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A series of metastable states below the t��2s�+d threshold have been discovered. The structure of the
metastable dt�J� ion is studied here by the related suitable wave function and using the variational method.
Few resonance energies and the related widths for dt�J� molecular states located below the 2s threshold are
determined. For precise assessment of the reliability of the given wave function, the resonance formation rate
is also calculated for the states which take place in the Vesman region. The obtained results are close to those
previously reported and give strong indications that the related wave function is good enough to be useful for
further calculations.
DOI: 10.1103/PhysRevA.73.024501 PACS number�s�: 36.10.Dr

I. INTRODUCTION

Recent investigations have demonstrated that the bound
spectral structure of muonic molecular ions is richer than
expected �1–3�. The metastable dt�J� molecules exhibit
a series of three-body resonances embedded in the t�+d
scattering continuum just below the t��2s�+d threshold.
Such levels are autodissociating or resonance states, because
they exist in the continuum above the dissociation limit
d��1s�+ t or t��1s�+d. The resonance states formed during
the cascade of the dt�J,� cycle can decay into highly ener-
getic d��1s� or t��1s� atoms �4,5�. The decay into d��1s� is
expected to increase the P1s

d� fraction of muons reaching the
ground state of d� atoms and holds the potential for removal
of the persisting disagreements between the experiment and
theory regarding the precise values of P1s

d� �6�. The formation
of metastable dt�J,� can be one of the fastest processes de-
pleting 2s state of t� atoms in muon catalyzed fusion ��CF�.
Our task in this work is the calculation of the resonance state
for the metastable ion, dt�J,�, interacting only via the Cou-
lomb force. The nonrelativistic Schrödinger equation for
dt�J� systems is written. The approach, using the variational
method and the related suitable wave functions which con-
tains N basis functions allows one to obtain N different ei-
genvalues of the Hamiltonian which can be considered as,
“energies” of real and/or quasistationary states �so called,
“ghost states”�. Most of these states, however, cannot be seen
in experiments and they do not produce any experimental
consequences. One of our predicted states which exist in the
Vesman region is approximately an actual resonance state
and can be seen in experiments. To assess the results of cal-
culations with the possibility of their experimental observa-
tion, the corresponding lifetime for Vesman resonances �in-
verse width of these states� are calculated. The three-body
theory and our used method are given in Sec. II leading to
the numerical results and conclusions in Sec. III.

II. THREE-BODY THEORY AND METHOD

We employ wave functions for the metastable nonsym-
metric three-body system �consisting deuterium and tritium

as nuclei with one muon� and perform a numerical calcula-
tion, using the variational method. In our calculations,
nuclear motions are decoupled from muonic motions, i.e.,
the given wave functions for three-body systems are as-
sumed to have the following form:

�g,u
J,��r�,R� � = �

M

AMYJ,M�J,��R��g,u�r�,R� � , �1�

where �g,u�r� ,R� � is obtained from

H0�g,u�r�,R� � = Eg,u�R��g,u�r�,R� � and �2�

H0=−
�2

2Mt�
�r�

2 + VC,

and �g,u�r� ,R� � and Eg,u are the eigenfunctions and the eigen-
values for the Hamiltonian for fixed nuclei, H0, respectively.
Here, r� is the position vector of muon, Mt� is the reduced
mass of tritium and muon, and the internuclear distance R is

just a parameter. VC=−e2 / �r�+�R� �−e2 / �r�−�R� � +e2 /R, where
�=0.400 38 and �=1−�. AM is a normalization factor. J, �,
and M are rovibrational and magnetic quantum numbers for
the three-body molecule, respectively. YJ,M is the angular
part of the dt�J� nuclear wave function. The radial nuclear
wave function for states with angular momentum J, �J,��R�,
is solved using Eg,u�R� as the effective potential for the
nuclear motion

−
�2

2Mdt
� d2

dR2 +
2

R

d

dR
��J,��R�

+ � �2

2Mdt

J�J + 1�
R2 + Eg,u�R� − 	��J,��R� = 0. �3�

Mdt is the reduced mass of t and d nuclei. 	 is the eigenvalue
that is measured from the first excited state of t�.We define

the wave functions �g,u�r� ,R� �as

�g,u�r�,R� � = fg,u„
1�1�r�,R� � ± 
2�2�r�,R� �… . �4�


1 and 
2 parameters are calculated using the variational
method. Our calculation shows that for any 
1 and 
2 values,
the fg,u is independent of R. For example for 
1=
2=1 our
calculated value for fg,u for any nuclear radius �0−1.434*Electronic address: eskandari@physics.susc.ac.ir

PHYSICAL REVIEW A 73, 024501 �2006�

1050-2947/2006/73�2�/024501�4�/$23.00 ©2006 American Physical Society024501-1

http://dx.doi.org/10.1103/PhysRevA.73.024501


�10−8 cm� is constant and equal to 0.7071. At the large
nucleus radii R, the role of the wave function of �t�2s�,
��2,0,0�, appears in the wave functions �g and �u. Therefore,
we write the wave functions �1and �2 as

�1�r�,R� � = �1 −
�r� + �R� �

2a�

�
−1/2 exp�−
�r� + �R� �

2a�

� , �5�

�2�r�,R� � = �1�r�,�R� → − �R� � ,

where a�	2.655�10−10 cm and 
=0.139�10−26 cm3. The
behavior of the functions Eg�R� and Eu�R� show that dt�J,�

can have resonance states only for Eg�R�. In other words,
Eu�R� does not have an absolute minimum value. The func-
tion Eg�R� is minimized at R=R0 so that

R0 = 1.8 � 10−10 cm and Eb = − 0.6283 � 10−9 erg.

�6�

Eb is the minimum energy. Equation �3� is the Schrödinger
equation for the motion of nuclei in the effective potential,
Eg�R�. 	 is calculated and rounded up to three significant
figures by the Rung-Kutta 45 method, using a variational
procedure. The calculated energies of dt�J� levels for �0,0�,
�0,1�, �0,8�, �1,1�, and �1,9� states are compared to those
previously reported �7�, given in Table I. In the previous
method, the structure of dt�J� has been studied using the
coupled rearrangement channel method with Gaussian basis
functions. It means that different forms for the potential
terms and the related wave function are used. In our calcu-
lations, the crucial quantities for determining the resonance
formation cross section for the muonic molecule are the
widths for the process

t��2s� + �D2�ki,vi
→ ��dt��J� − dee�krv

, �7�

where ki and kr are the rotational quantum numbers. The
second index is the vibrational quantum number. Therefore,
we calculate the widths of the states which can be related to
the process �7�.The cross section for dt�J,� formation reac-
tion is given by the Breit-Wigner relation

���i� =
�

Kt��2s�
2

�ent�r

��i − �res�2 +
1

4
��ent + �r�2

. �8�

�i and �res are the collision and Vesman resonance energies of
the t��2s� muonic atom relative to the D2 target, respec-

tively. Since several of the resonances are located within the
dissociation energy of D2 �	4.5 eV� below the t��2s�
threshold, we consider the Vesman formation mechanism,
whereby the excess energy is transferred to the rovibrational
degrees of freedom of the host D2 molecule in the process
�7�. The Vesman resonance energy �res satisfies the energy
conservation conditions as

�res + 	 = �Erovib + �Ehf, �res � 4.5 eV, �9�

where �Erovib is the difference between the rovibrational lev-
els of hybrid molecule ��dt��J�−dee�krv

and the D2 mol-
ecule, while �Ehf is the difference in hyperfine splitting for
t� and dt� levels. �r � proportional to inverse lifetime � is
the reactive scattering width, given by the rate of Auger de-
excitations of the metastable molecule ��Aug�, � f is the fu-
sion width, while �C and �� are the widths for Coulomb and
radiative decay into d��1s�+ t or t��1s�+d. So that the re-
active scattering width is given as

�r = �Aug + � f + �C + ��. �10�

The entrance width �ent is determined by the following
formula:

�ent =
4mt��2s�Kt��2s�

�2�4��2 �
M

 d��Vir�K� t��2s���2, �11�

where mt��2s� is the reduced mass of t��2s�+D2 system.
Kt��2s� �with angles � � is the wave number of the t��2s�
muonic atom relative to the D2 target. The sum on M means
a sum on the magnetic quantum numbers related to the an-
gular part of wave functions. Because the process �7� is a
rearrangement one in which a deuterium is coupled to t� in
the resonance state and to other deuterium in the channel
state, no perturbation expression �or Morse-Feshbach-type
formula� applies. Instead the width involves the transition
matrix element, �Vir�2, calculated between the wave function
in the initial state i of the system t��2s�+ �D2�ki,vi

and the
final state r of ��dt��J�−dee�krv

, assuming a pointlike
pseudonucleus, dt�J,�, for the hybrid molecule we have

�Vir�K� t��2s���2 = ���g
J,��r�,R� ��̄kr

�Vt�−d��ki
�2,0,0

�exp�iK� t��2s� · R�� ���2, �12�

where Vt�−d=e2 /R−e2 / �r�−�R� � and �̄kr
is the Born-

Oppenheimer wave function of the hybrid molecule. �ki
is

TABLE I. The calculated energies 	 �eV� and widths per �, ��� �s−1�, for resonance �1,9� and �0,8� and
ghost �0,0�, �0,1�, and �1,1� states in the Vesman and thermal regions, respectively, and their comparison
with energies previously reported, Eb

�J �eV� �7�.

�J ,�� 	 �C��1011� �Aug��1013� ����1010� � f��109� �r��1013� �ent��1014� Eb
�J

�1,9� −0.319 1.001 1.062 3.022 6.026 1.072 2.750 −0.324

�0,8� −0.827 2.510 6.809 4.239 5.428 6.834 2.223 −0.832

�0,0� −217.741 0.111 0.879 −217.889

�0,1� −139.804 1.977 0.700 −139.728

�1,1� −134.978 1.003 0.713 −135.362
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the wave function of �D2�ki,vi
, R�� =R� +0.5RD2

� , and RD2
� is the

distance vector between the two deuterium nuclei in the D2

molecule. R�� is the position vector of t��2s� relative to the
D2 molecule. Making a Taylor expansion of the initial D2
wave function, �ki

along the coordinates of the hybrid mol-
ecule �r�dt�J,�−d�, and attending to the muonic coordinate
overlap which is only for small t�−d distances, �t�−d dis-
tances R
1.4�10−8 cm are approximated as infinite in our
calculations�, the first term of expansion will dominate in the
matrix element

�Vir�2 	 ���g
J,��r�,R� ��Vt�−d��2,0,0

�exp�ifK� t��2s� · R� ����̄kr
�Rh�

���ki
�Rh�exp�ig�K� t��2s� · R� h���2 �13�

where f =0.695 and g�=0.5 are the mass dependent projec-
tion coefficients and Rh��r�dt�J,�

* −d� �see Refs. �7,8��. A sub-
stantial simplification in the evaluation of the above expres-
sion is due to the sum rule

�
kr

���̄kr
�Rh���ki

�Rh�exp�ig�K� t��2s� · R� h���2 = 1, �14�

where the sum over kr implies summing over all electronic
states. For example, the calculated �ent��i� for J=1 with
resonance energy �i=�res	0.262 eV is approximately equal
to 0.275�1015 s−1. In nucleus radii R�1.434�10−8 cm
�semiclassically�, the dt�J,� system decay back to t��2s�+d
state or decay to t��1s�+d or d��1s�+ t states. Therefore,
t�−d distances equal to 1.434�10−8 cm are approximated
to be infinite in our numerical calculations. The resonance
process �7� is formed under the energy conservation law �9�
and the following condition as �r /�ent→0. In other words,
after the formation of the ��dt��J�−dee�krv

hybrid molecule,
the mentioned reactive decay processes must occur very
slowly. In this case, a formalism for calculating � f for meta-
stable states was developed in Ref. �3�. Preliminary exten-
sions of those calculations indicate that � f for any of reso-

nance states �within the Vesman region � here concerned is
less than 1010 s−1. For the fusion width, we write

� f / � = N0A� f, � f =
 ��g,u
J,��r�,R� ��2��R� �dR� dr� , �15�

where � f is the probability for the nuclei to coincide, A is
equal to 1.28�10−14 cm3/s, related to the astrophysical fac-
tor for dt fusion and N0=4.25�1022/cm3 is the liquid hy-
drogen density �LHD� �9�. The width of the radiative decay
can be estimated by realizing that the muon of the dt�J�

molecule is strongly clustered on tritium, deuterium only
weakly interacting with the t� atom. �� is thus well approxi-
mated by the radiative decay rates of t��2s� and t��2p�.
These mean that we can approximately calculate �� via the
following formula:

�� = �1 − �J�
2 ���

2p→1s�t��, �J� = �	 − Eb
�J�/�E2s, �16�

where �J� is estimated by evaluating the energy 	 including
the vacuum polarization potential, related to the 2p orbital
admixture in the dt� wave function and Eb

�J is given in Ref.
�7�. �E2s is the vacuum polarization shift of the free t��2s�
atom. The width for Coulomb decay is written as

�C =
Krmr

�2��2���2�2J + 1��M 
 d�K̂r
���1se

−iK� r·R
�
�Hr

I��g�r�,R� �

��J,��R�YJ,M��2. �17�

mr and Kr are the reduced mass and the relative wave num-
ber of the released particles from the decay process of the
dt� molecule, respectively. Hr

I is a perturbation Coulomb
potential, related to the variations of energy after performing
of the mentioned decay reaction. For the dt�J,� states within
the Vesman region, ��	5�1010 s−1 and �C	1011 s−1 were
calculated in Ref. �7�. Our results for the values of the widths
show that the main contribution to the reactive width �r
comes from the Auger transition

��dt��Ji�i
− dee� → ��dt��Jf�f

− de�+ + e−,

with width �Aug
Ji�i→Jf�f

= 2���E��
f

��f �VI�i��2, �18�

where �f� and �i� are the final and initial states of system and
��E� is the density of final state for a given energy. The
interaction operator VI can be approximated by the following
relations:

VI = − e�re
� · d��re

−3, d = �ert
� + erd

� − er�
� � 	 e�R , �19�

where �=0.608 and d� is the electric dipole moment operator.

rt
� , rd

� , and r�
� are the coordinates of the particles t, d, and �,

respectively, with respect to center of mass of the dt�J� ion.
We make the following estimation of the resonance Auger
de-excitation width �Aug

res :

FIG. 1. The calculated resonance formation rate vs temperature,
T, for the resonance energies �res	0.008, 0.016, and 0.0389 eV,
and their comparison with previously reported �see Ref. �7��.

BRIEF REPORTS PHYSICAL REVIEW A 73, 024501 �2006�

024501-3



�Aug
res 	

���Jf,�f�R��R��Ji,�i�R���2

���0,1�R��R��1,1�R���2
Kb

e

Kres
e �Aug

11→01. �20�

Kb
e and Kres

e are the wave numbers of the ejected electron
from bound and resonance states, respectively. For example,
�Jf ,� f�= �0,4� and �Ji ,�i�= �1,9�, being a state of the dt�J�

within Vesman region �7�. Writing the initial and final states
as a product of the electronic and muonic wave functions and
assuming that the density of final states for the electron
ejected is the same for the plane wave, �Aug

11→01 comes as

�Aug
11→01 =

Kb
emee

4�2

�2J1 + 1���2 �
M,M1

���0,1�R��R� ��1,1�R�Y1,M1
�R̂��

��� f�r�e�� rê

re
2��i�r�e���2

, �21�

where J1 is equal to one for bound state. � f�r�e� and �i�r�e� are
the electronic wave functions of the Auger electron being
ejected from the hybrid molecule in the initial and final
states, respectively. The electronic matrix element,
��� f�r�e� � �1/re

2� ��i�r�e���2, is calculated by taking electronic
wave functions as

�i�r�e� = 2Y0,0�rê�e−re, � f�r�e� =
F1�1/Kb

e,Kb
ere�

Kb
ere

Y1,M�rê� .

�22�

Y1,M1
�R̂� and Y1,M�rê� are the angular part of the nuclear

wave and electronic functions, respectively. The actual
two center wave function, FL, is the regular Coulomb
function. The calculated values of �Aug

11→01, Kb
e /Kres

e ,
���0,1�R� �e�R ��1,1�R���, and ���0,4�R� �e�R ��1,9�R��� dipole
moments are approximately 1.1�1012 s−1, 3.78, 5.165
�10−20 esu cm, and 8.256�10−20 esu cm, respectively. We
calculate the widths for the �1,9� and �0,8� states which take
place in Vesman region by the numerical integrations using
the DCUHRE method and the ACM TOMS Algorithm 698.
In the mentioned procedure, the accuracy of calculations is
six digits. Our results, rounded up to three significant figures,
are given in Table I. As �Aug

19→04=�Aug
res ��ent, the exact value

of �ent irrelevant at the cross section or resonance formation
rate simplifies as

���i� =
2�2

Kt��2s�
2 �Aug

19→04���i − �res� , �23�

�dt�*�T� = N
�Kt��2s���res�

mt��2s�
F��res,T����res� ,

where N is the density of the D2 molecules in media.
The muonic atoms t��2s� have a Maxwell distribution
F��i ,T� at temperature T. The calculated curve of �dt�*�T�
�normalized to LHD� versus T in the resonance collision en-
ergies �res	0.008, 0.016, and 0.0389 eV are given in Fig. 1
and compared to the result given in Ref. �7�. The muonic
atoms t��2s� can form the muonic molecular ions in the
following reactions:

t��2s� + D2 → ��dt��+ − de�+ + e−. �24�

The above reaction is a straightforward process
for muonic molecular ion ��dt��+� and complex
(��dt��+−de�+) formation which are formed via the emission
of an Auger electron. The sum of the calculated energies of
dt� states �ghost states� do not satisfy the conditions of the
Vesman resonances. The mentioned reaction is named the
nonresonance formation process. The widths �ent and �r for
�i	0.0253 eV, thermal region, are calculated and given in
Table I.

III. CONCLUSIONS

The nonsymmetric three-body problem for dt�J� is solved
by related suitable wave function, using the variational
method. The obtained results are compared with results of
Ref. �7�. Our calculated energies for �0,0� and �0,1� states
are in agreement within 0.068%, and 0.601%, 0.284%, and
1.543% for states �0,8�, �1,1�, and �1,9�, respectively. For
precise assessment of the reliability of the given wave func-
tion, the formation rate are also calculated. The Eq. �20�
shows that low and up states are proportional. In other
words, the Auger transition process in up states strongly de-
pends on its value for low states. For state �J=1,�=9�, the
entrance width is much more than the reactive scattering
width, �ent and �r are much less than resonance energies,
therefore, the predicted state can be seen in experiments �see
Ref. �7��. The results show that the used theory and method
are good enough in calculating the actual resonance and
ghost states for the dt�J� muonic molecular ion.
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