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We disprove the critique of our recent work �R. Szmytkowski, Phys. Rev. A 71, 052708 �2005�� contained
in the Comment by Coutinho and Nogami �Phys. Rev. A 73, 026701 �2006��. We show that the model of
zero-range potentials for scattering processes involving Dirac particles, proposed by us in the aforementioned
work, admits a definition of a scalar product under which the plane-wave excited scattering wave function is
normalizable to the Dirac delta function in the momentum space. In addition, we prove that the eigenchannel
wave functions, introduced in the aforementioned paper, are orthogonal with respect to that scalar product.
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In our recent work �1�, we have proposed the model of
zero-range potentials �ZRPs� for continuum processes in-
volving Dirac particles. The basic assumptions of this model
are as follows.

�a� The time-independent wave function ��+��E ,r� de-
scribing a particle of energy E ��E��mc2�, scattered from a
system of N spherically symmetric ZRPs located at the
points �rn� �n=1,… ,N�, satisfies the free-particle time-
independent Dirac equation

�− ic�� · � + mc2� − EI ���+��E,r� = 0

�r � rn;n = 1,…,N� �1�

everywhere in R3 except at the locations of the ZRPs.
�b� If the exciting wave �satisfying the free-particle Dirac

equation everywhere in R3� is ��E ,r�, then the scattering
wave function ��+��E ,r� is explicitly given by

��+��E,r� = ��E,r� + �
n=1

N 	 h0
�+��k�r − rn���n

�+��E�
�h1

�+��k�r − rn���n�r� · ��n
�+��E�


 ,

�2�

with k , � , �n�r�, and the functions h0
�+��z� and h1

�+��z� defined
in Eqs. �2.8�–�2.11� of Ref. �1�.

�c� Interaction between the particle and the ZRPs is mod-
eled by imposing the following limiting conditions on
��+��E ,r� at the scatterers locations

lim
r→rn

�i�r − rn� · �+ + ���r − rn�Kn + k−1�+����+��E,r� = 0

�n = 1,…,N�; �3�

the 4	4 matrices �+, �+, and Kn have been defined in Eqs.
�2.15� and �2.20� of Ref. �1�. Substitution of Eq. �2� into the
conditions �3� leads to the inhomogeneous system of alge-
braic equations for the spinor coefficients �n

�+��E�, given in
Eq. �2.23� from Ref. �1�.

In their Comment �2�, Coutinho and Nogami point out
that the integral

�
R3

d3r ���+�†�E�,r���+��E,r� �4�

cannot be considered as the scalar product of two scattering
wave functions ���+��E� ,r� and ��+��E ,r� from the class
defined by Eqs. �1�–�3� �the function ���+��E� ,r� is induced
by the free wave ���E� ,r��, since, due to the singularity

h1
�+��k�r − rn�� �

r→rn i

k2�r − rn�2
�5�

exhibited by the �rescaled� spherical Hankel function
h1

�+��k�r−rn��, this integral diverges at the locations of the
ZRPs. The authors of the Comment �2� see in this fact �as we
shall show below—unjustly� a deficiency of the model pro-
posed in Ref. �1�.

In response, we would like to point out two facts. First,
the idea to use in quantum mechanics singular �hence, not
normalizable in the standard sense� wave functions is not
new �3�. For instance, such singular functions emerge in the
natural way when one attempts to generalize the nonrelativ-
istic model of zero-range potentials to point obstacles dif-
fracting also higher partial waves �4–10�. Second, and still
more importantly, below we shall show that it is possible to
define a scalar product of two scattering functions of the
form �2� in such a manner that it appears to be free of the
deficiency afflicting the integral �4�.

We begin our reasoning with defining a spherical region
VR�R3 of radius R, centered at the coordinate origin, and N
spherically shaped domains Vn�R3 , �n=1,… ,N�, of iden-
tical radii 
, with the nth domain Vn centered at the point rn
�i.e., at the location of the nth ZRP�:

VR = �r � R3:�r� � R�, Vn = �r � R3:�r − rn� � 
� . �6�

Henceforth, we shall be assuming that the radii R and 
 are
such that it holds that*Electronic address: radek@mif.pg.gda.pl

PHYSICAL REVIEW A 73, 026702 �2006�

1050-2947/2006/73�2�/026702�5�/$23.00 ©2006 The American Physical Society026702-1

http://dx.doi.org/10.1103/PhysRevA.73.026702


Vn � VR �n = 1,…,N� . �7�

Next, consider the scattering functions ��+��E ,r� and
���+��E� ,r� in the domain

V = VR\ �
n=1

N

\V̄n. �8�

Evidently, both these functions are free of singularities in V.
Premultiplying the Dirac equation �1� for ��+��E ,r� by
���+�†�E� ,r�, and vice versa, and then subtracting from the
first resulting expression the complex conjugate of the other,
after some further obvious manipulations one obtains

�
V

d3r ���+�†�E�,r���+��E,r�

=
c�

E� − E
�

V
d3r � · ����+�†�E�,r�i���+��E,r�� . �9�

Since the vector field ���+�†�E� ,r�i���+��E ,r� is regular in
the domain V, one may apply the Gauss divergence theorem
to the integral on the right-hand side of Eq. �9�. This yields

�
V

d3r � · ����+�†�E�,r�i���+��E,r��

= IR
�+��E�;E� − �

n=1

N

In
�+��E�;E� , �10�

where

IR
�+��E�;E� = R2

4�

d2nR���+�†�E�,R�inR · ���+��E,R� ,

�11�

with

nR = R/R �12�

and

In
�+��E�;E� = 
2

4�

d2nn���+�†�E�,rn + 
nn�

	inn · ���+��E,rn + 
nn� , �13�

with nn denoting the �variable� outward unit vector normal to
the spherical surface �Vn surrounding Vn. On combining
Eqs. �9� and �10�, after obvious rearrangements we obtain

�
V

d3r ���+�†�E�,r���+��E,r� + �
n=1

N
c�

E� − E
In

�+��E�;E�

=
c�

E� − E
IR

�+��E�;E� . �14�

As 
→0, the volume integral on the left-hand side of the
above equation exhibits a singularity of the order 
−1 �ob-
serve that this is just this singularity which makes it impos-
sible to define the scalar product of ���+��E� ,r� and
��+��E ,r� in the form �4��; the similar statement is true for

each of the surface integrals In
�+��E� ;E�, hence, also for their

sum. On the other hand, the right-hand side of Eq. �14� is
completely independent of 
. This means that the singulari-
ties in the volume and surface integrals of the left-hand side
of Eq. �14� cancel out. This, in turn, suggests one may define
the “regularized” �or “renormalized”� scalar product of the
two singular wave functions ���+��E� ,r� and ��+��E ,r� as

����+��E�����+��E��

=
def

lim

→0

��
R3\�n=1

N V̄n

d3r ���+�†�E�,r���+��E,r�

+ �
n=1

N
c�
2

E� − E


4�

d2nn���+�†�E�,rn + 
nn�

	inn · ���+��E,rn + 
nn�� . �15�

For practical purposes, the use of the relationship

����+��E�����+��E��

= lim
R→

c�R2

E� − E


4�

d2nR���+�†�E�,R�inR · ���+��E,R� ,

�16�

deducible from Eqs. �14� and �15�, may appear to be advan-
tageous over the direct use of the definition �15�.

The scalar product �15� possesses several interesting, and
desirable, properties. Below we shall list, and prove, some of
them.

First, the product �15� is applicable to any two nonsingu-
lar solutions ���E� ,r� and ��E ,r� of the free-particle Dirac
equation as well. Defining

����E�����E�� =
def

lim

→0
��

R3\�n=1
N V̄n

d3r ��†�E�,r���E,r�

+ �
n=1

N
c�
2

E� − E


4�

d2nn��†�E�,rn + 
nn�

	inn · ���E,rn + 
nn�� , �17�

in view of the regularity of ���E� ,r� and ��E ,r� in R3,
including the points �rn�, we see that in the limit 
→0 the
second term in the square bracket on the right-hand side of
Eq. �17� vanishes; at the same time, the first term �i.e., the
volume integral� does not exhibit any singularity, reducing in
the limit 
→0 to the integral over R3, so that one has

����E�����E�� = �
R3

d3r ��†�E�,r���E,r� . �18�

Second, it appears that the singular scattering wave func-
tion
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��+��E,�0,n0,r�

= ��E,�0,n0,r�

+ �
n=1

N 	 h0
�+��k�r − rn���n

�+��E,�0,n0�
�h1

�+��k�r − rn���n�r� · ��n
�+��E,�0,n0�


 ,

�19�

excited by the Dirac plane wave

��E,�0,n0,r� = eikn0·r	 ���0�
�n0 · ����0�


 �20�

�see Sec. III A in Ref. �1��, is normalizable under the scalar
product �15� to the Dirac delta function in the momentum
space, since it holds that

���+��E�,�0�,n0����
�+��E,�0,n0��

= �2��3�1 + �2���3��k�n0� − kn0��†��0�����0� . �21�

To prove this, consider the integral

IR
�+��E�,�0�,n0�;E,�0,n0�

= R2
4�

d2nR��+�†�E�,�0�,n0�,R�inR · ���+��E,�0,n0,R� .

�22�

On one hand, in virtue of Eq. �16� it holds that

lim
R→

c�

E� − E
IR

�+��E�,�0�,n0�;E,�0,n0�

= ���+��E�,�0�,n0����
�+��E,�0,n0�� . �23�

On the other hand, assuming that R is large, and observing
that from Eqs. �3.16� and �3.17� of Ref. �1� it follows that

��+��E,�0,n0,R� �
R→ 2�i

k
� e−ikR

R
��2��nR + n0�	 ���0�

�n0 · ����0�



−
eikR

R
	 S�+��E,nR,n0����0�

�nR · �S�+��E,nR,n0����0�

� ,

�24�

where ��2��n−n�� is the Dirac delta function on the unit
sphere and S�+��E ,n� ,n� is the 2	2 scattering kernel �see
Eq. �3.12� in Ref. �1��, we have

IR
�+��E�,�0�,n0�;E,�0,n0� �

R→ 4�2

k�k
��� + ��sin��k� − k�R��†��0�����+��E�,n0�;E,n0� + ��2��n0� − n0�I����0�

+ i
4�2

k�k
��� + ��cos��k� − k�R��†��0�����+��E�,n0�;E,n0� − ��2��n0� − n0�I����0�

+ i
4�2

k�k
��� − ��exp�i�k� + k�R��†��0��S

�+��E,− n0�,n0����0�

− i
4�2

k�k
��� − ��exp�− i�k� + k�R��†��0��S

�+�†�E�,− n0,n0�����0� , �25�

with

��+��E�,n0�;E,n0� = 
4�

d2nRS�+�†�E�,nR,n0��S
�+��E,nR,n0� .

�26�

After dividing both sides of Eq. �25� by E�−E and after
subsequent passing to the limit R→, the third and fourth
terms on the right-hand side of the resulting equation, con-
sidered as functions of E, oscillate infinitely rapidly with the
finite amplitude, being thus effectively zero in the distribu-
tional sense. The same happens with the second term, be-
cause

��+��E,n0�;E,n0� = ��2��n0� − n0� , �27�

as may be easily deduced from Eq. �26� and from Eqs. �5.30�
and �4.17� in Ref. �1�. The situation with the first term is
different, since it holds that

lim
R→

sin��k� − k�R�
E� − E

= �
dk

dE
��k� − k� =

�E

c2�2k
��k� − k�

�28�

�the second equality follows after applying Eq. �2.9� of Ref.
�1��. On combining Eqs. �23�, �25�, �27�, and �28�, one ob-
tains

���+��E�,�0�,n0����
�+��E,�0,n0��

=
16�3�E

c�k3 ��k� − k���2��n0� − n0��†��0�����0� . �29�

From this, Eq. �21� follows immediately. Proceeding in the
same way as above, one may show that the “final-state”
wave functions, defined in Sec. VI of Ref. �1� for the future
use in the theory of photodetachment, obey the orthogonality
relation analogous to that in Eq. �21�:
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���−��E�,�0�,n0����
�−��E,�0,n0��

= �2��3�1 + �2���3��k�n0� − kn0��†��0�����0� . �30�

It is instructive to compare the result �21� with the scalar
product �17� of the Dirac plane waves ��E� ,�0� ,n0� ,r� and
��E ,�0 ,n0 ,r�, both being of the functional form �20�. Ex-
ploiting Eq. �18� and proceeding in the standard way, this
product is readily shown to be

���E�,�0�,n0�����E,�0,n0��

= �2��3�1 + �2���3��k�n0� − kn0��†��0�����0� , �31�

and is seen to be identical with the right-hand side of Eq.
�21�, i.e., it holds that

���+��E�,�0�,n0����
�+��E,�0,n0��

= ���E�,�0�,n0�����E,�0,n0�� . �32�

Equation �32� is a particular case of the more general rela-
tionship

����+��E�����+��E�� = ����E�����E�� , �33�

which is the third property of the product �15� we wish to
highlight. To prove the relationship �33�, we observe that any
regular solution ��E ,r� of the free-particle Dirac equation
may be expressed as the superposition of the plane waves of
the form �20�:

��E,r� = �
s=±1


4�

d2n0c�E,s�0,n0���E,s�0,n0,r� ,

�34�

where

c�E,�0,n0���E − E��

=
Ek

�2��3�1 + �2�c2�2�
R3

d3r �†�E,�0,n0,r���E�,r� .

�35�

After inserting the expansion �34� into either of Eqs. �17� or
�18�, it follows that

����E�����E��

= �
s,s�=±1


4�

d2n0�
4�

d2n0c�*�E�,s��0,n0��c�E,s�0,n0�

	���E�,s��0,n0�����E,s�0,n0�� . �36�

On the other hand, from the linearity and homogeneity of
Eqs. �1� and �3� �see also Eq. �2.23� in Ref. �1� and the

remark following Eq. �3.7� therein�, and also from Eqs. �2�
and �34�, we find that

��+��E,r� = �
s=±1


4�

d2n0c�E,s�0,n0���+��E,s�0,n0,r� .

�37�

Combining this with either of Eqs. �15� or �16�, we get

����+��E�����+��E��

= �
s,s�=±1


4�

d2n0�
4�

d2n0c�*�E�,s��0,n0��c�E,s�0,n0�

	���+��E�,s��0,n0���
�+��E,s�0,n0�� . �38�

Comparing the right-hand sides of Eqs. �36� and �38�, after
making use of Eq. �32� we see that they are identical, which
proves the validity of the relationship �33�.

Before concluding, we cannot resist the temptation to
show that the scalar product �15� offers even more than ex-
pected: it appears that the eigenchannel wave functions
X��E ,r�, introduced in Sec. IV of Ref. �1�, are orthogonal
under this scalar product in the sense of

�X���E���X��E�� =
�

sin2���E�
��E� − E�����. �39�

To prove the relation �39�, we exploit the fact that the eigen-
channels are singular solutions of the Dirac equation �1�.
Thus, instead of using directly the definition �15�, we apply
Eq. �16� and write

�X���E���X��E��

= lim
R→

c�R2

E� − E


4�

d2nRX��
† �E�,R�inR · �X��E,R� ,

�40�

and then transform the right hand of Eq. �40� with the aid of
the asymptotic representation

X��E,R� �
R→ sgn�E�

�1 + �2
� E

2c2�2k

1

i sin ���E�

	� e−ikR−i���E�

R
	 ���E,− nR�

− �nR · ����E,− nR�



−
eikR+i���E�

R
	 ���E,nR�

�nR · ����E,nR�

� �41�

�see Eqs. �4.13� and �4.16� from Ref. �1��. After some ma-
nipulations, exploiting, among others, the identity


4�

d2nR���
† �E�,− nR����E, ± nR�

= 
4�

d2nR���
† �E�,nR����E, � nR� , �42�

one finds
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c�R2

E� − E


4�

d2nRX��
† �E�,R�inR · �X��E,R� �

R→ sgn�E�E�
c� sin ����E��sin ���E�

� E�E

k�k�1 + ��2��1 + �2�

	���� + ��
sin��k� − k�R + �����E�� − ���E���

E� − E


4�

d2nR���
† �E�,nR����E,nR�

−
�� − �

E� − E
sin��k� + k�R + �����E�� + ���E���

4�

d2nR���
† �E�,nR����E,− nR�� .

�43�

In the limit R→ the second term in the square bracket on the right-hand side of the above equation is zero in the
distributional sense. Furthermore, since

sin��k� − k�R + �����E�� − ���E���

E� − E
=

sin��k� − k�R�
E� − E

cos�����E�� − ���E�� + cos��k� − k�R�
sin�����E�� − ���E��

E� − E
�44�

and


4�

d2nR���
† �E�,nR����E,nR� = ���� + �

n=1


�E� − E�n

n!


4�

d2nR

�n���
† �E,nR�

�En ���E,nR� , �45�

in the distributional sense one has

lim
R→

sin��k� − k�R + �����E�� − ���E���

E� − E


4�

d2nR���
† �E�,nR����E,nR� = ���E� − E�����. �46�

On combining Eqs. �40�, �43�, and �46�, one arrives at the orthogonality relation �39�.

In a later publication, we shall present an extension of the model of zero-range potentials to bound states of Dirac particles.
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