
Elementary proof of the bound on the speed of quantum evolution

Piotr Kosiński and Magdalena Zych
Department of Theoretical Physics II, Institute of Physics, University of Łódź, ulica Pomorska 149/153, 90-236 Łódź, Poland

�Received 29 November 2005; published 14 February 2006�

An elementary proof is given of the bound on “orthogonalization time” t0��� /2�E.

DOI: 10.1103/PhysRevA.73.024303 PACS number�s�: 03.67.Lx, 03.65.Xp

In many problems of quantum theory �like, for example,
quantum computing �1–4� or fidelity between two quantum
states �5,6�� it appears important to estimate the speed of
quantum evolution.

An interesting measure of evolution speed is provided by
the minimum time t0 required for the state to be transformed
into an orthogonal �i.e., distinguishable� state. The basic es-
timate concerning t0 is given by the inequality

t0 �
��

2�E
�1�

which has been derived and studied by many authors �7–13�.
This bound, in terms of the energy dispersion �E of the
initial state, is very simple and natural �in particular, �E=0
implies t0=�, as it should since the initial state is then an
energy eigenstate�. It has been generalized in various direc-
tions �14,15,5�; also, a beautiful geometric interpretation in
terms of the Fubini-Study metric was given �16� �see also
�17�� and the intelligent states saturating Eq. �1� were found
�18�.

Quite unexpectedly, a few years ago Margolus and Levitin
�1� derived a new bound of the form

t0 �
��

2�E − E0�
�2�

valid for Hamiltonians bounded from below; here E0 is the
lowest energy while E is the expectation value of the Hamil-
tonian. They were able to show that, for a large class of
states, Eq. �2� provides a more optimal bound than Eq. �1�
�on the other hand, for energy eigenstates, except the lowest
one, Eq. �2� is useless�. The intelligent states for the inequal-
ity �2� were found in Refs. �19,20�.

While the standard proof of the bound �1� is based on
Heisenberg equations of motion and the uncertainty principle
�see, however, �12��, the Margolus-Levitin derivation of the
new bound �2� is surprisingly elementary; moreover, the cor-
responding intelligent states can be easily found �20�.

The question arises whether the bound �1� can be derived
along the same lines. The aim of the present Brief Report is
to provide a positive answer to this question. We shall show
that �1� holds provided the Hamiltonian H is self-adjoint and
the initial state belongs to its domain. No further restrictions
on the properties of H are necessary; in particular, the spec-
trum may include both discrete and continuous parts and
may extend to infinity in both directions.

Let us first sketch a generalization of the elegant approach
of Ref. �1�. We assume for simplicity that the spectrum of H

is purely discrete; the general case is briefly discussed in the
final part of the paper.

Let ��n�� be the basis consisting of eigenstates of the
Hamiltonian H,

H�n� = En�n� , �3�

and let

���0�� = 	
n

cn�n� �4�

be some initial state. Then


��0����t�� = 	
n

�cn�2e−�iEn/��t = �cos�Ht

�
�

0

− i�sin�Ht

�
�

0
. �5�

Here 
f�H��0�	nf�En��cn�2 denotes the average with respect
to the initial state.

Now, since 
��0� ���t0��=0 one obtains

�cos�Ht0

�
�

0
= 0, �sin�Ht0

�
�

0
= 0, �6�

or

�A cos�Ht0

�
+ ��

0
= 0 �7�

for arbitrary constants A, �.
Consider now an inequality of the form

f�x� � A cos�x + �� �8�

which is assumed to hold for −��x�� or 0	x	� if the
spectrum of H extends in both directions or is nonnegative,
respectively. Then

� f�Ht

�
�

0
� �A cos�Ht

�
+ ��

0
�9�

provided the left-hand side is well defined �i.e., the average
exists�. Now, due to Eq. �7�,

� f�Ht0

�
�

0
� 0. �10�

The above inequality imposes certain restrictions on t0. By a
judicious choice of f�x� one can learn something interesting
about t0. For example, the bound �2� is obtained by taking
the optimal inequality �8� in the class of linear functions f�x�
�in this case we have to restrict the range of x to the positive
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semiaxis�. Let us now consider �8� in the class of quadratic
functions f�x� and −��x��. It is an elementary task to
check that the optimal inequality reads now

�x + ��2 −
�

4
� − � cos�x + �� . �11�

By assumption, ���0�� belongs to the domain of H and both

H�0 and 
H2�0 are well defined �21�. Equation �10� takes
now the form


H2�0

�2 t0
2 +

2�
H�0

�
t0 + ��2 −

�2

4
 � 0 �12�

which implies that t0 lies outside the open interval

�� � �− 2�
H�0 − ��2
H2�0 − 4�2�E0
2

2
H2�0/�
,

− 2�
H�0 + ��2
H2�0 − 4�2�E0
2

2
H2�0/�
 �13�

where �E0
2�
H2�0− 
H�0

2. It follows from Eq. �13� that �� is
nonempty provided � belongs to the open interval


 � �− ��
H2�0

2�E0
,
��
H2�
2�E0

 . �14�

So, finally, we obtain

t0 � �
��


�� = � − ��

2�E0
,

��

2�E0
 �15�

which implies �1�.
In order to find intelligent states for the bound �1� we

define

���x� � �x + ��2 −
�2

4
+ � cos�x + �� . �16�

Then

���x� � 0 �17�

and ���x�=0 if and only if x=−�±� /2.
Assuming t0=�� /2�E0 we find from Eqs. �12� and �16�

����Ht0

�
�

0
= 0 for � =

− �
H�0

2�E0
. �18�

Now, due to �17�, Eq. �18� implies cn�0 only if Ent0 /�
=�
H�0 /2�E0±� /2. Therefore, cn�0 for at most two levels
and En1

= 
H�0+�E0, En2
= 
H�0−�E0, which holds provided

�cn1
�2= �cn2

�2= 1
2 . Therefore, the intelligent states are of the

form �18�

��� = c1�n1� + c2�n2�, �c1�2 = �c2�2 =
1

2
. �19�

Finally, let us briefly discuss the general case when no
assumption concerning the spectrum of H is made. The spec-
tral theorem �21� allows us to write


��0����t�� = 
��0��e−�it/��H���0�� =� e−�iEt/��d
��0�

�PE���0�� �20�

where PE is a spectral measure for energy. By assumption
���0�� belongs to the domain of H, which implies �21�

� E2d
��0��PE���0�� � � . �21�

Therefore, ���Et /�� is integrable and

� ���Et

�
d
��0��PE���0�� � 0 �22�

which again leads to the estimate �1�.
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