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Elementary proof of the bound on the speed of quantum evolution
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An elementary proof is given of the bound on “orthogonalization time” 7y= mh/2AE.
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In many problems of quantum theory (like, for example,
quantum computing [1-4] or fidelity between two quantum
states [5,6]) it appears important to estimate the speed of
quantum evolution.

An interesting measure of evolution speed is provided by
the minimum time ¢, required for the state to be transformed
into an orthogonal (i.e., distinguishable) state. The basic es-
timate concerning 7, is given by the inequality

wh

= —
=53 F (1)
which has been derived and studied by many authors [7—13].
This bound, in terms of the energy dispersion AE of the
initial state, is very simple and natural (in particular, AE=0
implies t,=0, as it should since the initial state is then an
energy eigenstate). It has been generalized in various direc-
tions [14,15,5]; also, a beautiful geometric interpretation in
terms of the Fubini-Study metric was given [16] (see also
[17]) and the intelligent states saturating Eq. (1) were found
[18].

Quite unexpectedly, a few years ago Margolus and Levitin
[1] derived a new bound of the form

to = _mh (2)
07 2(E-Ey)

valid for Hamiltonians bounded from below; here E; is the
lowest energy while E is the expectation value of the Hamil-
tonian. They were able to show that, for a large class of
states, Eq. (2) provides a more optimal bound than Eq. (1)
[on the other hand, for energy eigenstates, except the lowest
one, Eq. (2) is useless]. The intelligent states for the inequal-
ity (2) were found in Refs. [19,20].

While the standard proof of the bound (1) is based on
Heisenberg equations of motion and the uncertainty principle
(see, however, [12]), the Margolus-Levitin derivation of the
new bound (2) is surprisingly elementary; moreover, the cor-
responding intelligent states can be easily found [20].

The question arises whether the bound (1) can be derived
along the same lines. The aim of the present Brief Report is
to provide a positive answer to this question. We shall show
that (1) holds provided the Hamiltonian H is self-adjoint and
the initial state belongs to its domain. No further restrictions
on the properties of H are necessary; in particular, the spec-
trum may include both discrete and continuous parts and
may extend to infinity in both directions.

Let us first sketch a generalization of the elegant approach
of Ref. [1]. We assume for simplicity that the spectrum of H
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is purely discrete; the general case is briefly discussed in the
final part of the paper.

Let {|n)} be the basis consisting of eigenstates of the
Hamiltonian H,

H|n) = E,|n), (3)
and let
[w(0)) = 2 c,|n) )
be some initial state. Then
WO)T@)) = D |, |2 Ent = <COS<%)>
" 0

—i<sin(%t)>o. (5)

Here (f(H))o=2,f(E,)|c,|* denotes the average with respect
to the initial state.
Now, since (¥(0)|W¥(t,))=0 one obtains

<cos< P >>0—0, <sm( % )>0—0, (6)
<A cos(%+a>>o=0 (7)

for arbitrary constants A, a.
Consider now an inequality of the form

f(x) = A cos(x + a) (8)

or

which is assumed to hold for —o0c <x<<oo or 0 <x=<o if the
spectrum of H extends in both directions or is nonnegative,
respectively. Then

(o) oltnd), o

provided the left-hand side is well defined (i.e., the average
exists). Now, due to Eq. (7),

Hio) ) _
<f< - >>0/o. (10)

The above inequality imposes certain restrictions on #,. By a
judicious choice of f(x) one can learn something interesting
about #,. For example, the bound (2) is obtained by taking
the optimal inequality (8) in the class of linear functions f(x)
(in this case we have to restrict the range of x to the positive
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semiaxis). Let us now consider (8) in the class of quadratic
functions f(x) and —co<x<eo. It is an elementary task to
check that the optimal inequality reads now

(x+a)2—1—72—71'cos(x+a). (11)

By assumption, |W(0)) belongs to the domain of H and both
(H), and (H?), are well defined [21]. Equation (10) takes
now the form

2
<I’1i_2>ot§+2a;H>ot0+<az_§> =0 (12)

which implies that 7, lies outside the open interval

)

e (- 2a(H)Yy - NTXH), - 40> AE2
« 2(H?)/h
— 2a(H)y + NTXH)y — 4a2AEg>
2H?) o/t

where AESE (HZ)O—(H%. It follows from Eq. (13) that A, is
nonempty provided a belongs to the open interval

(13)

_ | H2 | H2
QE( m(H T >>. (14)
2AE, 2AE,
So, finally, we obtain
—ah h
t UA,=|—>,— 15
0¢ ae) “ (2AE0 ZAEO) ( )

which implies (1).
In order to find intelligent states for the bound (1) we
define

Yolx) = (x + a)2—§+wc05(X+ a). (16)

Then
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Ya(x) =0 (17)

and 7y,(x)=0 if and only if x=—a /2.
Assuming f,=7h/2AE, we find from Egs. (12) and (16)

Hig : _ —mH),
<7a< 5 >>0—0 for a_—ZAEO . (18)

Now, due to (17), Eq. (18) implies ¢,#0 only if E /%
=m(H)y/2AEy+ /2. Therefore, c, # 0 for at most two levels

and E, =(H)o+AE,, E,,=(H),—AE,, which holds provided

ey [?=lc,.|?=3. Therefore, the intelligent states are of the
1 2

form [18]
2 )1
|X>=C1|”1>+Cz|”2>’ |Cl| =|Cz| =5- (19)

Finally, let us briefly discuss the general case when no
assumption concerning the spectrum of H is made. The spec-
tral theorem [21] allows us to write

(W (0)| (1)) = (¥ (0)|e”“MHP(0)) = f e UM q(p(0)

X|Pg[W(0)) (20)

where Pp is a spectral measure for energy. By assumption
|W(0)) belongs to the domain of H, which implies [21]

f EXd(W(0)| P ¥ (0)) < oo. (21)
Therefore, vy,(Et/#) is integrable and

[ 2 )acvorrgwon=0 @

which again leads to the estimate (1).
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