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We propose experimental schemes for realizing frequency up- and down-conversion in two-mode cavity
QED by considering the atom-cavity interaction in the presence of a strong driving classical field. In contrast
to the recent paper based on dispersive atom-cavity interaction �Serra et al., Phys. Rev. A 71, 045802 �2005��,
our scheme is based on resonant interaction of the cavity modes with a single driven three-level atom, so that
the quantum dynamics operates at a high speed, which is important in view of decoherence. It is shown that,
with the help of a strong driving classical field, frequency up- and down-conversion operations can be realized
by initially preparing the atom in a certain state.
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Quantum entanglement is one of the most striking fea-
tures of quantum mechanics �1–3�. The recent surge of inter-
est and progress in quantum-information theory allows one
to take a more positive view of entanglement and regard it as
an essential resource for many ingenious applications such as
quantum cryptography �4�, quantum dense coding �5�, and
quantum teleportation �6�. These researches motivate an in-
tensive interest in generation and manipulation of quantum
entanglement.

Cavity QED, with Rydberg atoms crossing superconduct-
ing cavities, offers an almost ideal system for the generation
of entangled states and implementation of small-scale
quantum-information processing �7�. In the context of cavity
QED, numerous theoretical schemes for generating en-
tangled states of many atoms and nonclassical states of cav-
ity fields have been proposed �8�, which led to experimental
realization of the Einstein-Podolsky-Rosen state �9� of two
atoms, the Greenberger-Horne-Zeilinger state �10� of three
parties �two atoms plus one cavity mode�, and the macro-
scopic superposition �Schrödinger cat� state �11� and Fock
state �12� of a single-mode cavity field. Most of the schemes
are based on the interaction of atoms and single-mode cavity
fields. An experiment has been reported for preparing two
modes of a superconducting cavity in a maximally entangled
state by using a sequence of interactions of an atom with two
cavity modes �13�. This experiment opens up the possibility
for quantum-state engineering and quantum-information pro-
cessing using multiple modes in a superconducting cavity. In
Ref. �14�, Solano et al. proposed a scheme to generate a
two-mode entangled coherent state in a cavity. In Ref. �15�, a
scheme was proposed for creating quantum entanglement be-
tween multiatom Dicke states and two cavity modes.

In this Brief Report, we address the issue of how to engi-
neer two classes of effective interactions between two cavity
modes of a cavity. One class is the frequency up-conversion
of the form �16�

Hup = ga†b + g*ab† �1�

and the other class is the frequency down-conversion of the
form �16�

Hdown = ga†b† + g*ab �2�

where a† �a� and b† �b� are creation �annihilation� operators
of the cavity modes a and b. g denotes the effective coupling
constant between two cavity modes. The interaction �1� is
associated with a beam splitter in quantum optics, which
generates an active rotation of two cavity modes a and b.
The interaction �2� is associated with a parametric amplifier,
which can be directly used to generate a two-mode squeezed
state. In a recent paper �17�, Serra et al. proposed an experi-
mental scheme for realizing the effective interactions �1� and
�2� by employing the dispersive interaction of the cavity
modes with a single driven three-level atom. In contrast to
the scheme �17�, our scheme is based on resonant interaction
of the cavity modes with a single driven three-level atom, so
that the quantum dynamics operates at a high speed, which is
important in view of decoherence.

We first consider how to engineer interaction �1�. Here,
we consider the physical model proposed in Ref. �17�, which
consists of a �-configuration three-level atom interacting
with two cavity modes and driven additionally by one exter-
nal classical field. The three-level atomic states are labeled
by �1�, �2�, and �3�, with the energies �1, �2, and �3. As
shown in Fig. 1, the transition �1�⇔ �3� is coupled to cavity
mode a with frequency �a, and the transition �2�⇔ �3� is
coupled to cavity mode b with frequency �b. A classical field
is used to drive the dipole-forbidden atomic transition
�1�⇔ �2� with the frequency �L. In Ref. �17�, to obtain the
effective interaction �1�, the authors consider the dispersive
atom-cavity interaction. Here, we consider the different case
that the cavity modes and classical fields are resonant with
the corresponding atomic transitions. Under the rotating-
wave approximation, the Hamiltonian of the system in the
interaction picture is

H = Hcav + Hcla, �3�

Hcav = �a�a†�1,3 + a�3,1� + �b�b†�2,3 + b�3,2� , �4�
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Hcla = gL��1,2ei�L + �2,1e−i�L� , �5�

where �i,j = �i��j�, �a and �b are the interaction strengths of
the atom with the modes a and b, and gL and �L are the
amplitude and phase of the classical driving field. In this
Brief Report, we consider the case of the strong classical
field, i.e., gL��a , �b.

In general the Hamiltonian Hcav+Hcla of the system is
difficult to treat in an exact way because of the presence of
the classical driving term Hcla. In order to gain physical in-
sight into the dynamics of such physical system, some ap-
proximations are necessary. To demonstrate how the sys-
tem’s dynamics is modified by the strong classical field, we
introduce the atomic dressed basis

� + � =
1
�2

�ei�L/2�1� + e−i�L/2�2�� ,

�− � =
1
�2

�ei�L/2�1� − e−i�L/2�2�� . �6�

Using this dressed basis, the interaction terms Hcav and Hcla
of the Hamiltonian �3� can be rewritten as follows:

Hcla = gL�� + ��+ � − �− ��− �� , �7�

Hcav =
�a

�2
e−i�L/2a†�� + � + �− ���3� +

�b

�2
ei�L/2b†�� + � − �− ���3�

+
�a

�2
ei�L/2a�3���+ �− �� +

�b

�2
e−i�L/2b�3���+ � − �− �� .

�8�

In order to simplify the dynamics of system, we switch to the
interaction picture respect to the Hcla, the Hamiltonian Hcav
+Hcla of the system becomes

H� =
�a

�2
e−i�L/2a†�eigt� + � + e−igt�− ���3�

+
�b

�2
ei�L/2b†�eigt� + � − e−igt�− ���3�

+
�a

�2
ei�L/2a�3��e−igt�+ � + eigt�− ��

+
�b

�2
e−i�L/2b�3��e−igt�+ � − eigt�− �� . �9�

In the strong laser regime gL��a ,�b, it is convenient to
consider the interaction �9� in terms of a coarse-grained
Hamiltonian which neglects the effect of rapidly oscillating
terms. Using the time-averaging method of Ref. �18�, one
can arrive at the effective Hamiltonian

H� =
1

2gL
��� + ��+ � − �− ��− ����a

2a†a + �b
2b†b�

+ �a�b�� + ��+ � + �− ��− ���a†be−i�L + ab†e−i�L�

− 2�a�b�3��3��a†be−i�L + ab†e−i�L�� . �10�

Thus, if we prepare the initial state of the atom in level �3�,
the dynamics generated by Eq. �10� acting on this state fac-
tors out and leaves the atomic state unchanged. This allows
us to reduce the dynamics to that of the cavity fields only and
we obtain the effective interaction

Hef f = �ef fa
†b + �ef f

* ab† �11�

where �ef f =−��a�b /gL�e−i�L is the effective coupling con-
stant. Equation �11� is the expected frequency up-conversion
process, which generates an active rotation of the two cavity
modes.

In the following, we consider how to engineer interaction
�2� by considering the physical mode of the ladder-
configuration three-level atom interacting with two cavity
modes and driven additionally by one external classical field
�17�. As shown in Fig. 1�b�, the transition �1�⇔ �2� is
coupled to cavity mode a with frequency �a, and the transi-
tion �2�⇔ �3� is coupled to cavity mode b with frequency �b.
A classical field is used to drive the dipole-forbidden atomic
transition �1�⇔ �3� with the frequency �L and amplitude gL.
We assume that the cavity modes and classical fields are
resonant with the corresponding atomic transitions. Under
the rotating-wave approximation, the Hamiltonian of the sys-
tem in the interaction picture is

H = Hcla + Hcav, �12�

FIG. 1. �a� Atomic level structure of three-level �-configuration
atoms to obtain effective interaction �1�. The atoms have two
ground states �1� and �2� and one excited state �3�. �b� Atomic level
structure of three-level ladder-configuration atoms to obtain effec-
tive interaction �2�.
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Hcla = gL��1,3ei�L + �3,1e−i�L� , �13�

Hcav = �a�a†�1,2 + a�2,1� + �b�b†�2,3 + b�3,2� . �14�

In order to gain physical insight into the dynamics of this
physical system, we introduce the atomic dressed basis

� + � =
1
�2

�ei�L/2�1� + e−i�L/2�3�� ,

�− � =
1
�2

�ei�L/2�1� − e−i�L/2�3�� . �15�

Using this dressed basis, and following the steps leading
from Eq. �7� to Eq. �10�, we can obtain the effective interac-
tion

H� =
1

2gL
��� + ��+ � − �− ��− ����a

2a†a + �b
2bb†�

+ �a�b�� + ��+ � + �− ��− ���a†be−i�L + ab†e−i�L�

− 2�a�b�2��2��a†b†e−i�L + abei�L�� . �16�

Thus, if we prepare the initial state of the atom in the level
�2�, the dynamics generated by Eq. �16� acting on this state
factors out and leaves the atomic state unchanged. This al-
lows us to reduce the dynamics to that of the cavity fields
only and we obtain the effective interaction

Hef f = �ef fa
†b† + �ef f

* ab �17�

where �ef f =−��a�b /gL�e−i�L is the effective coupling con-
stant. Equation �17� is the expected frequency down-
conversion process. The associated time evolution operator is

Uef f�t� = exp�− i�ef ft�a†b† + �ef f
* ab�� �18�

which is a two-mode squeezed operator that can produce
two-mode squeezing on any initial field state. For example, if
two cavity modes are initially prepared in vacuum states, a
two-mode squeezed vacuum state will be generated. As a
by-product of the present scheme, if we consider mode a
identical to mode b in Eqs. �12� and �13�, we can generate a
degenerate parametric down-conversion corresponding to the
interaction

Hef f = �ef f a
†2 + �ef f

* a2 �19�

which can be used to generate a squeezed state of cavity
fields.

We give a brief discussion of the experimental feasibility
of the proposed scheme within microwave cavity QED. The
scheme presented here requires �1� resonant interaction be-
tween atom and cavity modes, �2� negligible cavity loss dur-
ing the whole preparation process, �3� no atomic spontaneous
decay during the atom-cavity interaction, and �4� detection of
atoms in given states. In microwave cavity QED, we can
consider Rb atoms with higher Rydberg atomic states as
�-type or ladder-type atoms, which have lifetimes of the
order of 0.01 s �7,17�. In that case, we can choose an appro-
priate single-mode or bimodal microwave cavity to couple
atomic transitions �17�. A practical superconducting cavity
has the typical value of Q about 109 if the cavity temperature
is low enough, i.e., the cavity lifetimes for a high-Q super-
conducting cavity can be as long as 0.01 s, which is three
orders of magnitude longer than typical atom-cavity interac-
tion times �7�. The detection process of an atom in the de-
sired state can be implemented by passing the atom through
the classical microwave field zone and field ionization
counters. The interaction time between atom and cavity can
be controlled by using a velocity selector and applying Stark
field adjustment in order to make the atom resonant with the
field for the right amount of time. In comparison with Ref.
�17�, we consider the same atom-cavity interactions, i.e.,
�a=�b=7�105 s−1 �17�. In order to get a good approxima-
tion in Eqs. �10� and �16�, the amplitude gL should be much
bigger than �a and �b. With the choice gL=10�a, the effec-
tive interaction is about 7�104 s−1, which is bigger than that
obtained in Ref. �17�, i.e., the present scheme provides a
more efficient scheme for engineering effective interaction of
two cavity modes.

In summary, we have proposed schemes to engineer fre-
quency up- and down-conversion in two-mode cavity QED.
Our schemes are based on the resonant atom-cavity interac-
tions so that the quantum dynamics operates at a high speed,
which is important in view of decoherence.
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