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In a recent paper, Szmytkowski proposed zero-range potentials for Dirac particles in three space dimensions.
On the other hand, there is a theorem, proved by Svendsen a long time ago, which implies that zero-range
potentials cannot be defined for the Dirac equation in two and three space dimensions. We discuss a difficulty

that underlies Szmytkowski’s approach.
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In a recent paper, Szmytkowski proposed zero-range po-
tentials (ZRPs) for Dirac particles in three space dimensions
[1]. On the other hand, there is a theorem, proved by Svend-
sen a long time ago, which implies that ZRPs cannot be
defined for the Dirac equation in two and three space dimen-
sions [2,3]. We discuss a difficulty that underlies Szmyt-
kowski’s approach.

Let us focus on the three-dimensional case with only one
ZRP at the origin. Before examining the relativistic case, let
us briefly review the nonrelativistic case. With the
Schrodinger equation there is no difficulty in defining the
ZRP; it can be done as follows. Consider a particle of mass
m bound by a central attractive square-well potential with
range a and depth D. (Actually the potential can be repulsive
as we point out later.) Following the standard procedure, we
match the Schrodinger wave function for a stationary S state
and its derivative ¢Ar) and di(r)/dr at r=a and obtain

Koa cot(kya) = ka, (1)

where k=(-2mE)"?, ky=[2m(E+D)]"? and E is the energy
of the bound state. We are using units such that c=h=1. For
given values of D and a, Eq. (1) can be solved for E (or for
k). Assume that there is a bound state with £<0.

Consider the zero-range limit in which a—0 and D — .
If we take this limit such that Da’=g is kept constant, then
E— -, ie., the bound state collapses [4]. This can be
avoided by scaling D in such a way that the value of «
remains fixed [3]. The value of «, and hence the energy E,
can be chosen at will. The ZRP that we obtain in this way is
characterized by « (or E) rather than by g=Da’ which van-
ishes in this limit.

The ZRP introduced above is equivalent to the ZRP rep-
resented by the boundary condition

lim<i + K> ri(r)=0. (2)
r—0 dr

This requires that ¢(r) behave as ¢™*"/r in the vicinity of the
origin. [This is in contrast to the usual assumption that
ri(r)—0 as r— 0, which follows from Eq. (2) with k—.]
Wave function ¢(r) is normalizable. Boundary condition (2)
can be rewritten in the form of Eq. (2.5) (with r,=0) of
Szmytkowski and Gruchowski [5], which they used in defin-
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ing a ZRP for the Schrodinger equation. Let us add that,
unlike the x(E) of Ref. [5], our « is independent of E but this
difference is unimportant in the context of the present note.

We assumed above that there is a bound state but this
assumption is not essential. If there is no bound state, depth
D and range a can be scaled such that a given scattering
length be obtained. In this way we can also handle a repul-
sive potential (with negative D). Thus we obtain a one-
parameter family of ZRPs for the Schrodinger equation. This
is well known. See the literature quoted in Ref. [3].

Let us now turn to the relativistic case with the Dirac
equation. One would naturally try to define a ZRP for the
Dirac equation in a manner similar to what we described
above. Starting with a square-well potential of a finite range
and taking an appropriate limit, one can define a ZRP that
gives a bound state solution with a specified energy eigen-
value or a scattering length. As was shown explicitly in Ref.
[3], however, the solutions of the Dirac equation with the
so-constructed ZRP is not acceptable. This is because the
lower component of the Dirac wave function (with a positive
energy) is so singular that the wave function is not normal-
izable. As we emphasized in Ref. [3], to find a wave function
that satisfies the Dirac equation together with a given bound-
ary condition is one thing but whether the solution is physi-
cally acceptable is another. The unnormalizability of the as-
sociated wave function leads us to realize that ZRPs are
impossible for the Dirac equation in three dimensions. An
exactly similar situation is found in the two dimensional
case. This is how a consequence of Svendsen’s highly math-
ematical theorem can be interpreted [2,3].

Szmytkowski [1] defined ZRPs for the Dirac equation by
means of his boundary condition (2.18), which is a relativis-
tic extension of Eq. (2.5) of Ref. [5] and is equivalent to
specifying the scattering length. Consider the scattering
problem with a ZRP at the origin with r;=0. Szmytkowski’s
wave function is of the form of

VE(E,r) = D(E,r) + V() (3)

where ®(E,r) represents the incident wave and ‘I'(l+)(E ,T)
the scattered wave. The latter is given by
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Here f=r/r, k and € are constants related to E and y(FE) is a
two-component spinor. For details, see Ref. [1]. The
‘I’(l+)(E ,r) is a free wave function, which can be made to
satisfy the boundary condition at the origin by appropriately
choosing x(E). Note that the lower component of \If(]+)
X (E,r) behaves as ¢’*"/r? near the origin. This singular be-
havior makes W™*(E,r) not square integrable. It is a stan-
dard practice to normalize the wave function such that

f YOUE p)OHNE,r)dr = \S(k' - k),

where N is a finite constant. This cannot be done for the
above wave function.

Szmytkowski considered only scattering states but his
analysis can be extended to include bound states. One can set
up a ZRP by means of a boundary condition which specifies
the binding energy. Alternatively, as was done in Ref. [3],
one can start with a square-well potential that supports a
bound state and take its zero-range limit in such a way that
the binding energy remains fixed. The wave function of the
bound state that ensues is given by Eq. (3.18) of Ref. [3],
which is exactly in the same form as the \If(1+)(E ,T) quoted
above but with k replaced by ik. (There is no incident wave
in the bound state.) Its lower component contains a deriva-
tive of the upper component and diverges as e™*’/r> around
the origin. The wave function is not normalizable and hence
the underlying ZRP is physically unacceptable.
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Even if \P(I+)(E ,T) is not normalizable one can mathemati-
cally proceed to examine the scattering phase shifts and scat-
tering cross section as was done in Ref. [1]. These quantities
are related to the wave function at large distances. For prob-
lems such that the wave function near the origin is irrelevant,
the formulas developed in Ref. [1] could be used. However,
if one evaluates a matrix element of some physical quantity
by using such unnormalizable wave functions, one may ob-
tain a misleading result.

We have focused on the three-dimensional case. The situ-
ation of the two-dimensional case is similar. As was explic-
itly shown in Ref. [3], the lower component of the Dirac
wave function in two dimensions with a ZRP behaves like
1/r and hence is not square integrable in two dimensions [6].

The Schrodinger equation can usually be regarded as a
nonrelativistic limit of the Dirac equation. In this sense it
may appear strange that ZRPs are possible for the
Schrodinger equation but not for the Dirac equation. This
disparity stems from the following. In deriving the
Schrodinger equation from the Dirac equation, we let the
ratio of the potential V(r) over mass m tend to zero. Then the
lower component of the Dirac wave function disappears
(even if it is singular) while the upper component is reduced
to the Schrodinger wave function. In defining the ZRP for the
Dirac equation as we explained above, this ratio becomes
infinite. Recall that we let D/m— o no matter how large m
is. This is how the difference between the situations with the
Dirac and Schrodinger equations arises. A difference of a
similar nature arises regarding the ZRPs for the Schrédinger
equation and the Dirac equation in one space dimension,
although in this case ZRPs are possible for the Dirac equa-
tion also [7].
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