
Route to polarization switching induced by optical injection in vertical-cavity
surface-emitting lasers

M. Sciamanna1,* and K. Panajotov2,†

1Supélec, Laboratoire Matériaux Optiques, Photonique et Systèmes (LMOPS), CNRS UMR-7132, Unité de Recherche Commune Supélec
et Université de Metz, 2 Rue Edouard Belin, F-57070 Metz, France

2Department of Applied Physics and Photonics (TW-TONA), Vrije Universiteit Brussel (VUB), Pleinlaan 2, B-1050 Brussels, Belgium
�Received 22 September 2005; published 14 February 2006�

We perform a theoretical investigation of the polarization dynamics in a vertical-cavity surface-emitting
laser �VCSEL� subject to orthogonal optical injection, i.e., the injected field has a linear polarization �LP�
orthogonal to that of the free-running VCSEL. In agreement with previous experiments �Z. G. Pan et al., Appl.
Phys. Lett. 63, 2999 �1993��, an increase of the injection strength may lead to a polarization switching
accompanied by an injection locking. We find that this route to polarization switching is typically accompanied
by a cascade of bifurcations to wave-mixing dynamics and time-periodic and possibly chaotic regimes. A
detailed mapping of the polarization dynamics in the plane of the injection parameters �detuning, injection
strength� unveils a large richness of dynamical scenarios. Of particular interest is the existence of another
injection-locked solution for which the two LP modes both lock to the master laser frequency, i.e., an ellipti-
cally polarized injection-locked �EPIL� steady state. Modern continuation techniques allow us to unveil an
unfolding mechanism of the EPIL solution as the detuning varies and also to link the existence of the EPIL
solution to a resonance condition between the master laser frequency and the free-running frequency of the
normally depressed LP mode in the slave laser. We furthermore report an additional case of bistability, in which
the EPIL solution may coexist with the second injection-locked solution �the one being locked to the master
polarization�. This case of bistability is a result of the interaction between optical injection and the two-
polarization-mode characteristics of VCSEL devices.
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I. INTRODUCTION

The dynamics of semiconductor lasers is well known to
be strongly affected by external perturbations �1� such as
large current modulation �2� or the injection of external light,
either from the laser itself �optical feedback� �3� or from an
external laser �optical injection� �4�. A semiconductor laser
on its own exhibits only simple dynamics: any perturbation
of its steady state is damped out in an oscillatory behavior
with a frequency corresponding to the so-called relaxation
oscillation frequency. The degrees of freedom linked to ex-
ternal perturbations may, however, lead to highly complex
nonlinear dynamics and bifurcations, such as period dou-
bling, quasiperiodicity, or even chaotic regimes �5�. A funda-
mental understanding of the nonlinear dynamics of exter-
nally driven semiconductor lasers is a major issue in any
applications where instabilities need to be avoided or con-
trolled. On the other hand, laser instabilities may also be
considered as useful to develop new, specific applications.
For example, synchronized optical chaos in coupled lasers
can be implemented in data encryption and secure commu-
nication systems �6–8�. High-frequency robust intensity os-
cillations generated with optical feedback from short external
cavities may lead to all-optical sources of microwave signals
�9–17�. Injection locking of a slave laser to a master laser is

also commonly used to enhance the spectral stability and
minimize the chirp of the laser �18–20�.

Recently, the vertical-cavity surface-emitting laser
�VCSEL� has emerged as a key semiconductor laser device
for high-performance optical communication networks, ow-
ing to its numerous advantages such as a low threshold cur-
rent, a single-longitudinal-mode operation, a circular output-
beam profile, and wafer-scale integrability �21�. VCSELs
have also received significant attention for their unique po-
larization properties: the emitted light is linearly polarized
�LP� but unlike in edge-emitting lasers, its direction can vary
from device to device and may not remain stable as we
modify the operating conditions such as the temperature or
the injection current. The polarization instability typically
consists of a polarization switching between the two or-
thogonal LP modes �22�. New, interesting dynamics may
then occur when this unique polarization degree of freedom
in VCSELs interacts with an external degree of freedom such
as that related to optical feedback, optical injection, or cur-
rent modulation. Optical feedback, for example, may induce
low-frequency fluctuations associated with polarization
chaos �23–27�, polarization self-modulation at very high fre-
quencies �9,11–14�, polarization mode hopping, and coher-
ence resonance phenomena �28–31�. Period-doubling cas-
cades and chaotic regimes have also been reported in gain-
switched, directly modulated VCSELs, related to either
transverse mode �32� or polarization mode competition �33�.

However, studies of the influence of optical injection on
the VCSEL polarization dynamics remain scarce. It has been
shown that the polarization state of a VCSEL can be con-
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trolled and switched by optical injection with orthogonal po-
larization �34,35�. We shall call this configuration OI�, in
order to indicate that the injected field has its polarization
orthogonal to that of the slave VCSEL. Polarization switch-
ing occurs through injection locking where both the wave-
length and polarization of the slave VCSEL are locked to the
injected master field. The switching is furthermore accompa-
nied by a hysteresis feature which allows for generating a
memory effect by modulating the bias current of the master
laser �36�. Another laser configuration, which we call OI�,
consists of an injected field with a polarization parallel to
that of the slave VCSEL. In such a laser system, Li et al.
have reported a stable injection locking within a very large
detuning range �37�. Outside the locking range, several dy-
namical instabilities have been reported such as wave-mixing
regimes �38� and relaxation oscillation undamping. These re-
sults are similar to those obtained in edge-emitting lasers but
the single-longitudinal-mode characteristic of a VCSEL al-
lows us to observe features that would otherwise be hidden
by longitudinal-mode hopping dynamics in conventional
edge-emitting lasers, e.g., injection locking with large detun-
ings �37� and bistability near the locking boundary �39�. Fur-
ther investigations on the OI� configuration have shown that
regions of polarization chaos can be observed for both posi-
tive and negative detunings �40�. In these chaotic regimes,
the LP mode with the polarization orthogonal to that of the
injected field is excited and emits in complete antiphase with
respect to the other LP mode, such that the total intensity
remains almost constant with time. Finally, several studies
have reported on transverse mode dynamics in VCSELs with
optical injection. When the VCSEL exhibits two transverse
modes with orthogonal polarizations, the injection of exter-
nal light with the appropriate detuning and injection strength
allows one to select one mode and to suppress the other
mode �41,42�. On the other hand, single-mode operation is
not possible when the VCSEL exhibits two transverse modes
with parallel polarizations �42,43�. In that last case, complex
dynamical instabilities have been shown including combina-
tion of in-phase and antiphase mode dynamics and chaotic
pulsing �43�. Finally, it is worth mentioning that an in-depth
analysis of the optical injection dynamics of VCSELs is
clearly motivated by a large number of applications. The
phase locking of arrays of VCSELs to a master laser has
been reported as an efficient technique to yield nearly
diffraction-limited output beams with a high peak power
�44�. The switching between polarization modes and/or dif-
ferent transverse modes induced by optical injection is inter-
esting for applications in all-optical signal processing, e.g.,
as all-optical inverters �45�. Recent experiments on injection-
locked 1.55 �m VCSELs have reported a significant chirp
reduction in 2.5 Gb/s transmission experiments �46� and an
interesting reduction of distortion in analog modulation �47�;
hence important improvements in the performances of di-
rectly modulated VCSELs. Other interesting applications are
in mind, such as the locking of an uncooled tunable VCSEL
to a desired wavelength in order to relax the requirements for
expensive wavelength lockers in dense-wavelength division
multiplexed transmission systems �48,49�.

In this paper, we analyze theoretically the polarization
dynamics of a VCSEL subject to optical injection in the OI�

configuration. As mentioned before, there have been only a
few analyses of the polarization properties of VCSELs in this
optical injection configuration. Previous experiments on the
same laser system have only investigated the averaged inten-
sities in the two orthogonal, LP modes of the slave VCSEL
in conditions such that the increase of injected power leads
to a polarization switching with injection locking, i.e., the
slave VCSEL locks its frequency and polarization to that of
the master laser �34�. Numerical simulations on a rate equa-
tion model have reproduced qualitatively well the polariza-
tion switching and its hysteresis feature �50�. However, to the
best of our knowledge, the polarization dynamics in this
route to polarization switching has never been investigated
and the existence of possibly different scenarios for polariza-
tion switching has never been discussed. We unveil here in-
teresting polarization behaviors as we increase the injection
strength and as a function of the detuning between the slave
VCSEL and the master laser. Different scenarios for polar-
ization switching are investigated in detail through a map-
ping of the polarization dynamics in the plane of the injec-
tion parameters. While the free-running VCSEL exhibits a
stationary x-LP mode, the increase of injected power typi-
cally leads first to complex multiwave-mixing dynamics with
a combination of in-phase and antiphase intensity behaviors
in the two LP modes. In-phase time-periodic, period-
doubled, quasiperiodic, or even chaotic regimes are also
found in the two LP modes in the route to the polarization
switching. As a main result, we can point to the report of a
stationary case for which the two LP modes are both locked
to the master frequency. This case, which we call the ellipti-
cally polarized injection-locked �EPIL� state, therefore cor-
responds to a case for which the slave VCSEL locks in fre-
quency to the master laser but still exhibits different
polarization. The EPIL stationary dynamics may undergo a
Hopf bifurcation leading to in-phase time-periodic intensity
dynamics in the two LP modes. The limit cycle regime then
progressively evolves to chaotic dynamics through a period-
doubling cascade. Modern continuation techniques allow us
to get insight into the existence and stability conditions of
the EPIL steady state. An unfolding mechanism is shown as
we vary the detuning and as a result, we find that the stability
region of the EPIL solution is delimited by two
codimension-2 Gavrilov-Guckenheimer bifurcations. These
points are analyzed as a function of the laser parameters.
Finally, we report on an additional case of bistability in
injection-locked laser diodes for which the two-mode
injection-locked solution �EPIL� coexists with the solution
locked to the master polarization. Our results show that, by
contrast to cases previously analyzed, the polarization
switching does not necessarily occur through injection lock-
ing and, moreover, injection-locking situations may be found
that are not accompanied by polarization switching. Our re-
sults are thought to be of interest not only for the fundamen-
tal understanding of the polarization properties in such a la-
ser system but also for practical issues related to polarization
control in VCSELs and fast polarization-switching mecha-
nisms. They furthermore motivate additional experimental
investigations.

We have organized our paper as follows. In Sec. II we
introduce the model and its parameters. A route to polariza-
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tion switching is analyzed in Sec. III for the experimental
conditions of Pan et al. �34�. Section IV shows different
dynamical scenarios, depending on the detuning between the
slave VCSEL and the master laser. A mapping of the polar-
ization dynamics in the injection-strength–detuning plane is
unveiled. A more detailed stability analysis of the steady
states is shown in Sec. V, with particular attention paid to the
bifurcation boundaries of the EPIL state. Finally, we summa-
rize our main conclusions in Sec. VI.

II. RATE EQUATION MODEL

Our model is based on the San Miguel, Feng, and Molo-
ney �SFM� rate equations for a solitary VCSEL operating in
the fundamental transverse mode regime �51�. These equa-
tions are the result of a semiclassical two-level Maxwell-
Bloch approach applied to a scheme with four discrete en-
ergy levels. These energy levels are associated with two
radiating transitions between conduction and valence bands,
for which the respective carriers are of opposite spins. They
are given by six real nonlinear and coupled differential equa-
tions for the two linearly polarized slowly varying compo-
nents of the field Fx,y and for two carrier variables D and d.
D accounts for the total population inversion between con-
duction and valence bands, while d is the difference between
population inversions for the spin-up and spin-down radia-
tion channels.

We have extended the SFM model to account for the in-
jection of an external field with a linear polarization orthogo-
nal to that of the free-running VCSEL. In our simulations,
the parameters of the model are chosen such that the free-
running VCSEL exhibits a stable and stationary x-LP state.
We therefore choose the optical injection along the y direc-
tion. The SFM model extended to y-LP optical injection and
written in the frequency reference frame of the master laser
is given by

dFx

dt
= ��1 + i���DFx + idFy − Fx� − i��p + ���Fx − �aFx,

�1�

dFy

dt
= ��1 + i���DFy − idFx − Fy� + i��p − ���Fy + �aFy

+ �injEinj
0 , �2�

dD

dt
= − �e�D�1 + �Fx�2 + �Fy�2�� + �e� − i�ed�FyFx

* − FxFy
*� ,

�3�

dd

dt
= − �sd − �ed��Fx�2 + �Fy�2� − i�eD�FyFx

* − FxFy
*� . �4�

The internal VCSEL parameters are as follows: � is the
field decay rate, �e is the decay rate of D, �s is the spin-flip
relaxation rate �which accounts for the different microscopic
mechanisms involved in the homogenization of the carrier
spins�, � is the linewidth enhancement factor, � is the nor-

malized injection current ��=1 at threshold�, �a is the linear
dichroism, and �p is the linear birefringence. �inj, Einj

0 , and
�� are the optical injection parameters. �inj is the coupling
coefficient, Einj

0 is the injected field amplitude, and �� is the
detuning between the master and slave frequencies. In our
VCSEL problem the free-running laser may exhibit two fre-
quencies, which correspond to the frequencies of the two
linearly polarized modes. In the stationary case, the frequen-
cies of the two LP modes are given by �x,y = ��p±��a.
Similarly to a previous numerical study of optical injection
in VCSELs with the SFM model �50�, we consider the fre-
quency detuning as the detuning between the master
frequency �inj and a frequency �th intermediate between that
of the x- and the y-LP modes ��th= ��x+�y� /2�, i.e.,
��=�inj−�th.

III. ROUTE TO POLARIZATION SWITCHING

We have simulated the experimental configuration of Pan
et al. �34�, in which a free-running VCSEL that emits in the
x-LP mode is subject to optical injection from a master laser
with a y-LP polarization. The parameters of the SFM model
are taken such that it reproduces the polarization character-
istics of the solitary VCSEL as reported in this experiment.
The reported frequency difference between the two orthogo-
nal LP modes is about 9 GHz. Since the frequency difference
between the two LP modes is approximately given by
2�p / �2	�, we consider �p=30 rad/ns. The values of the pa-
rameters �a, �, and �s are taken such that the solitary
VCSEL switches as in the experiment from the vertical di-
rection �y� to the horizontal direction �x� for an injection
current of about 20% above threshold ��=1.2�. The
polarization-switching behavior of VCSELs in the frame-
work of the SFM model depends on the combination of �p,
�a, �, and �s �50�. We have checked numerically that a po-
larization switching from the y-LP to the x-LP mode occurs
at about �=1.2 if we consider the parameters �a=0.5 ns−1,
�s=50 ns−1, and �=3. The photon decay rate and the carrier
relaxation rates are taken as �=300 ns−1 and �e=1 ns−1,
which are typical values for a semiconductor laser. As in the
experiment of Pan et al. �34�, we fix the current at about 50%
above threshold ��=1.5�, i.e., after the polarization-
switching point, such that the VCSEL emits only in the x-LP
mode, that is, with an orthogonal polarization with respect to
that of the injected field.

The coupling coefficient �inj multiplied by the injection
amplitude Einj

0 gives the injection strength per unit of time.
This quantity is difficult to estimate from the experiment
since it depends among other things on the quality of the
alignment between the master and slave lasers. We will con-
sider the parameter �inj fixed to �inj=�, which corresponds to
the optimal case of a mode-matched injected input beam
�50�. Our bifurcation parameters are the frequency detuning
�� and the amplitude of the injection Einj

0 .
We have first followed the experimental procedure of Pan

et al. �34� to compute the polarization-resolved ouput power
as a function of the injected optical power. The detuning has
been fixed to ��=−�p=−30 rad/ns, which means that the
frequency of the master laser almost coincides with the fre-
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quency of the free-running VCSEL when it emits in the x-LP
mode. The injected optical power was increased linearly in
time until polarization switching occurred, and then the in-
jected optical power was decreased to zero. The SFM model
extended to optical injection �Eqs. �1�–�4�� is integrated for
each value of the injected optical power and the numerically
computed intensities in the two LP modes Ix,y ��Fx,y�2 are
averaged over 80 ns to account for the limited bandwidth of
a slow photodetector, after letting the time for the transient to
die off. For each value of Pinj / I0, the initial conditions for the
simulations are taken as the final solutions of the previous
iteration in the injection strength. In agreement with the
experimental results �34�, we find a polarization switching
with a region of bistability �hysteresis�, as shown in Fig. 1.
The LP mode intensities are plotted in Figs. 1�a� and 1�b�,
respectively, as a function of the injected optical power
Pinj= �Einj

0 �2. All intensities are normalized by the intensity of
the free-running VCSEL I0��Fx�2+ �Fy�2, where Fx and Fy
are the LP components of the field in absence of optical
injection. In our case I0 is equal to the intensity of the x-LP
mode in absence of optical injection, since the y-LP mode in
the solitary VCSEL is nonlasing. Adiabatically sweeping the
injected power from 0% to 0.8% of the emitted power I0, we
find a hysteresis cycle for both polarization components.

It is worth noting that a similar result has been obtained
by Martin-Regalado et al. �50� using the same SFM model
extended to optical injection except that the authors also ex-
tended the SFM model to account for the Gaussian trans-
verse profile of the electric field instead of the plane-wave
approximation of the SFM model. Our results indicate that
this extension of the SFM model is not necessary to capture
the features of the experimental results by Pan et al. �34�.

Previous experimental results �34� and numerical simula-
tions �50� have considered only the time-averaged optical

powers. However, it is expected that the optical injection
may induce a polarization dynamics in the VCSEL on a fast
time scale, of the order of nanoseconds or even less �52�.
These fluctuations of the polarization-resolved intensity have
not been captured by the slow photodetector of the experi-
mental setup in Ref. �34� and have not been investigated in
the numerical analysis of Martin-Regalado et al. �50�. Our
objective in this paper is then to investigate the polarization
dynamics of the VCSEL in this route to switching induced
by optical injection, first for parameters that are close to the
experimental analysis of Pan et al. �34�, and then for several
combinations of frequency detuning �� and injected optical
power Pinj.

Our first step in the analysis of the polarization dynamics
is the computation of the bifurcation diagram of Ix,y as a
function of the normalized injected power Pinj / I0. For each
value of Pinj / I0 we have numerically simulated the time
traces of Ix and Iy and sampled the successive extrema of the
LP mode intensities. These extrema are plotted on the verti-
cal axis. This procedure is repeated for each value of Pinj / I0,
by taking as initial conditions for the simulations the final
solutions of the previous iteration in the bifurcation param-
eter. The parameters are identical to those used to compute
the hysteresis cycle of Fig. 1, hence allowing a direct com-
parison between the averaged procedure and the dynamical
analysis. The bifurcation diagram is plotted in Fig. 2. The
x-LP and y-LP mode intensities are plotted for either an
increasing �a� or a decreasing �b� injection strength.

As shown in Fig. 2, the route to polarization switching
induced by optical injection corresponds to a cascade of bi-
furcations to qualitatively different dynamical behaviors in-
cluding stationary, time-periodic, quasiperiodic, and chaotic
regimes. The comparison between Figs. 2�a� and 2�b� shows
furthermore that a solution which is locked to the master
laser polarization and frequency �at large injection strength�
may coexist in a quite large range of injection strength �be-
tween Pinj / I0�0.4% and �0.53%� with time-periodic,

FIG. 1. Polarization switching occurring upon injection of a
field with first linearly increasing and then linearly decreasing in-
tensity. The LP mode intensities Ix,y are plotted as a function of the
injected power Pinj, in proportion of the free-running emitted power
I0. The intensities have been averaged over 80 ns. The dashed line
with circles corresponds to the case of an increasing injected power,
while the solid line with crosses corresponds to the case of a de-
creasing injected optical power.

FIG. 2. �Color online� Bifurcation diagram of Ix �blue� and Iy

�green� as a function of Pinj / I0, for the same parameters as in Fig. 1
and for either increasing �a� or decreasing �b� injection strength.
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period-doubled, or even chaotic regimes. These time-
periodic and more complex dynamics originate from another
steady-state solution located at smaller values of the injected
power. This second steady-state solution corresponds to an-
other injection-locking mechanism, as will be detailed in the
following. We shall decribe these dynamics and the locking
mechanisms in the following subsections, on the basis of
time traces and optical spectra in the two LP modes.

A. Wave-mixing dynamics and frequency pulling

As we increase the injected power from zero, the bifurca-
tion diagram of Fig. 2 shows that the optical power in the
depressed y-LP component of the slave VCSEL increases
and the intensities in the two LP modes exhibit a small time-
periodic modulation with several different but close extrema.
The intensities of the two LP modes exhibit a time-periodic
dynamics that consists of a very small modulation of the
output power; see Figs. 3�a� and 3�b�. The time evolution of
the carrier variables D and d is shown in Figs. 3�c� and 3�d�.
The optical spectra of the two LP modes are plotted in Figs.
3�e� and 3�f�. In Fig. 3�g� is shown a projection of the system
trajectory in the three-dimensional phase space ��Fx� , �Fx� ,D�,
while the complete phase space is of dimension 6.

The LP mode intensities are slightly modulated and the
modulation frequency almost corresponds to 0.4 GHz. This
frequency is much smaller than the relaxation oscillation fre-
quency of the free-running VCSEL ��RO / �2	�
�	2��e��−1�
2.77 GHz� or the beating frequency be-
tween the two LP modes �2�p / �2	�
9.5 GHz�. An analysis
of the optical spectra in Figs. 3�e� and 3�f� shows that the
x-LP mode exhibits a dominant peak at a frequency almost
corresponding to the frequency of the free-running VCSEL

in the x-LP state, but slightly shifted by optical injection. The
master frequency corresponds to zero since we operate in the
reference frame of the master laser. The frequency of the
free-running VCSEL in the x-LP state is shifted from the
master frequency by foff
��a / �2	�=0.24 GHz. Much
weaker side peaks appear, which are approximately sepa-
rated from the dominant peak by about 2foff. On the other
hand, the spectrum of the y-LP mode exhibits a dominant
peak at the master frequency �0�. This dominant peak is how-
ever much weaker than the dominant peak in the x-LP mode.
Side peaks also appear, which are separated from the master
frequency by a multiple of 2foff. In summary, the spectrum of
the total intensity exhibits a dominant peak at the slave laser
frequency �foff in the reference frame of the master laser�, a
weaker peak at the master frequency �0�, and side peaks
which are separated from the slave frequency by multiples of
foff. A beating occurs between the slave frequency and the
master frequency, which are separated by foff. The beating
results in a pulsation of the population inversion, which then
yields an intensity modulation in the two linearly polarized
components of the VCSEL. Since in the SFM model two
carrier reservoirs with opposite spins are defined, the pulsa-
tion of the carrier population must be analyzed through the
time dependency of the two carrier variables D and d, as
shown in Figs. 3�c� and 3�d�. Interestingly, the variable D
oscillates with a frequency of about 2foff while the d variable
oscillates with a frequency twice smaller, i.e., foff. While we
can identify the mechanism responsible for the intensity os-
cillations as a wave mixing �since a beating occurs at a fre-
quency that results from the interaction between the slave
and master fields�, a complete description of this wave-
mixing mechanism would require an in-depth analytical
study of the perturbed SFM model in presence of injection,
which is left for future work.

More complex wave-mixing processes and higher har-
monics may be observed when increasing the injection am-
plitude, as shown in Fig. 4. The intensities of the two LP
modes still exhibit a slow time-periodic dynamics but now

FIG. 3. Polarization dynamics resulting from wave mixing for a
small injection amplitude. �a� and �b� show the intensities of the two
LP modes, Ix,y, respectively. �c� and �d� show time traces of the two
carrier variables D and d. The optical spectra of the two LP modes
are shown in �e� and �f�. A three-dimensional projection of the
system trajectory is shown in �g�, in the space ��Fx� , �Fy� ,D�. The
injection amplitude is fixed at Pinj / I0=0.03%, and the other param-
eters are as in Fig. 2.

FIG. 4. As in Fig. 3 but illustrating multiwave-mixing dynamics
and combination of in-phase–antiphase polarization dynamics. The
injection strength is taken as Pinj / I0=0.16%.

ROUTE TO POLARIZATION SWITCHING INDUCED BY¼ PHYSICAL REVIEW A 73, 023811 �2006�

023811-5



the LP modes relax with faster oscillations at the frequency
of the relaxation oscillation. Interestingly, the two LP modes
exhibit a combination of in-phase and antiphase pulsating
dynamics, i.e., the two LP modes are anticorrelated at the
time scale of the slow oscillations and they exhibit an in-
phase dynamics at the fast time scale of the relaxation oscil-
lations. This in-phase–antiphase combination appears to be a
generic feature of polarization dynamics in VCSELs with
additional degrees of freedom: it has been found also in po-
larization dynamics induced by optical feedback �24–27� and
in gain-switched VCSELs �33�. In our optical injection sys-
tem, the in-phase dynamics occurs at the time scale of the
relaxation oscillation period �0.36 ns� while the antiphase
dynamics occurs at the much slower time scale of the beating
between the master and the slave fields.

The wave-mixing dynamics occurs in the route to the
VCSEL injection locking and is accompanied by a modula-
tion of the laser intensity and by side peaks in the optical
spectra. Another characteristic of this wave-mixing dynamics
is the frequency pulling. In absence of optical injection, the
optical spectrum consists of a single peak located at the an-
gular frequency ��a=1.5 rad/ns with respect to the angular
frequency corresponding to the master laser, i.e., in the fre-
quency reference frame of the master laser. This peak corre-
sponds to the frequency of the x-LP mode since the y-LP
mode is not lasing in the free-running VCSEL. As we in-
crease the injected power, side peaks complement this domi-
nant peak in the x-LP mode optical spectrum but moreover
the dominant peak progressively shifts in the direction of the
master frequency, as indicated in Fig. 5. As the injection
strength increases the slave laser is first slightly pushed away
from the master laser and then strongly pulled toward the
master frequency. For a sufficiently large injected power
Pinj / I0 �here close to Pinj / I0
0.19%�, the VCSEL exhibits
an injection locking �to an elliptically polarized injection-
locked state; see below� and the frequency shift with respect
to the master frequency therefore goes to zero, since the

slave VCSEL is locked to the frequency of the master laser.
Analytical approximations for the dependency of the fre-
quency shift on the injection strength and detuning have been
reported in the case of a single-mode edge-emitting laser
subject to weak optical injection �53�, but similar results are
not available for our two-mode VCSEL problem.

B. Injection-locked states and time-periodic, complex
polarization dynamics

For a slightly larger amount of optical injection, the inten-
sities of the two LP modes now exhibit a stationary behavior,
i.e., they remain constant in time. This region of stationary
state with Ix� Iy �0 is found only in a small region of in-
jected optical power. This dynamics is detailed in Fig. 6, in
which the time traces of the LP mode intensities �Ix,y� are
plotted in Figs. 6�a� and 6�b� together with the corresponding
optical spectra in Figs. 6�c� and 6�d�, respectively. The LP
mode intensities are steady and this steady-state operation of
the VCSEL corresponds to an injection locking in the sense
that the slave laser optical frequency is locked to that of the
master laser. In our VCSEL problem, the free-running fre-
quency is in fact made of two slightly shifted frequency
components that correspond to the frequencies of the two LP
modes shifted as a result of birefringence effects. The
injection-locked state of Fig. 6 corresponds to a case of in-
jection locking in which both frequency components are
locked to the frequency of the master laser. Since the two LP
modes do not necessarily exhibit the same intensities and
phases, this case corresponds to an elliptically polarized in-
jection locked steady state. The system trajectory obviously
corresponds to a fixed point with nonzero intensities in any
of the two LP mode intensities, as shown in Fig. 6�e�.

This case of injection locking arises from the interaction
between the polarization mode competition in VCSELs and
the optical injection effects. As we will show in Sec. V, the
existence of a stable EPIL is strongly dependent on the value
of the frequency detuning and injected optical power.

As shown in the bifurcation diagram of Fig. 2, the EPIL
steady state destabilizes with a Hopf bifurcation for a larger

FIG. 5. Frequency pulling in the wave-mixing dynamics. The
frequency shift of the dominant peak in the x-LP mode optical
spectrum is measured in units of angular frequencies in the refer-
ence frame of the master frequency, and as a function of the injected
power Pinj / I0. The parameters are the same as in Fig. 2. The fre-
quency of the dominant peak shifts in the direction of the master
frequency as we increase the injection strength and locks to the
master frequency for a sufficiently large injected power.

FIG. 6. As in Fig. 3 but illustrating an elliptically polarized
injection-locked steady state. The injection amplitude is taken as
Pinj / I0=0.18%.
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amount of injection amplitude. The resulting time-periodic
dynamics then exhibits a cascade of period-doubling bifur-
cations to more complex, chaotic regimes. This cascade of
bifurcations on limit cycle solutions is analyzed in more de-
tail in Figs. 7 and 8. Figure 7 shows the time traces of Ix and
Iy for increasing values of the injection strength. The corre-
sponding optical spectra are plotted in Fig. 8.

The Hopf bifurcation on the EPIL steady state leads to a
time periodic intensity modulation in the two LP mode in-
tensities; see Figs. 7�a1� and 7�a2�. The x-LP mode is the
dominant mode �the one with the largest intensity� but both
LP modes oscillate with the same frequency, which is close
to the relaxation oscillation frequency of the free-running
VCSEL �about 2.5 GHz�. Interestingly, the two LP modes
oscillate in phase in this time-periodic dynamics that
emerges from a Hopf bifurcation, in contrast to the antiphase

oscillations that are observed in the time-periodic dynamics
resulting from wave mixing �see Fig. 3�. The polarization-
resolved optical spectra shown in Figs. 8�a1� and 8�a2� are
also very different from the ones shown in Fig. 3 for the
wave-mixing dynamics: now the dominant peak in the two
LP modes is located at the frequency of the master laser and
symmetric side peaks appear, which are separated from the
dominant peak by multiples of the oscillation frequency
�about 2.5 GHz�.

As we still increase the injected power further, the time-
periodic dynamics in the two LP modes may undergo a sec-
ondary period-doubling bifurcation, as shown in Figs. 7�b1�,
7�b2�, 8�b1�, and 8�b2�. The two LP mode intensities still
oscillate with a fundamental frequency close to 2.5 GHz but
now the intensities are also modulated on a smaller fre-
quency which corresponds to half of the fundamental fre-
quency. This period doubling is also observed in the
polarization-resolved optical spectra. The dominant peak is
still located at the frequency of the master laser and the
strongest side peaks are still located at multiples of the fun-
damental oscillation frequency �2.5 GHz�. However, new
side peaks also appear at multiples of 1.25 GHz, i.e., half of
the fundamental frequency.

The period-doubling cascade continues as we increase the
injection amplitude further, leading to a period-4 time-
periodic dynamics in the two LP modes; see Figs. 7�c1�,
7�c2�, 8�c1�, and 8�c2�. Two LP mode intensities exhibit four
different extrema within each period. The time traces of LP
mode intensities exhibit a period equal to about 1.6 ns, i.e.,
twice larger than the 0.8 ns period of the period-2 oscillation
shown in Figs. 7�b1� and 7�b2�, but the intensities still oscil-
late with the fundamental frequency of 2.5 GHz �an oscilla-
tion at each 0.4 ns�. The polarization-resolved optical spectra
exhibit new side peaks that are located at multiples of one-
fourth of the fundamental frequency �0.75 GHz�.

For a slightly larger amount of injected optical power, the
period-4 dynamics in the two LP modes exhibits very differ-
ent quantitative features than the ones analyzed in Figs.
7�c1�, 7�c2�, 8�c1�, and 8�c2�. This different period-4 dynam-
ics is detailed in the cases Figs. 7�d1�, 7�d2�, 8�d1�, and
8�d2�. The two LP mode intensities still exhibit a period of
about 1.6 ns and oscillate at each period corresponding to the
fundamental frequency �0.4 ns�, but the intensity oscillations
with a high frequency are more pronounced than for the pre-
viously analyzed period-4 dynamics. The LP mode intensi-
ties span a wider range of intensities than shown in Figs.
7�c1� and 7�c2�. The polarization-resolved optical spectra ex-
hibit the same features as for the period-4 dynamics shown
in Figs. 8�c1� and 8�c2� but the side peaks located at mul-
tiples of 0.75 GHz are much stronger than for the previously
reported period-4 dynamics.

A cascade of period-doubling bifurcations then accompa-
nies the polarization switching induced by optical injection.
In a small region of optically injected power, very close to
the one that leads to the polarization switching, the polariza-
tion dynamics becomes very complex, as shown in Figs.
7�e1� and 7�e2�. The LP mode intensities do not exhibit a
clear periodicity but instead resemble irregular bursts of
power that extend over a wide range of intensity values. The
polarization-resolved optical spectra plotted are extremely

FIG. 7. Time traces of the LP mode intensities Ix,y for increasing
values of the injected power: Pinj / I0= �a1� , �a2� 0.35%, �b1�,�b2�
0.47%, �c1�,�c2� 0.51%, �d1�,�d2� 0.53%, �e1�,�e2� 0.54%, and
�f1�,�f2� 0.55%.

FIG. 8. Optical spectra of the x- and y-LP modes corresponding
to the polarization dynamics of Fig. 7.
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broad and continuous, with a dominant peak located at the
frequency of the master laser but without any discrete struc-
ture of peaks. The laser system therefore exhibits features
that correspond to a chaotic dynamics resulting from a cas-
cade of period doubling bifurcations.

Finally, for large values of the injected power, the bifur-
cation cascade leads to a polarization switching induced by
optical injection. The polarization switching corresponds to a
switch-off of the x-LP mode and an injection locking of the
y-LP mode, as analyzed in Figs. 7�f1�, 7�f2�, 8�f1�, and 8�f2�.
The y-LP mode exhibits a steady intensity while the x-LP
mode is completely depressed. The optical spectrum of the
y-LP mode exhibits a single peak located at the frequency of
the master laser, hence corresponding to an injection-locking
mechanism. The slave VCSEL laser is injection locked to the
master laser but moreover, and by contrast to Fig. 6, its po-
larization is now locked to the polarization of the master
laser.

IV. MAPPING OF POLARIZATION DYNAMICS

In Sec. III, we have analyzed the VCSEL polarization
dynamics in the case of a detuning ��=−�p=−30 rad/ns,
i.e., such that the frequency of the master laser is very close
to the frequency of the free-running VCSEL when it emits in
the x-LP mode. The route to the polarization switching in-
duced by optical injection was shown to involve a bifurca-
tion cascade with steady states, and time-periodic and more

complex or chaotic dynamics. Of particular interest is the
existence of a two-mode injection-locking steady state, for
which the two polarization modes both lock to the master
laser. One may expect that the polarization dynamics and this
two-mode injection-locking regime are strongly dependent
on the detuning ��. Our results therefore motivate a detailed
mapping of the polarization dynamics in the plane of the
injection parameters, i.e., �Pinj / I0, ���.

The mapping of polarization dynamics is shown in Fig. 9
�enlargements of the region of EPIL steady-states are also
shown in Fig. 10�. Four mappings are shown. The two map-
pings in the left �right� column show the dynamics of the
x-LP mode �a� ��b�� and the y-LP mode �c� ��d�� when the
injection amplitude is adiabatically increased �decreased�.

We have defined 200 uniformly distributed values of the
detuning and 800 uniformly distributed values of the injec-
tion amplitude. For each pair of detuning and injection am-
plitude, we have numerically computed the extrema of the
LP mode intensities as a function of time. We have then
classified the dynamics according to the complexity of the
polarized intensity time traces, i.e., according to the number
of different successive extrema. The qualitatively different
dynamics are associated with different colors in the mapping
of Fig.9 �color online only�. A dark blue color is used when-
ever the LP mode intensity is steady as function of time �only
one extremum�. The light blue, orange, and yellow colors
correspond to qualitatively different time-periodic dynamics,
in which the intensity time trace exhibits two, three, or four
different extrema, respectively. Examples of time-periodic

FIG. 9. �Color online� Mapping of the polarization dynamics in the plane of the injection parameters ��� , Pinj / I0�. Each point in the
mapping is associated with a color, the colors being related to the number of extrema in the intensity time traces as specified in the text. The
other laser parameters are the same as in Fig. 2.
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dynamics associated with the light blue color are those
shown in Figs. 3�a� and 3�b�, 7�a1�, and 7�a2�. The yellow
color is typically used for a period-doubling regime such as
that plotted in Figs. 7�b1� and 7�b2�. We use the red color
when the number of different extrema exceeds 4, which we
identify as a complex laser dynamics, possibly chaotic. Fi-
nally, the green color is used when the intensity of one of the
two LP modes is zero. In our VCSEL configuration, this can
only be the case for the x-LP mode once optical injection has
induced a polarization switching to the y-LP mode.

The boundary between areas with different colors can
be identified as a bifurcation, in the sense that the dynamics
changes qualitatively if one sweeps the parameters across
this boundary. Some important conclusions can be drawn
from the mapping, regarding the regions of injection locking,
the dependency of the polarization-switching boundary
on the detuning, and the multistability between several
attractors.

We find two regions of injection-locking steady states.
The first, largest injection-locking area �in dark blue� corre-
sponds to the slave laser being locked in frequency and po-
larization to the master laser. The y-LP mode of the slave
VCSEL is then in a locked steady-state at the frequency of
the master laser, while the x-LP mode is depressed. This
region of injection locking spans a large range of injection
amplitude and detuning and extends much more in the nega-
tive detuning side. It resembles very much the one found in
single-mode edge-emitting lasers subject to optical injection
�see, e.g., Refs. �54,55��. The stability of this injection-
locked steady state is delimited by two bifurcations. The
large injection strength bifurcation corresponds to a Hopf
bifurcation to a time-periodic dynamics �light blue color�.
The smaller injection strength bifurcation is a saddle-node
bifurcation, at which are created a node �the stable injection-
locked steady state� and a saddle. A second region of
injection-locked state corresponds to a two-mode injection
locking, i.e., the two LP modes are both locked to the master

laser and the laser emits an elliptically polarized injection-
locked steady state. This region is found only in a small
range of injection parameters, for ��
−30 rad/ns and
small values of the injection strength. A zoom of the map-
ping is shown in Fig. 10, in order to better analyze the sta-
bility boundaries of this region of EPIL steady state. The
bifurcation boundary at larger injection strength corresponds
to a Hopf bifurcation, leading to time-periodic dynamics in
the two LP modes which may further evolve to a period-
doubling route to chaos. Our mapping suggests that the bi-
furcation located on the small injected power side corre-
sponds to a saddle-node bifurcation. More detailed and
systematic investigations of the stability of the EPIL steady
state will be reported in Sec. V and will unveil a complete
picture of the bifurcation lines.

The large green area for the mapping of the x-LP mode in
Figs. 9�a� and 9�b� gives the polarization-switching boundary
in the laser system. The polarization switching may be ac-
companied by an injection locking to the master frequency
�as is the case for mostly negative detuning when crossing
the dark blue region of the y-LP injection-locked state� but
this is not necessarily the case: the switching occurring for a
large positive detuning leads to a time-periodic or more com-
plex dynamics in the y-LP mode but not to an injection lock-
ing. Very often the intensity dynamics close to the
polarization-switching point is complex in the two LP
modes, as indicated by the regions with red color close to the
green switching boundary. Moreover, the hysteresis in the
polarization switching is also unveiled in our mappings. For
clarity, we have plotted in Fig. 11�a� the injection strength at
which the y-LP polarization mode switches on �black� and
off �gray�, and in Fig. 11�b� the size of the hysteresis, as a
function of the detuning. In agreement with the experiments
of Pan et al. �34�, the minimum injected power needed for
polarization switching is found for detuning values
��
�y =�p−��a, i.e., when the master laser frequency is

FIG. 10. �Color online� Zoom of the mapping of the polarization
dynamics in the plane of the injection parameters ��� , Pinj / I0�, in
order to better analyze the region of steady states �in dark blue�
corresponding to elliptically polarized injection-locked states.

FIG. 11. �a� Injection strength at which occurs a polarization
switching to the y-LP mode. Switch-off power levels for increasing
injected power and switch-on power levels for decreasing injected
power are plotted in black and gray, respectively, as a function of
the detuning ��. The hysteresis size is plotted in �b� as a function
of the detuning.
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close to the frequency of the depressed free-running y-LP
mode. Still in agreement with the reports of Pan et al. �34�,
there is a tendency for an increase of the hysteresis size as
the master laser frequency moves away from �y. However,
our extensive numerical simulations also show additional
features, not observed in the previous experiments. We ob-
serve quite large fluctuations of the hysteresis size when the
detuning is negative and more specifically in parameter re-
gions where the switching is accompanied by injection lock-
ing to the y-LP mode. The hysteresis size increases in a much
smoother way on the positive detuning side. While the over-
all tendency is an increase of the hysteresis size as �� differs
from �y, there are also some ranges of detuning values for
which the slope is opposite.

Another conclusion from the mapping is that the optically
injected VCSEL exhibits several examples of multistabilities,
i.e., coexistence of attractors for the same set of parameters.
These multistable regimes are clearly unveiled if we compare
the mappings for increasing and decreasing injection ampli-
tudes, i.e., Figs. 9�a� and 9�c� versus 9�b� and 9�d�. Bistabil-
ity often occurs between a time-periodic dynamics and a
complex or possibly chaotic dynamics as we approach the
polarization-switching point. As shown in the bifurcation
diagram of Fig. 2, there might be coexistence between the
y-LP injection locked solution and a time-periodic, period-
doubled or even chaotic dynamics emerging from the EPIL
solution. The bistability and coexistence of attractors is more
significantly pronounced for the negative detunings than for
the positive detunings.

As already mentioned, the dynamics which are observed
after the polarization switching point, i.e., once the VCSEL
only emits in the y-LP mode, are similar to those found in
single-mode edge-emitting lasers subject to optical injection
�54,55�; see, e.g., the region of stability for the y-LP
injection-locked solution, the bubble of chaos for large posi-
tive detunings, and the unlocking transition to time-periodic
dynamics for large values of the injection strength. However,
several other dynamics appear in our two-mode VCSEL
problem in the transition to the polarization switching,
such as wave-mixing dynamics with two-mode competition,
the EPIL solution and its destabilization through Hopf bifur-
cation, and also new bubbles of chaos with two-mode
dynamics.

Increasing the �s parameter does not modify the y-LP
injection locking area in the mapping of Figs. 9 and 10, as
also explained in Sec. V. However, the area in the mapping
corresponding to a stable EPIL solution may significantly
shrink as �s increases. We analyze the underlying bifurcation
mechanism in Sec. V; see Fig. 17. As for the more complex
dynamics, we find numerically that increasing �s up to about
300 ns−1 �1� does not modify the areas corresponding to a
period-doubling route to chaos in one or in the two polariza-
tion modes and which are observed for positive detuning
values in Fig. 9, and �2� does not modify the polarization-
switching boundary in the frequency detuning vs injection
strength mapping. However, it is worth mentioning that in-
creasing �s leads to a progressive shrinking of the areas in
the mapping that correspond to wave mixing in the two po-
larization modes �dynamics as reported in Figs. 3 and 4�
�16�. The two-polarization-mode wave-mixing dynamics

which occur in the route to polarization switching with in-
jection locking are therefore strongly related to the strength
of the nonlinear coupling process between the two orthogo-
nal polarization modes.

The mapping shown in Fig. 9 summarizes the polarization
dynamics in a large range of injection parameters but, on the
other hand, the red color does not discriminate between ex-
tremely complex intensity dynamics such as chaotic regimes
and time-periodic dynamics with a large number of different
extrema or even quasiperiodic regimes. Locked time-
periodic solutions in between chaotic solutions are also not
plotted. In order to obtain more information on the detailed
polarization dynamics, it is therefore important to comple-
ment the mappings with the computation of bifurcation dia-
grams for different sets of injection parameters.

Figure 12 plots the bifurcation diagrams of Ix and Iy as a
function of the normalized injected power and for different
values of positive detuning ��, ranging from ��=40 �a� to
10 rad/ns �f�. As shown in the mapping of Fig. 9, the polar-
ization dynamics for large positive detunings is characterized
by the existence of two bubbles of chaos at small or moder-
ate values of the injection amplitude. One of these chaotic
regions occurs very close to the polarization-switching
boundary and is characterized by complex dynamics in the
intensities of the two LP modes. The second, larger region of
chaos in the laser is found after the switching point and thus
only the y-LP mode is lasing. The laser dynamics then bifur-
cates to simpler time-periodic oscillations as we increase the
injection amplitude.

In Fig. 12�a�, the x-LP mode gradually evolves from a
slightly modulated intensity to a more complex dynamics as

FIG. 12. �Color online� Bifurcation diagrams of the LP mode
intensities as a function of the normalized injected power, for dif-
ferent positive values of the detuning �� and the same values of
parameters as in Fig. 2: ��= �a� 40, �b� 35, �c� 30, �d� 25, �e� 20,
and �f� 10 rad/ns. The successive extrema of Ix �Iy� are plotted in
black �gray� as we increase Pinj / I0, which is our bifurcation
parameter.
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we approach the value of injected power leading to the po-
larization switching. After the polarization switching occurs
�Pinj / I0
0.03% �, the y-LP mode is the only lasing mode
and exhibits a complex chaotic dynamics in a relatively large
range of injected powers, as also shown by the red color in
the mapping of Fig. 9. The bifurcation diagram shows that a
locking to a time-periodic dynamics may occur between two
regions of chaos �around Pinj / I0
0.3%�. This was not un-
veiled in the mapping since we have considered the same
color for any intensity dynamics that exhibits more than four
different extrema. It also justifies the need to complement the
mapping of polarization dynamics by detailed bifurcation
diagrams. An inverse period doubling cascade leads to a
period-1 limit cycle oscillation in the y-LP mode for a large
value of the injected power. The polarization dynamics in
Fig. 12�b� is qualitatively similar to that shown in Fig. 12�a�
but for a slightly larger value of the detuning.

The boundary of the bubble of chaos with only the y-LP
mode lasing is progressively reached as we decrease �� to
about 30 rad/ns; see Fig. 12�c� in which the y-LP mode ex-
hibits a period-1 limit cycle oscillation in a large range of
injection amplitude. The period-1 dynamics bifurcates to a
period-doubling regime for Pinj / I0
0.15% but a reverse pe-
riod doubling leads back to the period-1 time-periodic dy-
namics. For a still smaller value of the detuning �Fig. 12�d��,
the y-LP mode exhibits a period-1 limit cycle oscillation for
all values of injected optical powers after the polarization
switching occurs. Before the polarization switching point,
the x- and y-LP modes still compete with a chaoticlike dy-
namics with almost equal averaged intensities in the two LP
modes �this dynamics corresponds to the second, small
bubble of chaos shown in the mapping of Fig. 9 for positive
detunings and small values of the injected amplitude�. The
boundary of this bubble is reached for about ��
=20 rad/ns, as shown in Fig. 12�e�. The route to polarization
switching induced by optical injection then occurs through a
simple time-periodic dynamics in the two LP modes, while
after the switching occurs the y-LP mode keeps on exhibiting
a period-1 time-periodic intensity in the range of injected
power we investigate. Finally, in Fig. 12�f� is shown the
situation for which an increase of injected power leads to a
crossing of the Hopf bifurcation boundary of the injection
locking region �the large dark blue region in the mapping of
Fig. 9�. As we increase the injected amplitude, the x-LP
mode switches off and the y-LP mode is locked to the master
laser. This injection-locking steady state destabilizes with a
Hopf bifurcation for a slightly larger value of injected am-
plitude, which leads to a time-periodic dynamics. The
injection-locking steady state restabilizes through a second
supercritical Hopf bifurcation for Pinj / I0
0.65%.

A second set of bifurcation diagrams is plotted in Fig. 13
for values of the detuning close to zero or negative. As also
shown in the mapping of Fig. 9 and in the bifurcation dia-
gram of Fig. 2, the route to polarization switching induced
by optical injection for negative detunings is usually accom-
panied by either time-periodic or complex polarization
dynamics, and possibly EPIL steady states. In the range
of detunings −20
��
−15 rad/ns, the switching induced
by injection occurs through simple polarization dynamics,
as shown in Fig. 13�a�. The polarization modes exhibit

period-1 time-periodic behaviors before the polarization
switching point and after the switching point, injection
locking in the y-LP mode occurs. For negative detunings
��
−25 rad/ns, complex wave-mixing dynamics are ob-
served in the two LP modes before the polarization switch-
ing, as shown in Figs. 13�b� and 13�c�. Time-periodic oscil-
lations in the LP mode intensities may bifurcate to period-
doubling or even chaotic regimes in the route to the injection
locking of the y-LP mode. In Fig. 13�d� is shown a small
region of injection-locked steady state in the two LP modes,
which corresponds to the EPIL steady state. This case of
injection locking is found in a small range of negative detun-
ings and destabilizes through a Hopf bifurcation. The Hopf
bifurcation leads to a time-periodic modulation of the two LP
modes, which may bifurcate to period-doubling or even cha-
otic regimes. For more negative detunings Figs. 13�e� and
13�f�, the route to switching occurs through a complex cas-
cade of time-periodic, period-doubling, and chaotic or qua-
siperiodic regimes, but the branch of the EPIL steady state
does not appear anymore.

V. STABILITY ANALYSIS OF THE STEADY STATES

As shown in previous sections, our laser problem admits
two different steady-state injection-locked solutions. One
corresponds to injection locking of the y-LP mode, the x-LP
mode being depressed, while the second steady state is a
two-mode injection-locking solution with the two LP modes
being locked to the master laser �EPIL steady state�.

FIG. 13. �Color online� Bifurcation diagrams of the LP mode
intensities as a function of the normalized injected power, for dif-
ferent values of the detuning �� and the same values of parameters
as in Fig. 2: ��= �a� −20, �b� −25, �c� −27, �d� −31, �e� −32, and
�f� −39 rad/ns. The successive extrema of Ix �Iy� are plotted in
black �gray� as we increase Pinj / I0, which is our bifurcation
parameter.
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A mathematical expression for the y-LP injection-locked
solution can be obtained directly from the rate equations
�1�–�4�. Introducing Fx,y =Rx,y exp�i�x,y� in Eqs. �1�–�4�, the
conditions for a steady-state injection-locked solution are
given by

0 = ��1 + i����D − 1�Rx + idRy exp�i��� − i��p + ���Rx

− �aRx, �5�

0 = ��1 + i����D − 1�Ry − idRx exp�− i��� + i��p − ���Ry

+ �aRy + �injEinj
0 exp�− i�y� , �6�

0 = D�1 + Rx
2 + Ry

2� − � − 2dRxRy sin��� , �7�

0 = − �sd − �e�d�Rx
2 + Ry

2� − �� + 2�eDRxRy sin��� , �8�

where

� = �y − �x. �9�

The y-LP injection-locked solution corresponds to a case
when Rx=0. From Eq. �5� this condition also implies d=0 if
Ry �0. We also obtain from Eqs. �6� and �7�

0 = ��1 + i���D − 1�Ry + i��p − ���Ry + �aRy + �injEinj
0

exp�− i�y� , �10�

0 = D�1 + Ry
2� − � . �11�

Equation �11� then implies

D =
�

1 + Ry
2 . �12�

Introducing Eq. �12� into Eq. �10� leads to the new con-
dition

0 = ��1 + i���� − 1 − Ry
2�

Ry

1 + Ry
2 + i��p − ���Ry + �aRy

+ �injEinj
0 exp�− i�y� , �13�

which is equivalent to

0 = �� − 1 − Ry
2�

Ry

1 + Ry
2 + �a�−1Ry + Einj

0 cos��y� , �14�

0 = ��� − 1 − Ry
2�

Ry

1 + Ry
2 + ��p − ����−1Ry − Einj

0 sin��y� ,

�15�

where we have considered as before �inj=�.
Eliminating the trigonometric functions, we have

Einj
02

= Ry
2�� − 1 − Ry

2

1 + Ry
2 + �a�−1�2

+ Ry
2��

� − 1 − Ry
2

1 + Ry
2 + ��p − ����−1�2

, �16�

which gives the intensity solution Ry
2 as a function of the

injection parameters Pinj and �� and of the laser parameters
�, �, �, �a, and �p.

By contrast, the EPIL steady state is much more difficult
to express mathematically, except for the particular case of a
perfect resonance condition between the master frequency
and the free-running x-LP mode frequency, i.e., for
��=−�p+��a �56�. As will be shown in the next figures, the
EPIL steady-state branch is quite smooth for this resonant
case but soon unfolds into more complicated shapes as we
vary the detuning. On the other hand, numerical simulations
only provide the stable part of the EPIL steady-state branch,
and hence cannot provide the full branch of the steady-state
solution. An alternative possibility to compute the complete
branch of EPIL steady-state solutions is to use mathematical
continuation methods, i.e., techniques to follow branches of
solutions irrespective of their stability and starting from two
initial branch points. We have therefore complemented our
direct numerical simulations, which are based on numerical
integration of the rate equations, with the use of continuation
techniques available in the MATLAB package DDE-BIFTOOL
�57�. DDE-BIFTOOL allows the continuation and stability
analysis of steady states and time-periodic solutions for sys-
tems of ordinary or even delayed differential equations. We
have used the continuation techniques not only to compute
the complete branches of injection-locked steady states but
also to compute their stability as a function of the laser and
injection parameters. Bifurcation points on the steady-states
are identified whenever an eigenvalue of the linearized, per-
turbed steady-state problem gets a positive real part. We can
distinguish several kinds of bifurcations: a single real zero
eigenvalue is an indication of either a saddle-node, pitchfork,
or transcritical bifurcation while a pair of pure imaginary
conjugated eigenvalues are associated with a Hopf bifurca-
tion. The bifurcation points may be continued in the two-
dimensional plane given by the injection strength and detun-
ing parameters, and hence may lead to bifurcation lines or
boundaries indicating in the map the regions of stable
injection-locked solutions. The bifurcation lines may cross
and lead to the so-called codimensional-2 bifurcation points,
among which we find the Takens-Bogdanov bifurcation �a
double-zero eigenvalue�, the Gavrilov-Guckenheimer bifur-
cation �a single-zero eigenvalue in addition to a purely
imaginary eigenvalue pair�, and the double Hopf bifurcation
�two purely imaginary eigenvalue pairs� �58�.

Figure 14 shows the y-LP injection-locked solution and
the EPIL solution as a function of the normalized injected
power Pinj / I0 together with information regarding their sta-
bility. Cases �a�–�f� correspond to different values of the de-
tuning ��. Stable �unstable� parts of the branches of steady
states are indicated by thick �dotted� lines. For each steady-
state solution, the x-LP �y-LP� mode intensity is plotted in
black �gray�. We also plot the bifurcation points on the
steady-state branches: squares ��� are used for saddle-node
bifurcations, stars ��� indicate transcritical bifurcations, and
diamonds ��� indicate Hopf bifurcations. Bold diamonds
emphasize the supercritical Hopf bifurcations, i.e., those
Hopf points that modify the stability of the steady state
branches. The other bifurcations located on unstable
branches of steady states are called subcritical.

A particular case is Fig. 14�d� for which ��=�x=−�p
+��a. As we increase the injected power above zero, a
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branch of EPIL steady states appears with Ix being larger
than Iy. For a further increase of Pinj / P0, this EPIL steady
state destabilizes with a Hopf bifurcation leading to a stable
time-periodic solution with the two LP modes lasing. As we
have shown in previous sections, this time-periodic solution
appearing from the EPIL steady state may further evolve to a
period-doubling cascade, possibly leading to chaotic re-
gimes. For a larger value of injected power, the only stable
steady state is the y-LP injection-locked solution which ap-
pears from a saddle-node bifurcation. The node corresponds
to the branch with the largest y-LP mode intensity, the x-LP
mode being depressed. The smaller intensity branch corre-
sponds to the saddle. The EPIL and y-LP solutions cross at a
transcritical bifurcation. It is worth mentioning that two other
Hopf bifurcations are found on the saddle branch of the y-LP
injection-locked solution, as well as one Hopf bifurcation on
the unstable EPIL branch.

When going to more negative detuning values than in Fig.
14�d� the EPIL solution suddenly unfolds and a saddle-node
bifurcation now leads to two branches of solutions for each
of the LP modes �Fig. 14�e��. The stable solution corresponds
to the node, which is the solution with the largest Ix and the
smallest Iy values. The second solution corresponds to the
saddle branch. The node destabilizes with a supercritical
Hopf bifurcation leading to stable time-periodic solution
with the two LP modes lasing. The case Fig. 14�e� is in fact
the same as the bifurcation diagram of Fig. 2 but showing
both stable and unstable branches of steady states. Very in-
terestingly, the saddle-node bifurcation on the EPIL steady
state might be located at a larger value than the saddle node
on the y-LP injection-locked solution, as shown in Fig. 14�f�.
In that case, there is a range of injected powers for which a

bistability exists between a stable EPIL solution and a stable
y-LP injection-locked solution. As will be shown in the next
figures, the range of �� in which this bistability exists is
limited by a codimension-2 Gavrilov-Guckenheimer bifurca-
tion. We can already see in Fig. 14�e� that the Hopf bifurca-
tion on EPIL solution moves towards the saddle-node bifur-
cation as �� goes to more negative values. This bistability
case between two injection-locked solutions therefore
complements the bistability between the y-LP injection-
locked solution and complex dynamics emerging from the
EPIL Hopf bifurcation, as shown in Fig. 2 �or equivalently
Fig. 14�e��.

When going to more positive detuning values than in Fig.
Fig. 14�d�, a similar unfolding mechanism occurs with a
saddle-node bifurcation appearing on the EPIL solution. In
Fig. 14�c�, a stable branch of EPIL solution is still found and
corresponds to the node branch. It again destabilizes with a
supercritical Hopf bifurcation to a stable time-periodic dy-
namics. As we still increase the detuning, the stability of the
EPIL solution is lost as soon as the Hopf bifurcation coa-
lesces with the saddle-node bifurcation. For detuning values
beyond this codimension-2 bifurcation, the Hopf bifurcation
determining the stability of the EPIL steady state is now on
the saddle branch and the EPIL solution is then completely
unstable �Figs. 14�a� and 14�b��.

We have also followed the saddle-node, transcritical, and
Hopf bifurcation points in the two-dimensional plane given
by the injection parameters Pinj / I0 and ��; see Fig. 15. Bi-
furcations on the y-LP injection-locked solution are plotted
in blue and are labeled as Hy

1, Hy
2, and Hy

3 for the Hopf bi-
furcations and Fy

1 for the fold bifurcation. Bifurcations on the
EPIL solution are plotted in red, and are labeled Hxy

1 ,Hxy
2 for

the Hopf bifurcations and Fxy
1 ,Fxy

2 for the fold bifurcations.
Supercritical �subcritical� bifurcations are indicated by solid
�dashed� lines. T is a transcritical bifurcation. Codimension-2
bifurcations are shown with circles ��� for a Gavrilov-
Guckenheimer bifurcation, triangles ��� for a double Hopf
point, and stars for a Takens-Bogdanov bifurcation. The
empty circles ��� indicate codimension-3 bifurcations.

This figure allows us to get insight into the stability con-
ditions on the injection-locked steady states. The y-LP
injection-locked solution appears from the saddle-node bifur-
cation Fy

1 and destabilizes with the supercritical Hopf bifur-
cation Hy

1, which then leads to a stable time-periodic dynam-
ics with only the y-LP mode lasing. A codimension-2
Gavrilov-Guckenheimer bifurcation is located at G3 where
the Hopf and saddle-node bifurcations merge. Point G3 is
located very close to ����p−��a, i.e., for �inj��y. This
detuning value is also the one for which the polarization
switching requires the minimum injected power, as shown in
Fig. 11. For detunings larger than G3, the injection-locked
solution is found for much larger values of the injection
strength, once the laser system crosses the bifurcation line Hy

1

which then corresponds to an inverse Hopf bifurcation. The
EPIL solution on the other hand only exists in a quite small
range of detuning values centered around ��=�p+��a. Ex-
cept for that particular detuning value, the EPIL solution ap-
pears from a saddle-node bifurcation Fxy

1 or Fxy
2 . As we in-

crease the injected power, it destabilizes with the Hopf
bifurcation Hxy

1 . The range of detunings in which one can

FIG. 14. Steady states of the laser system and their stability
analysis for different values of the detuning ��: ��= �a� −16, �b�
−20, �c� −28, �d� −28.5, �e� −30, and �f� −34 rad/ns. Ix �Iy� are
plotted in black �gray� as a function of Pinj / I0. Bifurcation points
are plotted with symbols: squares ��� are used for saddle-node,
stars ��� for transcritical, and diamonds ��� for Hopf bifurcations.
Bold diamonds emphasize the supercritical Hopf bifurcations.
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find a stable EPIL solution is delimited by two
codimension-2 Gavrilov-Guckenheimer points G1 and G2 at
which the saddle-node and the Hopf bifurcation lines be-
come tangent. This detailed stability map also sheds light
into a possible bistability between the EPIL solution and the
y-LP injection-locked solution, as shown in Fig. 14�f�. The
saddle-node bifurcation on EPIL solution Fxy

1 and the saddle-
node bifurcation on the y-LP mode solution Fy

1 intersect at
the point B. For detuning values between B and G2 a stable
EPIL solution coexists in a small range of injection strength
with the y-LP injection-locked steady state. Bistability be-
tween two injection-locked solutions has also been reported
in a single-mode edge-emitting laser with optical injection,
for a low pump and/or small value of � and for a rather large
value of the injection strength �59,60�. However, that bista-
bility case is of different dynamical origin from the one we
report in this paper. Moreover, in our case the two injection-
locked solutions are associated with different polarization
properties. Other bifurcation lines are shown in Fig. 15 and
correspond to subcritical bifurcations, i.e., which appear on
unstable branches of steady states. These subcritical bifurca-
tions are connected to the supercritical bifurcations and to
other subcritical bifurcations through codimension-2 or even
codimension-3 bifurcations. The transcritical bifurcation line
plays a central role in organizing the bifurcations for nega-
tive detunings.

As mentioned before, the EPIL solution is centered
around what seems to be a particular resonance condition for
which ��=−�p+��a, i.e. for which the master laser fre-
quency is close to the free-running x-LP mode frequency.
The existence of such a resonance condition is further con-
firmed in Fig. 16 for which the saddle-node and Hopf bifur-
cation boundaries of the EPIL solution are shown for two

different values of the linear birefringence parameter �p. As
�p increases and the two LP mode frequency splitting there-
fore increases, the region of stable EPIL solutions moves
toward more negative detuning values and the saddle-node
bifurcation lines again intersect at the perfect resonance con-
dition ��=−�p+��a. We have also tested modifications of
� and �a and in all cases this EPIL solution is indeed related
to the existence of a resonance between the master laser fre-
quency and the free-running frequency of the normally de-
pressed mode.

FIG. 15. �Color online� Mapping of the steady-state stability boundaries in the plane of the injection parameters �Pinj / I0 ,���. Bifurca-
tions on the y-LP injection-locked solution are plotted in blue and are labeled as Hy

1, Hy
2, and Hy

3 for the Hopf bifurcations and Fy
1 for the fold

bifurcation. Bifurcations on the EPIL solution are plotted in red, and are labeled Hxy
1 ,Hxy

2 for the Hopf bifurcations and Fxy
1 ,Fxy

2 for the fold
bifurcations. Supercritical �subcritical� bifurcations are indicated by solid �dashed� lines. T is a transcritical bifurcation. Codimension-2
bifurcations are shown with circles ��� for a Gavrilov-Guckenheimer bifurcation, triangles ��� for a double Hopf point, and stars for a
Takens-Bogdanov bifurcation. The empty circles ��� indicate co-dimension three bifurcations. Points B, G1, G2, and G3 are particular points
discussed in the text. �b� and �c� are enlargements of parts of the map shown in �a�.

FIG. 16. Mapping of the stability boundaries of the EPIL solu-
tion in the plane of the injection parameters �Pinj / I0 ,��� and for
two different values of �p. Saddle-node �Hopf� bifurcations are
plotted in gray �black�. Solid �dashed� lines indicate supercritical
�subcritical� bifurcations.
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Equation �16� shows that the y-LP injection-locked
solution depends of course on the injection parameters
and some of the laser parameters ��, �, �, �a, and �p� but
not on the spin-flip relaxation rate �s. The EPIL solution and
its stability boundaries are on the other hand strongly
dependent on �s, as shown in Fig. 17. As �s increases, the
range of detuning values in which one can find a stable EPIL
�between points G1 and G2� progressively decreases. More-
over, interestingly the increase of �s first pushes the
codimension-2 point G2 to larger values of injection strength
�for �s=100 ns−1� but then, for larger �s, two Gavrilov-
Guckenheimer points appear on the saddle-node branch and
the point G2 that shows the end of the stable EPIL region is
strongly shifted to smaller values of injected power. The
range of parameters in which one can find a two-mode
injection-locked solution then quickly shrinks as �s increases
but is not null. The spin-flip relaxation rate �s is an important
ingredient in the framework of the SFM model. It aims at
modeling several microscopic mechanisms that are respon-
sible for the relaxation of the electron spin in quantum well
semiconductor materials. In comparisons between experi-
ments and theory based on SFM model, the �s parameter is
usually considered as a fitting parameter since its direct mea-
surement is very difficult at room temperature and for the
high levels of carrier density encountered in lasing operation.
Reported values of �s from experimental fittings of different
VCSEL devices range from �s
20 ns−1 �61�, �s
100 ns−1

�62�, �s�300 ns−1 �63�, or even �s
� �64�. Our results sug-
gest that an indirect measurement of �s might be possible by
detecting experimentally the boundaries of the two-mode

injection-locking steady states in optically injected VCSELs
and by fitting the stability analysis as a function of �s.
The dynamics of optically injected VCSELs might therefore
give hints to the importance of spin-flip relaxation mecha-
nisms in the VCSEL devices under study and might also
provide alternative ways to determine a value of the related
�s parameter.

VI. CONCLUSIONS

In summary, we have reported the polarization dynamics
accompanying the route to polarization switching in optically
injected VCSELs. The polarization switching typically con-
sists of a cascade of bifurcations with cascaded wave mixing
for smaller values of the injection strength, then time-
periodic, period-doubling, and even chaotic regimes in the
two LP modes before the laser switches to the injection-
locked steady state with the master polarization. For some
detuning values �such that the master laser frequency is close
to the free-running frequency of the depressed LP mode�, the
slave VCSEL may exhibit a stationary regime for which the
two LP modes both lock to the master laser and hence the
VCSEL emits an elliptically polarized injection-locked
steady state. This two-mode injection-locked solution is un-
usual in this optical injection problem and its bifurcation
boundaries have been determined thanks to numerical con-
tinuation methods. Codimension-2 Gavrilov-Guckenheimer
bifurcation points organize the stability of the EPIL solution
and are robust against large variations of the laser param-
eters. They result from the interaction between the unfolding
of the EPIL solution as the detuning varies, i.e., the existence
of saddle-node bifurcations, and the existence of a Hopf bi-
furcation at larger values of the injection strength. Moreover,
there is a detuning range for which an additional bistability
may occur between the EPIL steady state and the solution
that is injection locked with the master polarization. Our de-
tailed mapping and steady-state bifurcation analysis provide
further light on a two-mode injection-locking problem and
motivate further experiments. The search for an EPIL solu-
tion might give indications of the value of the spin-flip re-
laxation rate of the VCSEL device under study, i.e., it might
confirm the importance or not of spin relaxation mechanisms
in the rate equation modeling. Finally, analytical studies of
the EPIL solution and its stability conditions can be per-
formed in the light of our results and might shed light on the
two-mode optical injection dynamics.
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FIG. 17. Mapping of the stability boundaries of the EPIL solu-
tion in the plane of the injection parameters �Pinj / I0 ,��� for in-
creasing values of �s. Saddle-node �Hopf� bifurcations are plotted
in gray �black�. Solid �dashed� lines indicate supercritical �subcriti-
cal� bifurcations.
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