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A scheme of atom localization based on the interference of resonance of double-dark states is proposed, in
which the atom interacts with a classical standing-wave field. It is found that the localization property is
significantly improved due to the interaction of double-dark resonances. It is realized that the atom is localized
just at the nodes of the standing-wave field with higher precision. Moreover, an improvement by a factor of 2
in the detecting probability of a single atom within the subwavelength domain can be achieved by adjusting the
probe-field detuning. This scheme shows more advantages than other schemes of atom localization.
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The subwavelength localization of an atom has attracted
extensive attention �1–12�. Because the strength of the inter-
action in a standing-wave field is position dependent, the
dynamics of atomic systems are different at different posi-
tions. Thus the measurement of position-dependent quanti-
ties can provide information on the atomic position and lead
to atom localization. Some schemes of atom localization,
based on the fact that the strength of the atom-field interac-
tion depends on the position of the atom in the field, have
been proposed using the phase shift of either the standing
wave or the atomic dipole �1–3�, the entanglement between
the atom’s position and its internal state �4�, or other methods
�5,6�. Subsequently Zubairy and co-workers �7–9� improved
these schemes and proposed two simple localization schemes
using either measurement of the Autler-Townes spontaneous
spectrum in a three-level system �7,8� or the resonant fluo-
rescence from a standing-wave field in a two-level system
�9�. Recently, Ghafoor et al. and Liu et al. realized the phase
control of the atom localization and reduced the uncertainty
in a particular position measurement of the single atom by a
factor of 2 in a four-level system �10� and in a loop three-
level system �11�, respectively. Paspalakis and Knight �12�
proposed a related method for localizing a three-level �-type
atom in a standing-wave field. Their scheme is based on
measurement of the upper-state population by standard spec-
troscopic methods �13,14� and simplifies the demands on the
initial-state preparation of an atom from the schemes of
Zubairy and co-workers �7–9�.

On the other hand, the phenomenon of “dark resonances”
or coherent population trapping is a well-known concept in
optics and laser spectroscopy �15�. Recently Lukin et al. �16�
have shown that in a generic four-level system coherent per-
turbation leads to a splitting of dark states and pointed out
that the “double-dark resonance” structure as a whole is the
definite signature of a new type of quantum interference ef-
fect. In this article, on the basis of the atom localization’s
scheme given in Ref. �12�, we want to use this quantum

interference effect and to explore a more efficient scheme of
atom localization. It is found that, due to the interference of
double-dark resonances, the property of atom localization
can be significantly improved.

The atomic system under consideration is shown in Fig. 1.
Here �a� is an upper excited state and �b�, �c�, and �d� are
three lower metastable states. The transition �a�↔ �c� is taken
to be nearly resonant with a driving field with Rabi fre-
quency �=�0 sin�kx�, where k=2� /� and � is the wave-
length. Here we consider that the driving field is a classical
standing-wave field aligned along the x direction. In addi-
tion, a weak probe field with Rabi frequency � couples the
states �a� and �b�. Therefore, they form a conventional and
simple � configuration. An additional coherent perturbation
field with Rabi frequency �c couples the state �c� to another
state �d�, and this leads to the occurrence of double-dark
resonances �16�. There are many different mechanisms to
realize this coherent perturbation coupling: for example, us-
ing a microwave field driving a magnetic dipole transition,
using optical fields inducing multiple two-photon transitions,
by a static field, or by a nonadiabatic coupling mechanism in
time-dependent laser fields �17�.

In the interaction picture with the rotating-wave approxi-
mation, the Hamiltonian of the system can be written as
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FIG. 1. Four-state atomic system displaying double-dark reso-
nances. �b, �c, and �d represent the spontaneous decay rates from
the upper excited level �a� to the three metastable states �b�, �c�, and
�d�. One driving field �, a weak probe field �, and an additional
coherent perturbation field �c couple their corresponding transi-
tions, respectively.
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H = − ��
�0 � 0 �

� 0 �c 0

0 �c − �c 0

� 0 0 �0 − �
� . �1�

We can easily get the density matrix equations of the sys-
tem as follows:

�d/dt�	aa = − ��b + �c + �d�	aa + i��	ba − 	ab� + i��	ca − 	ac� ,

�d/dt�	ab = − 
ab	ab + i��	bb − 	aa� + i�	cb,

�d/dt�	ac = − 
ac	ac + i�	bc − i�c	ad + i��	cc − 	aa� ,

�d/dt�	ad = − 
ad	ad + i�	bd + i�	cd − i�c	ac,

�d/dt�	cd = − 
cd	cd + i�c�	dd − 	cc� + i�	ad,

�d/dt�	cc = �c	aa + i�c�	dc − 	cd� + i��	ac − 	ca� ,

�d/dt�	db = − 
db	db − i�	da + i�c	cb,

�d/dt�	dd = �d	aa + i�c�	cd − 	dc� ,

�d/dt�	bb = �b	aa + i��	ab − 	ba� ,

�d/dt�	bc = − 
bc	bc + i�	ac − i�	ba − i�c	bd, �2�

with 	ij =	 ji
* and the closure relation 	i	ii=1 �i , j

= 
a ,b ,c ,d��. Here �b, �c, and �d represent the spontaneous
decay rates from the state �a� to states �b�, �c�, and �d�, re-
spectively. Here 
ab=�ab− i�, 
ac=�ac− i�0, 
ad=�ad
− i��0+�c�, 
cd=�cd− i�c, 
db=�db− i��−�c−�0�, 
bc=�bc

− i��0−��, and 
ij =
 ji
* and �ij �i� j� are the relaxation rates

of the respective coherences. In the nonradiative limit, �ab
=�ac=�ad= ��b+�c+�d� /2 and �cd=�db=�bc=0 and �=�p

−�ab ��0=�−�ac, �c=�c−�cd� is the detuning of the probe
�driving, coherent perturbation� field with frequency

�p�� ,�c� and �ij�i� j� is the atomic transition frequency be-
tween levels �i� and �j�.

Assuming �
� ,�c and 	bb
�0��1 �	bb

�0� is the initial popu-
lation�, then in the long-time limit, the conditional position
probability distribution �7�—i.e., the probability of finding
the atom in the internal excited state �a� and at position x in
the standing-wave field �12�—is given by

F�x,t → �� = �N�2�f�x��2�2A2 � ��B − �A�2 + �ab
2 A2� . �3�

Here A=�c
2− ��0−����0+�c−��, B=�2��0+�c−��, N is a

normalization factor, and f�x� is the center-of-mass wave
function of the atom. As f�x� is assumed to be nearly con-
stant over many wavelengths of the standing-wave field, the
conditional position probability distribution is determined by
the filter function �7–12�

W�x� = �2A2 � ��B − �A�2 + �ab
2 A2� . �4�

When �c=0 and �c=0—i.e., the coherent perturbation field
is absent—from Eq. �4� we obtain

W�x� = �2��0 − ��2 � 
���0 − ��� − �2�2 + �ab
2 ��0 − ��2� . �5�

The filter function of Eq. �5� has the same form as that de-
rived in Ref. �12�, and this is easy to understand based on the
fact that the system becomes a conventional �-type atomic
system when the coherent perturbation field is absent.

It is worthwhile to point out that for the case of �0+�c
−�=0, i.e., satisfying the three-photon resonance,

W�x� = �2/�ab
2 . �6�

The filter function is a constant for fixed � and �ab, and not
dependent on the spatial position x; this means that atom
cannot be localized. Therefore, �0+�c−��0 is a funda-
mental condition for realizing atom localization in our
scheme.

For the convenience of discussion and without lost of
generality, we have �b=�c=�d=�=1.0. Equation �4� shows
that the conditional position probability distribution depends
not only on three controllable detunings �, �0, and �c, but
also on Rabi frequencies of the driving and coherent pertur-
bation fields, � and �c.

First, we investigate the effect of the probe detuning on
the atom localization. Considering the driving and coherent
perturbation fields on resonance with the corresponding
transitions—i.e., �0=0 and �c=0—and setting �0=10� and
�c=0.2�, we present a three-dimensional �3D� demonstra-
tion of the conditional position probability distribution W�x�
as a function of kx and the probe-field detuning �, shown in
Fig. 2. Because of the periodicity of the standing-wave field,
�=�0 sin�kx�, here we only study the variance of W�x� in
the subwavelength domain, −��kx��. Figure 2 shows that
the probe-field detuning has a significant effect on the atom
localization. When � is zero, the conditional probability dis-
tribution is space invariant; therefore, there does not exist
any atom localization. This has been clarified for the case of
three-photon resonance in the above. When the probe field
has a little deviation from resonance, ��0, some distribu-
tion peaks corresponding to different positions occur. There-
fore, atom localization is realized. Moreover, it is noteworthy

FIG. 2. The conditional position probability distribution W�x�
�in arbitrary units� as a function of kx and �. Other parameters are
�0=0.0, �c=0.0, �0=10�, and �c=0.2�.
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that these position probability peaks just lie at the nodes of
the standing-wave field; that is, the atom is localized just at
the nodes of the standing-wave field. This can significantly
improve the measurement precision for this atom. At the
same time, on average, only two sharp peaks occur in the
subwavelength domain and the numbers of the distribution
peaks decrease obviously compared with that in a conven-
tional scheme of atom localization �7–9,12�. In the conven-
tional scheme, the periodicity of the standing-wave field
yields four equally probable different positions of the atom
in the subwavelength domain of the optical field when a
spontaneously emitted photon is detected, and for a single
required frequency measurement, the probability of finding
the atom at a particular position is 1 /4. While in our present
scheme the existence of the two equally probable sharp
peaks means that the detecting probability of this atom in the
subwavelength domain increases to 1/2. With a further in-
crement of �, there gradually occur four sharp peaks of the
atom localization in the subwavelength domain. This means
that the atomic detecting probability is again reduced to 1/4.
We can say that adjusting the probe-field detuning can real-
ize the quantum control of atom localization and reduce the
uncertainty in measuring a particular position of the single
atom by a factor of 2. Recently, such an improvement of the
detecting probability has also realized in a four-level atomic
system �10� and a loop three-level system �11�, respectively.
The method used in �10,11� is to realize atom localization via
phase control, which is based on the fact that the property of
a loop system is sensitive to the relative phase of the coupled
fields, while in our present scheme the improvement is based
on the interference of double-dark resonances.

Why does this phenomenon occur? It is not difficult to get
an explanation from our four-level atomic system model:
Without the additional coherent perturbation field, this model
is just a conventional �-type configuration which has only
one dark state related to electromagnetically induced trans-
parency �EIT� �18�, while when the additional perturbation
field is added, there exist two dark states, and their mutual
interference can induce a sharp light absorption �16�. In the
case around the three-photon resonance, the two dark-state

resonances play nearly equal roles and their interference
induces the occurrence of three sharp peaks of atom local-
ization in the subwavelength domain. When the probe-field
detuning is large, the role of one of the two dark states
is weakened while the other is built up. In the limit of
���→�, only one dark state is dominant and this is similar to
that in a �-type system �12�. Therefore, there exist four
sharp peaks of atom localization in the subwavelength do-
main.

Figure 2 also shows that, when both the coherent pertur-
bation and driving fields are resonant, the spatial variance of
atom localization is even symmetric about the zero-probe-
field detuning, �=0. When one of the two fields is nonreso-
nant, this symmetry will be destroyed. As an example, Fig. 3
illustrates the case that the coherent perturbation field is non-
resonant. This can be explained from the viewpoint of the
loss of symmetry in double-dark states �16�.

In order to see more clearly the effect of probe-field de-
tuning on atom localization, in Fig. 4 we present a 2D dem-
onstration of the conditional position probability distribution
W�x� as a function of kx for four different probe-field detun-
ings. Figure 4 shows that probe-field detuning has a signifi-
cant effect not only on the numbers of atom localization
peaks, but also on the degree of atom localization. When � is
small �Figs. 4�a� and 4�b��, there exist three peaks in the
subwavelength domain. The peaks in Fig. 4�a� are more pro-
nounced than those in Fig. 4�b�. This indicates that a suitable
increment in the probe-field detuning can improve the degree
of atom localization, which is different from that in the
scheme proposed by Paspalakis and Knight �12� where the
smaller the probe detuning is, the more pronounced the lo-
calization peak is. When the probe-field detuning is large
�Figs. 4�c� and 4�d��, the degree of atom localization be-
comes worse and the signal-to-noise ratio is larger than those
in Figs. 4�a� and 4�b�.

Finally, in Fig. 5 we also present a 3D demonstration of
the conditional position probability distribution W�x� as a
function of kx and one of other parameters �0, �0, �c, and
�c, respectively �Figs. 5�a�–5�d��. These figures show that
the degree of atom localization depends crucially on these

FIG. 3. The conditional position probability distribution W�x�
�in arbitrary units� as a function of kx and � but with �c=1.0� and
other parameters are the same as in Fig. 2.

FIG. 4. The conditional position probability distribution W�x�
�in arbitrary units� as a function of kx for four different probe-field
detunings, �a� �=0.05�, �b� �=0.15�, �c� �=3.0�, and �d� �
=5.0�. All other parameters are the same as in Fig. 2.
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parameters. For a much better degree of atom localization, an
optimal combination of all related parameters is needed.

In summary, a scheme of atom localization based
on the interference of double-dark resonances was proposed.
Adjusting the probe-field detuning not only can make
an atom localized at the nodes of the standing-wave field
with high precision, but also can increase the detecting
probability of an atom at a particular position by a factor
of 2. Our scheme is related to that proposed by Paspalakis
and Knight �12� but based on the interference of double-

dark resonances, which has shown more advantages than
other schemes of atom localization.
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