
Light-induced effective magnetic fields for ultracold atoms in planar geometries

G. Juzeliūnas,1 J. Ruseckas,1,2 P. Öhberg,3 and M. Fleischhauer2

1Institute of Theoretical Physics and Astronomy of Vilnius University, A. Goštauto 12, 01108 Vilnius, Lithuania
2Fachbereich Physik, Technische Universität Kaiserslautern, D-67663 Kaiserslautern, Germany

3Department of Physics, University of Strathclyde, Glasgow G4 0NG, Scotland
�Received 21 November 2005; published 14 February 2006�

We propose a scheme to create an effective magnetic field for ultracold atoms in a planar geometry. The
setup allows the experimental study of classical and quantum Hall effects in close analogy to solid-state
systems including the possibility of finite currents. The present scheme is an extention of the proposal in Phys.
Rev. Lett. 93, 033602 �2004�, where the effective magnetic field is now induced for three-level �-type atoms
by two counterpropagating laser beams with shifted spatial profiles. Under conditions of electromagnetically
induced transparency the atom-light interaction has a space-dependent dark state, and the adiabatic center-of-
mass motion of atoms in this state experiences effective vector and scalar potentials. The associated magnetic
field is oriented perpendicular to the propagation direction of the laser beams. The field strength achievable is
one flux quantum over an area given by the transverse beam separation and the laser wavelength. For a
sufficiently dilute gas the field is strong enough to reach the lowest Landau level regime.
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One of the most fascinating subjects at the interface be-
tween ultracold atoms and solid-state systems is the possibil-
ity to experimentally study strong-correlation phenomena
with the precision and the large degree of variability pro-
vided by atomic physics. For example, interacting Bose-
Einstein condensates �BEC� or degenerate Fermi gases in
rotating two-dimensional traps are studied in several labora-
tories with the goal to observe quantum-Hall-like effects
�1–3�. The trap rotation provides an effective magnetic field
for the electrically neutral atoms. However, in order to reach
the fractional quantum-Hall regime it is necessary to rotate
the trap close to the critical frequency. Furthermore, the atom
density needs to be low enough such that the number of
magnetic flux quanta approaches the number of atoms, which
is an experimental challenge. Besides experimental difficul-
ties this approach has some conceptual drawbacks: It is lim-
ited to rotational symmetric setups and does not allow to
study transport phenomena, i.e., the effect of magnetic fields
to a finite particle current.

In �4–6� we have suggested an alternative method based
on light-induced gauge potentials for atoms with a space-
dependent dark state. A dark state is created if three-level
�-type atoms interact with two laser fields under conditions
of electromagnetically induced transparency �EIT� �7–11�. If
the dark state is space dependent, a vector gauge potential
arises for the adiabatic center-of-mass motion �12�. As
shown in �4,5� the vector potential is associated with a non-
vanishing magnetic field, if at least one of the two light
beams has a vortex, i.e., an orbital angular momentum
�OAM�. Yet the use of vortex light beams has similar draw-
backs as the trap rotation regarding the spatial symmetry and
transport phenomena.

We here propose a variation of this scheme which is free
of the above-mentioned limitations. The scheme, shown in
Fig. 1, once again involves two laser beams interacting with
three-level atoms in the EIT configuration. Yet we are no
longer dealing with light beams posessing an OAM with
respect to their propagation axis. As we will show later on a

nonvanishing magnetic field requires only a relative OAM
between the two light beams. This can be achieved by two
counter-propagating and overlapping laser beams with
shifted spatial profiles. In this case an effective magnetic
field appears perpendicular to the propagation direction and
to the gradient of the relative intensity of the light beams.
This configuration allows a planar geometry and a nonvan-
ishing flow of atoms, e.g., an atomic BEC moving along an
atomic waveguide �13�.

Let us consider an ensemble of cold three-level atoms
with lower levels �1� and �2� and electronically excited state
�3�. The atoms interact with two resonant laser beams in the
EIT configuration, see Fig. 1. The first beam �to be referred
to as the control beam� has a frequency �c, a wave-vector kc,
and induces the atomic transitions �2�→ �3� with Rabi fre-
quency �c��32Ec /2, where Ec is the electric field strength
and �32 is the transition dipole moment. The second �probe�
beam with frequency �p, wave-vector kp causes the transi-
tion �1�→ �3� with a Rabi frequency �p��31Ep /2. The two
laser beams keep the atoms in their dark state �7–11�:

�D� = �1�cos � − �2�sin � exp�iS� � �1� − ��2� , �1�

where �=�p /�c= ���eiS� tan � eiS is the ratio between the
Rabi frequencies of the probe and control fields, S is their
relative phase, and � is the mixing angle between the states
�1� and �2� in the atomic dark state �D�.

The dark state depends on the atomic position through the
r dependence of the Rabi frequencies �p�r� and �c�r�, so an
effective vector potential �generally known as the Berry con-
nection �14,15�� appears in the adiabatic equation of motion
for the atomic center of mass. The effective vector and trap-
ping potentials governing the translational motion of the
dark-state atoms read �5,6�

Aeff = − �
���2

1 + ��2�
� S = − � sin2 � � S �2�

and
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Veff�r� = Vext�r� +
�2

2m

���2��S�2 + ������2

�1 + ���2�2 , �3�

where

Vext�r� =
V1�r� + ���2�V2�r� + ��21�

1 + ���2
�4�

is the external potential for the dark-state atoms, Vj�r� is the
trapping potential for an atom in the internal state j, and
�21=�2−�1+�c−�p is the frequency of the two-photon
detuning.

One easily recognizes that the vector gauge potential Aeff
yields a nonvanishing magnetic field only if the gradients of
the relative intensity and the relative phase are both nonzero
and not parallel to each other:

Beff � � � Aeff = − � � �sin2 �� � �S . �5�

This equation has a very intuitive interpretation: ��sin2 �� is
a vector that connects the “center of mass” of the two light
beams; �S is proportional to the vector of their relative mo-
mentum. Thus a nonvanishing Beff requires a relative orbital
angular momentum of the two light beams. As discussed in
�4–6� this is the case, e.g., for light beams with a vortex.

Here we consider, however, a different scenario. We sug-
gest to use two counter-propagating light beams of finite di-
ameter with an axis offset: �p=�p

�0�eikpy and �c=�c
�0�e−ikcy,

where �p
�0� and �c

�0� are real amplitudes with shifted trans-
verse profiles. The beams possess a relative orbital angular
momentum similarly to two point particles with constant mo-
menta passing each other at some finite distance. In such a
situation the phase of the ratio �=�p /�c is given by

S = ky, k = kp + kc, �6�

so that �S=kêy where êy is a unit Cartesian vector.
The spatial dependence of the intensity ratio

���2= ��p /�c�2 is determined by the spatial profiles of both
��p�2 and ��p�2. Since the control and probe beams counter

propagate along the y axis, their intensities depend weakly
on y. Furthermore we shall disregard the z dependence of the
intensity ratio ���2. This is legitimate, for instance, if the
atomic motion is confined to the xy plane due to a steep
trapping potential in the z direction. Hence one finds

Beff = êz�k
�

�x
sin2 � . �7�

The field strength Beff depends generally on the x coordinate
and has a weak y dependence as long as the paraxial approxi-
mation holds.

If we are interested in fractional quantum-Hall physics
and thus in the possibility to enter the lowest Landau level
�LLL� regime we have to estimate the maximum strength of
the magnetic field. For this we determine the minimum area
needed for a magnetic flux corresponding to a single flux
quantum 2	�. From Eq. �7� we recognize that this area is
given by the product 
xeff, where xeff is the effective separa-
tion between the two beam centers. To reach the LLL in a
two-dimensional gas the atomic density has thus to be
smaller than one atom per 
xeff.

The above analysis holds as long as the atoms move
sufficiently slow to remain in their dark states. This is the
case if the adiabatic condition �5� holds: ��F, where
F= ��� ·v� / �1+ ���2� reflects the two-photon Doppler detun-
ing. In the present situation we have

F2 = cos2 �	
vx
�

�x
����2

+ ����kvy�2� � �2. �8�

where �= ���c�2+ ��p�2�1/2 is the rms Rabi frequency. The
adiabatic condition implies that the quantity �−1 should be
much less than the time an atom travels a characteristic
length over which the amplitude or the phase of the ratio
�=�p /�c changes considerably. For atoms moving along the
y axis, such a length is 1 /k
1/2kp�10−7 m. On the other
hand, the Rabi frequency can be of the order of
107 to 108 s−1 �16�. Therefore, the adiabatic condition should
hold for atomic velocities up to meters per second.

The above estimation does not take into account a finite
lifetime of the excited atoms, typically 
3�10−7 s. If this
is included, the atomic dark state acquires a finite lifetime

D�
3�2 /F2 due to nonadiabatic coupling �5�: For instance,
if the atomic velocities are of the order of a centimeter per
second, the atoms should survive in their dark states up to a
second.

Much larger atomic velocities are possible, however, as
long as the velocity spread �v is much smaller than the
central velocity v0. For atoms moving along the y axis, one
can set a two-photon detuning �21=−�kp+kc�v0 to compen-
sate the Doppler shift associated with v0. In that case it is the
velocity spread �v rather than the whole atomic velocity v
that determines the nonadiabatic term F. For instance, in a
recent experiment �17� on propagation of a BEC in a wave-
guide, the central atomic velocity is 5 cm/s, whereas the
velocity spread is only 1.4 mm/s. Note that the two-photon
detuning will also lead to a transversal slope in the trapping
potential represented by the term with �21 in Eq. �4�.

FIG. 1. �Color online� �top� Schematic representation of setup
for light-induced effective magnetic fields: Two counterpropagating
and overlapping laser beams interact with a cloud of cold atoms.
�bottom� The level scheme for the �-type atoms interacting with the
resonant probe and control beams characterized by Rabi frequencies
�p and �c.
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Let us assume that both the control and probe beams are
characterized by Gaussian profiles with the same amplitude
�0 and width �:

�� j� = �0 exp
−
�x − xj�2

�2 �, j = p,c . �9�

In the paraxial approximation, the Gaussian beams have the
width ����y�=�0�1+ �
y /	�0

2��1/2, where �0���0� is the
beam waist and 
 is the wavelength. Since kp
kc
k /2, we
have 

4	 /k both for the control and probe beams. We are
interested mostly in distances �y� much less than the confocal
parameter of the beams b=2	�0

2 /

k�0
2 /2. For such dis-

tances, �y��b, the width ��y� is close to the beam waist:
��y�
�0.

Suppose the beams are centered at xp=x0+�x /2 and
xc=x0−�x /2, The intensity ratio reads then ���2���p /�c�2
=exp��x−x0� /a�, where a�a�y�=�2 /4�x is the relative
width of the two beams. Thus we have

Beff = − �k
1

4a cosh2��x − x0�/2a�
ez, �10�

Veff�r� = Vext�r� +
�2k2

2m

�1 + 1/4a2k2�
4 cosh2��x − x0�/2a�

. �11�

It is evident that both Beff and Veff�r� are maximum at the
central point x=x0 and decrease quadratically for �x−x0��a.
Similar to Ref. �5�, the term quadratic in the displacement
x−x0 can be canceled in the effective trapping potential �11�
by taking an external potential Vext with the appropriate qua-

dratic term. The frequency of the external potential fulfilling
such a condition is

�ext =
�k

4am
�1 + 1/4a2k2. �12�

With this the overall effective trapping potential becomes
constant up to terms of the fourth order in x−x0. In the vi-
cinity of the central point ��x−x0��a� the magnetic field
strength is: Beff
�k /4a. The corresponding magnetic length
and cyclotron frequency are: �B
�� /Beff=2�a /k and
�c=B /m
�k /4am. The magnetic length �B is much smaller
than the relative width of the two beams �B�a provided the
latter is much larger than the optical wavelength: ak�1. In
that case many magnetic lengths fit within the interval
�x−x0��a across the beams. Furthermore the cyclotron fre-
quency equals then approximately to the frequency of the
external trap: �c
�ext, both of them being much less than
the recoil frequency.

Figure 2 shows the effective trapping potential and effec-
tive magnetic field calculated using Eqs. �10� and �11�, with
the external harmonic potential Vext of frequency �ext �Eq.
�12�� added to cancel the quadratic term in the overall
potential Veff. The magnetic field is seen to be close to its
maximum value in the area of a constant potential where
�x−x0��a. For larger distances the effective trapping poten-
tial forms a barrier, so the atoms can be trapped in the region
of a large magnetic field.

In summary, we have shown how to create an effective
magnetic field in ultracold gases with a planar geometry us-
ing two counter-propagating laser beams acting on three-
level atoms in the EIT configuration. If the amplitude ratio of
the two beams changes substantially in the transverse direc-
tion, an effective magnetic field appears in the plane perpen-
dicular to the propagation direction of the beams. This can
be achieved if the beams are shifted relative to each other
�see Fig. 1�, such that they have a relative OAM.

The suggested method provides a possibility to create an
effective magnetic field over an extended area along the
propagation direction. This allows for a geometrical setup
similar to that used in solid-state systems for classical and
quantum Hall measurements. In particular, finite currents
perpendicular to the magnetic field are possible and Hall
“voltages” can be detected by observing changes in the
chemical potential perpendicular to both the current and
magnetic field. Finally the suggested method is much more
robust than that of Refs. �4,5�, as it does not require vortex
light beams.

This work was supported by the Marie-Curie Training-site
at the Technical University of Kaiserslautern, the Royal
Society of Edinburgh, and the Alexander von Humboldt
Foundation through the collaborative grant between the TU
Kaiserslautern and the Institute of Theoretical Physics and
Astronomy of Vilnius University.

FIG. 2. �Color online� Effective trapping potential Veff and an
effective magnetic field Beff produced by counter-propagating
Gaussian beams. The external harmonic potential Vext cancels the
quadratic term in the overall potential Veff. The effective magnetic
field is plotted in the units of Beff�0���k /4a, whereas the effective
trapping potential is plotted in the units of ��rec�1+1/4a2k2�, with
�rec=�k2 /2m.
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