�also termed spinor representation� �= �

�
�. We first consider

piecewise-constant controls u�t� and v�t�. The net rotation
under these controls can be represented as successive rota-
tions U=UnUn−1¯U1U0, where Uj = �aj

bj

−bj
*

aj
* � and aj ,bj are

the Cayley-Klein parameters for the jth interval. Defining the
multiplication of the matrices Uj up to k by

�k − �k
*

�k k
* � = �ak − bk

*

bk ak
* �¯ �a0 − b0

*

b0 a0
* � ,

the effect of the controls can then be calculated by propagat-
ing the spinor

�k

�k
� = �ak − bk

*

bk ak
* ��k−1

�k−1
� �4�

with the initial condition �0

�0
� = �1

0 �. The duration �t, over
which the controls u and v are constant, can be chosen small
enough such that the net rotation can be decomposed into
two sequential rotations since e��	z+u	y−v	x��t

e�u	y−v	x��te�	z�t. Under this assumption, we can write the
rotation Uk as a rotation around the z axis by an angle ��t
followed by a rotation about the applied control fields by an
angle �k in SU�2� representation,

Uk = �Ck − Sk
*

Sk Ck
��z1/2 0

0 z−1/2 � , �5�

where

Ck = cos �k � 2, Sk = − iei
ksin �k � 2, �k = Ak�t,


k = tan−1 vk � uk, Ak = �uk
2 + vk

2, z = e−i��t. �6�

Plugging Eq. �5� into Eq. �4�, we get the recursion relation of
the spinor,

�k

�k
� = z1/2�Ck − Sk

*z−1

Sk Ckz
−1 ��k−1

�k−1
� .

Defining Pk=z−k/2k and Qk=z−k/2�k, the recursion may then
be reduced to

�Pk

Qk
� = �Ck − Sk

*z−1

Sk Ckz
−1 ��Pk−1

Qk−1
� �7�

with the initial condition

�P0

Q0
� = �1

0
� . �8�

From the recursion �7� and the initial condition �8�, the
spinor at the nth time step can be represented as the
�n−1�-order polynomials in z, Pn�z�=�k=0

n−1pkz
−k, and Qn�z�

=�k=0
n−1qkz

−k where �Pn�z��2+ �Qn�z��2=1 �the parameter p0

=�k=1
n cos��k /2��. The parameter z encodes the dispersion

parameter �. The desired final states of an ensemble of sys-
tems in Eq. �1�, described by Cayley-Klein parameters, are
two functions of z, and hence of �. We can now design two
polynomials Pn�z� and Qn�z� such that we can approximate
any desired smooth functions F�z� and F��z� satisfying
�F�z��2+ �F��z��2=1, which characterizes the desired spinor
we want as a function of z. Now we can work backwards and
compute the uk’s and vk’s that will produce Pn�z� and Qn�z�.
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Note that by multiplying both sides of Eq. �7� by the inverse
of the rotation matrix, we get

�Pk−1

Qk−1
� = � CkPk + Sk

*Qk

�− SkPk + CkQk�z
� . �9�

We have a backward recursion where we use the knowledge
of coefficients of Pk�z� and Qk�z� to compute Pk−1�z� and
Qk−1�z� �16,17� algorithm. Because Pk−1�z� and Qk−1�z� are
lower-order polynomials, the leading term in Pk−1�z� and the
low-order term in Qk−1�z� must drop out,

CkPk,k−1 + Sk
*Qk,k−1 = 0, �10�

− SkPk,0 + CkQk,0 = 0, �11�

where Pk,m denotes the coefficient of z−m term in Pk�z�.
These two equations are equivalent. Choosing Eq. �11�
and combining it with Eq. �7�, we get Qk,0 / Pk,0
=−iei
k tan��k /2�. This gives the flip angle �k

=2 tan−1 �Qk,0 / Pk,0� and the phase 
k= � �iQk,0 / Pk,0�. The
controls are then uk= ��k /�t�sin 
k, and vk= ��k /�t�cos 
k.
These expressions for controls coupled with the inverse re-
cursion in Eq. �9� construct the piecewise constant controls
uk ,vk that generate polynomial approximations Pn�z� and
Qn�z� of the target function F�z� and F��z�.

In particular, if we choose �n�z�=zn/2Qn�z�−i sin�� /2�
and n�z�=zn/2Pn�z�cos�� /2�, we obtain a broadband ro-
tation �uniform over all �� around the x axis by angle �, and
similarly by choosing �n�z�=sin�� /2� and n�z�=cos�� /2�,
we obtain an approximation to a broadband rotation around
the y axis by angle �.

Now we consider the case when there is also rf inhomo-
geneity. We again write the final rotation U�SU�2� as U
=UnUn−1¯U1U0, where

Uk�z,�� = �Ck��� − Sk���*

Sk��� Ck��� ��z1/2 0
0 z−1/2 � .

Note that the flip angle has a dependence on the parameter �,
and for small flip angles �k we have

�Ck��� − Sk
*���

Sk��� Ck��� � = �1 − ��k��2/8 − ie−i
k�k�/2
− iei
k�k�/2 1 − ��k��2/8

� .

This results in the polynomials Pz�z ,��=�k=0
n−1pk���z−k and

Qn�z ,��=�k=0
n−1qk���z−k in Eq. �7�. These polynomials can be

used to approximate a desired response as a function of �
and �. Such constructions can also be used to generate pat-
tern pulses that selectively excite the Bloch equations with
parameters lying in a given subset of �-� space �10�.

In this paper, we have tried to make explicit the role of
noncommutativity as a key aspect of the dynamics that
makes design of a compensating control possible. We intro-
duced the method of polynomial approximations for design
of pulse sequences for controlling inhomogeneous quantum
ensembles. We note again that the constructions given in this
paper do not provide the most efficient schemes for compen-
sation; however, the constructions presented here establish
the existence of a compensating pulse sequence in a trans-
parent manner. Finding efficient compensating pulse se-
quences is a problem in optimal control. In our recent work,
we demonstrated how simple gradient descent algorithms
�11� can be used to search for efficient compensation
schemes. These algorithms have recently been applied for
the design of broadband excitation and inversion pulses in
the presence of rf inhomogeneity �9,10�.

In this paper, we have assumed that the dispersion in the
parameters of the Hamiltonian are stationary. Another class
of problems of both fundamental and practical interest are
design of excitations that are insensitive to random fluctua-
tions in the parameters of the Hamiltonian. For example,
there has been recent interest in the design of high-fidelity
single-qubit gates in the presence of random telegraph noise
�RTN� �24�. The noise is characterized by random fluctua-
tions in � in the Bloch Eq. �1�, such that � is a random
process that jumps between −� and � with a correlation time
tc, so that the probability density of interarrival time t be-
tween two jumps is exp�−t / tc�. The goal is to design an
excitation for steering Eq. �1� that is immune to such fluc-
tuations �24�. Further work is required to understand the con-
trollability of such problems.
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