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Experimental results on adaptive feedback control of transient �i.e., nonimpulsive� Stokes emission in liquid
methanol �Pearson and Bucksbaum, Phys. Rev. Lett. 92, 243003 �2004�� are analyzed. In the experiment, a
pump pulse comprising two frequency-shifted Gaussian pulses was used to control the ratio of two Stokes
emission lines by varying the relative phase �L between the pulses. Extending the theory of stimulated Raman
scattering to accommodate two coupled levels, we show that control of this type is possible, in the strongly
driven regime, using Raman coupling alone. Control via variation of �L is shown to also result from self- and
cross-phase-modulation of the pump and Stokes pulses as well as via the focused-beam geometry of the pump
pulse. In all cases, the general control mechanism is nonlinear optical modulation between the pump and the
Stokes pulse; no coherent quantum interference effects are involved. Finally, although the vibrational popula-
tions are affected by the same control mechanisms that affect the Stokes spectra, the ratio of the Stokes spectra
peak heights does not directly reflect the ratio of the level populations, as was assumed in the experiment.
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I. INTRODUCTION

In an effort to understand seminal experiments on control
of Stokes emission in liquids �1–5�, we developed, in the
preceding paper �6�, a theory of two-mode Raman scattering
of a broadband pump pulse. By tuning simple pulse param-
eters, such as the pulse duration and/or intensity, or by add-
ing asymmetry to the spectral amplitudes across the band-
width of the pulse, we were able to demonstrate control over
the ratio of the Stokes emission arising from two closely
spaced Raman modes, the observable in these experiments.

In this paper, we extend this treatment, focusing on a par-
ticular control experiment �5�, where the relative peak
heights of two closely spaced Stokes lines in the Raman
emission of liquid methanol was controlled using only a
double-Gaussian pump pulse. The pump pulse consisted of
two frequency-shifted pulses with Gaussian envelopes in
time, of duration 1 ps, with the frequency shift equal to the
energy spacing between the two Raman modes. The resulting
composite pulse can then be written as a “carrier pulse” of
1 ps �centered at the mean frequency of the two subpulses�
modulated by a cosine at the frequency of the mode spacing
�. The relative peak heights of the two Stokes lines was
controlled by varying the relative phase �L between the two
Gaussian components in the pump pulse, which shifts the
phase of the cosine modulation relative to the carrier enve-
lope. The use of a laser phase �L as a control variable sug-
gests that this experiment may well be an example of liquid-
phase coherent control �7,8�, i.e., control via the quantum
coherence of the incident light and matter. We show below
that this is, in fact, not the case. Further, we demonstrate that
the observed control is over the Stokes emission and that this
does not imply control over the populations of the two asso-
ciated methanol vibrational states, as previously proposed
�5�.

Specifically, we demonstrate below, using our theory of
two-mode Raman scattering, that �L-based control with Ra-
man coupling alone is possible in the strongly driven regime
where the pump pulse undergoes depletion, i.e., when the

pump and Stokes pulses begin to undergo third-order nonlin-
ear optical modulation �saturated stimulated Raman scatter-
ing �9��. Coherent excited-state population transfer between
the excited vibrational states arises as part of the fifth-order
nonlinear response of the system, and contributes negligibly
to the experimental control of the Raman emission. This
treatment corrects a previous incorrect analysis of these ex-
periments �5,10�

Additional competing third-order nonlinear effects, such
as self- and cross-phase-modulation �11�, are likely to be
present in the strongly driven regime. We found that these
nonlinear propagation effects, acting on both the pump and
Stokes pulses, also affect the relative peak heights in the
stimulated Raman spectrum, as does the focused-beam ge-
ometry used in the experiment �5�.

In all cases considered, a dependence of the Stokes spec-
trum on the relative phase �L between the two frequency-
shifted Gaussian pump pulses was found to be possible only
when the pump and Stokes pulses underwent nonlinear opti-
cal modulation. This means, for the double-Gaussian sce-
nario, that the general control mechanisms are third-order
nonlinear optical effects acting on the pump and Stokes
pulses. Here, the third-order nonlinear control mechanisms
explored are saturated Raman scattering, both with and with-
out a focused-beam geometry, and Raman scattering in the
presence of self- and cross-phase-modulation. �L-dependent
control over the Stokes emission is clearly demonstrated
with all of the qualitative experimental features properly ac-
counted for. However, precise agreement with the experi-
mental results would require far more experimental data in
order to quantify contributions from the numerous nonlinear
optical effects.

II. TWO-MODE RAMAN COUPLING

A. Formalism

The relevant vibrational states of methanol are modeled
by a three-level system shown in Fig. 1. The laser �pump� EL
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and Stokes ES fields are far off resonant with the excited
electronic states. We assume that the dipole transitions be-
tween the vibrational states of interest �1�, �2�, and �3� are
negligible, where the latter two states are spaced by energy
�. �Note that all equations are written in atomic units where
�=e=me=1.� Transitions between these three states take
place via two-photon Raman transitions through high-lying
off-resonant states �m�. The equations of motion coupling the
laser and Stokes fields to the molecular vibrations are �6�

�

�z
EL�z,t� = i�LES�z,t���21Q21�z,t�e−i��/2�t

+ �31Q31�z,t�ei��/2�t� , �1a�

�

�z
ES�z,t� = i�SEL�z,t���21Q21

* �z,t�ei��/2�t

+ �31Q31
* �z,t�e−i��/2�t� , �1b�

�

�t
Q21�z,t� + �2Q21�z,t� = i�21EL�z,t�ES

*�z,t�ei��/2�t + F2,

�1c�

�

�t
Q31�z,t� + �3Q31�z,t� = i�31EL�z,t�ES

*�z,t�e−i��/2�t + F3,

�1d�

�

�t
Q22�z,t� + �2Q22�z,t� = − i�21EL

*�z,t�ES�z,t�e−i��/2�tQ21�z,t�

+ c.c., �1e�

�

�t
Q33�z,t� + �3Q33�z,t� = − i�31EL

*�z,t�ES�z,t�ei��/2�tQ31�z,t�

+ c.c., �1f�

where the electric fields are given by

EL�z,t� = EL�z,t�e−i�Lt+kL
� ·r� + c.c., �2a�

ES�z,t� = ES�z,t�e−i�St+kS
� ·r� + c.c., �2b�

with c.c. denoting the complex conjugate, Qnm�z , t�
=	nm�z , t�e−i�nmt are the slowly varying envelopes of the mo-
lecular density matrix 	nm�z , t� in the field-free basis, �i is the
decay rate of the excited-state populations, �i is the collision
linewidth of the ith Raman transitions that accounts for
dephasing of the vibrational response, and the Fi terms rep-
resent the random Langevin force �12� due to collisions in
the liquid. The constants �1i and �n �n=L ,S� are

�1i = �
m


im
1m� 1

�m1 − �L
+

1

�m1 + �S
	 �3�

and

�n =
2�N�n

c
�n = L,S� �4�

where the 
ij are the transition dipole matrix elements con-
necting the ground state �1� and Raman-active levels �2� and
�3� to intermediate �m� states, and N is the number density of
molecules per unit volume.

Consider now the experimental Raman lasing scenario
outlined in Ref. �5�. A pump pulse comprising two Gaussians
shifted from one another in frequency by an amount equal to
the excited-state energy separation � was used to drive the
Stokes emission. Varying the relative phase between the two
frequency-shifted Gaussians allowed control over the asym-
metry in the peak heights of the two Stokes lines.

B. Computational results

To computationally examine this scenario, we consider an
initial pump pulse shape given by

EL�z = 0,t� = 2E0 exp�− 4 ln 2�t/tp�2�cos���/2�t + �L/2�
�5�

where tp is the full width at half maximum of the Gaussian
pulses, and �L is the relative phase �called the phase offset�
between these two frequency-shifted Gaussians pulses. Be-
low, we use E0=0.0017 a .u., corresponding to an intensity
of 1011 W/cm2, and tp=1 ps, in accord with the experiments.
Further, the experiments used a titanium:sapphire laser
�800 nm� to generate the pump pulse. With Raman shifts
of 2837 and 2947 cm−1 for the two Stokes lines �13�,
the central Stokes wavelength is then 1025 nm, while the
energy separation of the two Raman modes is �=110 cm−1.
The linewidths of the Raman transition are �2=17 cm−1 and
�3=34 cm−1 �13�. We assume that the decay times of the
excited-state populations are much larger than tp so that
�2
�3
0. The two-photon coupling terms are chosen to be
�31=3.0 a .u. and �21=2.5 a .u., values of �1i set to loosely
mimic the experimental Stokes spectrum �ratio of peak
heights and Stokes intensity relative to the pump pulse�
driven by the unshaped pump pulse. The Stokes emission
was seeded with the collisional terms F2 and F3, as outlined

FIG. 1. The pump laser field at frequency �L drives Raman
emission near frequency �S in a three-level system through two-
photon Raman couplings. The two excited states are closely spaced
with an small energy separation of � that is on the order of the
bandwidth of the laser and Stokes pulses.
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in the previous article �6�. Simulations that use spontaneous
emission �12,14� as a seeding term give qualitatively similar
results as those shown throughout this paper, although for
differently tuned parameters. Equations �1a� and �1b� were
numerically integrated using Euler’s method, while Eqs.
�1c�–�1f� were treated with Verlet’s method.

Figure 2 shows the resulting Stokes emission �ES����2 us-
ing the double-Gaussian pump for a variety of relative
phases �L � 0, � /2, and 3� /2. The top three panels �a�–�c�
correspond to a propagation length of z=0.05 cm, and show
the behavior of the Stokes spectra in the region of exponen-
tial gain, i.e., before the Stokes intensity has become compa-
rable to the pump intensity. In this region, the Stokes spec-
trum shows a triple-peaked structure whose shape depends
very little on the relative phase �L. This triple-peaked struc-
ture can be deduced from simple energy considerations of
the allowed Stokes emission. That is, the two central fre-
quency components �L1=�L−� /2 and �L2=�L+� /2 in the
pump pulse can each drive two central Stokes modes
�S=�L1/L2−�21±� /2, giving a total of four central frequen-
cies expected in the Stokes spectrum. However, since the
separation of the two central frequencies in the pump pulse is
the same as the separation of the two excited states, two of
the four central Stokes frequencies are the same, resulting in
the calculated triple-peaked structure. Since the middle peak
is composed of the two degenerate frequency contributions,
it larger than the remaining two nondegenerate peaks. These
Stokes spectra, corresponding to the region of exponential
Stokes gain, do not resemble the experimentally reported
spectra, which exhibits two dominant peaks.

Figures 2�d�–2�f� show the calculated Stokes emission at
z=0.15 cm, which is in the regime of pump saturation, i.e.,

when the intensity of the Stokes pulse has become compa-
rable to the pump intensity. In this regime, the pump and
Stokes pulses start to be strongly modulated through the
large nonlinear response of the molecular medium. �This ef-
fect has been seen experimentally in the case of a single
active Raman level driven by strong pump and Stokes pulses
�9�.� The Stokes emission has lost its triple-peaked structure,
and now qualitatively resembles the experimental results �5�,
exhibiting two Stokes lines. Furthermore, the ratio of peak
heights of the two Stokes lines now depends on the phase
offset �L, in accord with the control shown experimentally
�5�. One can also see in Figs. 2�d�–2�f� the onset of multiple-
sideband generation in the Stokes emission, an effect that is
qualitatively similar to the sideband generation created using
a single Raman level and a strong pump pulse with two
central frequency components whose energy separation is
close to the level separation of the Raman transition �15�.
Small additional sidebands can also be seen in the experi-
mental spectra, supporting the view that the experimental
spectra likely correspond to the strongly driven scenario.

There are three main differences between our simulated
spectra Figs. 2�d�–2�f� and the experimental results in Ref.
�5�. First, our peaks are narrower than the experimental
Stokes spectrum, which shows two Stokes lines that overlap
one another. The Raman coupling studied in this section, as
well as the additional nonlinear propagation effects consid-
ered in the following sections, allow for frequency broaden-
ing. However, this broadening appears as regularly spaced
sidebands. The broadening of the experimental Stokes lines
may be due to nonuniform wave fronts of the shaped laser
pulse, which could break the symmetry of the propagation
equations, and cause continuous frequency broadening as op-

FIG. 2. Spectrum of the Stokes emission us-
ing the double-Gaussian pump pulse. The top row
�a�,�b�,�c� shows Stokes spectra in the region of
exponential gain �z=0.05 cm� for the three phase
offsets �L=0, � /2, 3� /2. The middle row
�d�,�e�,�f� shows the Stokes spectra in the region
of pump saturation �z=0.15 cm�, again for the
same three phase offsets. �g� shows the Stokes
mode asymmetry RS as a function of the phase
offset, while �h� plots the population asymmetry
RQ, both in the region of pump depletion.
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posed to strict sideband generation. Second, our two domi-
nant lines are shifted by � /2 from the standard positions
2837 and 2947 cm−1, unlike the experimental spectra �5�.
Although it is clear why the shift appears in the simulated
spectra �i.e., the two central lines in our pump pulse are
shifted from the average carrier frequency by ±� /2�, it is not
clear why a similar shift is not seen experimentally. The third
discrepancy concerns the �L dependence of the ratio of the
two peak heights. Figure 2�g� plots the Stokes mode asym-
metry RS defined as

RS =
hL − hR

hL + hR
�6�

as a function of �L. Here hR and hL denote the heights of the
right �R� and left �L� Stokes peaks, respectively. A value of
RS=1 �or −1� indicates that all the intensity is in the left �or
right� mode, while RS=0 indicates that the two lines are of
equal intensity. The mode asymmetry is roughly sinusoidally
dependent on �L. The experiment report similar behaviour,
but with RS
sin�2�L�. Since the pump pulse is periodic in
�L, but not in 2�L, we expect that our results are indeed
correct.

The simulated Stokes spectrum was found to depend very
sensitively on the particular system parameters �pump inten-
sity, propagation length, two-photon couplings, etc.�. There-
fore, a large amount of flexibility in, and hence control over,
the shape of the output Stokes spectrum, as well as the �L
dependence of RS, exists.

Consider now the dynamics of the vibrational populations
Q22 and Q33. Figure 2�h� shows the population asymmetry
RQ, defined as

RQ =
Q22�z,t = tf� − Q33�z,t = tf�
Q22�z,t = tf� + Q33�z,t = tf�

, �7�

where t= tf denotes the end of the pump pulse. Comparing
the population asymmetry RQ to the Stokes asymmetry RS,
it is clear that the final Stokes asymmetry does not reflect the
ratio of populations. However, a large degree of variation of
the population asymmetry is seen, even if it is not directly
reflected in the Stokes spectra. This is in accord with our
previous results �6�, especially when the bandwidth of the
pump pulse is of the same order as the Raman mode energy
spacing.

Note that the �L dependence of both RS and RQ seen in
Figs. 2�g� and 2�h� vanishes if �21=�31 and �2=�3. Indeed it
is known �6� that Eqs. �1� give symmetric solutions for the
two modes �2� and �3� under these conditions.

III. SELF- AND CROSS-PHASE-MODULATION

In addition to the above third-order stimulated Raman
terms, other nonlinear optical effects can affect the control
scenario. These include self- and cross-phase-modulation
�SPM and XPM�. SPM, a resonant four-photon ��3� effect, is
known to have occurred in the Raman experiments �2,16�,
and has been known to accompany picosecond-pulse-
generated stimulated Raman scattering for many years �17�.

The terms leading to SPM are shown in polarization dia-
grams in Fig. 3�a�. The quantum system starts and ends in

level �1�, but the intermediate states are all off resonant.
Similar diagrams involving only �S are needed to describe
the SPM of the Stokes pulse. Along with SPM of the pump
and the Stokes pulses, we also include the corresponding
four-photon cross-phase-modulation terms between the
pump and Stokes pulses of the type shown in Fig. 3�b�, plus
all associated time-ordering permutations.

The result of including SPM and XPM is the inclusion of
terms in Eqs. �1a� and �1b� that are proportional to �EL�z , t��2
and �ES�z , t��2 �11�. That is,

�

�z
EL�z,t� = i�LES�z,t���21Q21�z,t�e−i��/2�t

+ �31Q31�z,t�ei��/2�t� + i
�Ln2

c
��EL�z,t��2

+ 2�ES�z,t��2�EL�z,t� , �8a�

�

�z
ES�z,t� = i�SEL�z,t���21Q21

* �z,t�ei��/2�t

+ �31Q31
* �z,t�e−i��/2�t� + i

�Sn2

c
�2�EL�z,t��2

+ �ES�z,t��2�ES�z,t� , �8b�

where n2 is the nonlinear index of refraction. An expression
for n2, analogous to those for the �ij constants, could be
derived using similar steps as those outlined in, for example,
Ref. �12�. However, here we simply set n2=5.14
�10−16 cm2/W, in accord with measured estimates in the
literature, which are on the order of 10−16–10−15 cm2/W
�18�.

Figure 4 shows an example of the control when SPM and
XPM are included. To clearly distinguish the effects of SPM
and XPM from the nonlinear effects introduced by the satu-
rated Raman coupling of Sec. II, we eliminate the latter by
setting the mode parameters equal, with �21=�31=1.8 a .u.
and �2=�3=22.6 cm−1. The propagation length z=0.24 cm
is chosen to be just on the edge of the saturation regime for
these parameters. The resulting Stokes spectra, without SPM
included �i.e., n2=0�, are shown in Figs. 4�a�–4�c�, for a
variety of phase offsets �L. The triple-peaked structure pre-
viously found in the region of exponential Stokes gain is

FIG. 3. �a� Example diagram leading to self-phase-modulation
of the pump pulse EL�z , t�. �b� Example diagram leading to cross-
phase-modulation of the Stokes pulse ES�z , t� by the pump pulse
EL�z , t�.
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again seen and there is neither asymmetry in the Stokes spec-
tra, nor any dependence on �L. By contrast, panels �d�–�f�
plot results for the same cases as �a�–�c�, but with SPM and
XPM included �i.e., with n2=5.14�10−16 cm2/W�. The
Stokes spectra have now lost the triple-peaked structure and
more closely resemble the two-peaked spectra observed in
the experiments �5�. Furthermore, the ratio of peak heights is
found to depend on �L. The onset of sideband generation
driven by SPM and XPM is also observed. Such sideband
generation has been seen in SPM studies �19� of the same
two Raman modes of methanol considered here.

The full dependence of the Stokes mode asymmetry RS
on �L, with SPM and XPM included, is shown in Fig. 4�g�.
A clear sinusoidal dependence of RS on �L of similar ampli-
tude as that seen in the experiment �5� is evident �but again
the frequency of modulation with respect to �L is half that
reported in the experiment�. Although the population asym-
metry RQ, shown in Fig. 4�h�, in the scenario using SPM and
XPM has a similar sinusoidal dependence on �L as RS, the
absolute asymmetry of the populations does not match that
of the Stokes lines.

It is difficult to estimate the relative importance of the
SPM- and XPM-induced control as compared to the satu-
rated stimulated Raman scattering mechanism discussed in
Sec. II. Both mechanisms are nonlinear effects and depend
sensitively on the pump pulse intensity and the nonlinear
coupling parameters �n2 ,�1i�. A much more detailed theoret-
ical study �for example, realistic calculations of the coupling
parameters� and/or additional input from the experiment �for
example, the spectrum of the output pump pulse� would be
required to definitively address the relative contribution of
each mechanism.

IV. FOCUSED-BEAM EFFECTS

The terms leading to SPM and XPM also induce self-
focusing �and cross-focusing� of the pump and Stokes pulses.
The experiments �5� were done with a focused beam. Near
the focus and highest intensities the strong pump will create
an effective intensity-dependent lens due to the SPM and
XPM terms, leading to additional focusing and defocusing of
the frequency components within the pulse bandwidth.
Changing �L changes the location of the fringes cos��� /2�t
+�L /2� relative to the total envelope exp�−4 ln 2�t /��2�, and
hence changes the nature of the intensity-dependent lens cre-
ated by self- and cross-focusing effects. These nonlinear fo-
cusing effects could easily induce asymmetry in the spectral
amplitudes by, for example, preferentially scattering either
the lower or higher frequencies away from the highest-
intensity region. Furthermore, other third-order nonlinear ef-
fects are also known to be sensitive to the focused-beam
geometry. For example, third-harmonic generation per-
formed with focused Gaussian beams leads to asymmetry in
the phase-matching conditions as a function of wave vector k�

�11�. This asymmetry in k� then causes asymmetry in the re-
sulting frequency spectrum.

In light of the fact that several third-order nonlinear ef-
fects can be affected by a focused beam geometry, and since
the basic Raman coupling in Eqs. �1� is also a third-order
nonlinear effect, it is worth looking for possible focused
beam effects in the saturated regime of stimulated Raman
scattering. To this end, we carried out simulations using the
paraxial wave equation �11� version of Eqs. �1�

FIG. 4. Spectrum of the Stokes emission with
and without self-phase-modulation for the case of
equal Raman mode parameters. The top row
�a�,�b�,�c� shows Stokes spectra, without SPM in-
cluded, just on the edge of pump saturation
�z=0.24 cm for the current Raman mode param-
eters�, for the three phase offsets �L=0, � /2,
3� /2. The middle row �d�,�e�,�f� shows the same
Stokes spectra including SPM. �g� shows the
Stokes mode asymmetry RS as a function of the
phase offset, while �h� plots the population asym-
metry RQ, both for the case with self-phase
modulation included.
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�

�z
En�z,t� →

�

�z
En�z,r,t� +

1

2ikn
�T

2En�z,r,t� �9�

where the transverse Laplacian �T
2 has been introduced to

accommodate a nonplanar transverse profile of the beam.
The focused-beam calculations were carried out in cylindri-
cal coordinates where, due to cylindrical symmetry about the
propagation direction z, the transverse Laplacian reduces to
�T

2 = �1/r��� /�r��r� /�r�. The Crank-Nicholson method �20�
was used to numerically propagate the effects of the trans-
verse Laplacian �T

2 along z; lower-order methods, such as
Euler’s method or Verlet’s method, were found to be unstable
for this problem.

An example of Stokes spectra using the focused
beam geometry is shown in Fig. 5. Again to separate the
effects of the focused beam geometry from the previous
control mechanisms related unequal Raman mode param-
eters and SPM and XPM, we chose equal mode parameters:
�21=�31=2.375 a .u. and �2=�3=22.6 cm−1, and exclude
SPM and XPM �i.e., n2=0�. The initial temporal shape of the
pulse was double Gaussian �Eq. �5�� with E0=0.0017 a .u.
�1011 W/cm2� and tp=0.5 ps. The initial radial dependence
of the pump was matched to the incoming Gaussian beam
solution to the paraxial wave equation �11�. To model the
experiment we note that the pump pulse was experimentally
focused into a 10 cm cell containing liquid methanol using
an f =40 cm focal length lens. Assuming a typical beam di-
ameter before the focusing lens of D=0.5 cm, and a
diffraction-limited �i.e., ideal� focus diameter d=0.44f� /D,
where � is the pump wavelength, gives a Gaussian beam
waist w0 required for the Gaussian beam formulas of
w0=d /2=14 
m. Simulations are started at z=−3b and
propagated to z=3b, where b=2�w0

2 /� is the confocal pa-
rameter, a measure of the longitudinal width of the focal
spot.

Figures 5�a�–5�c� show the resulting Stokes spectra for
the three values of �L=0, � /2, and �. The Stokes spectra
simulated using the focused-beam geometry shows asymme-
try, unlike the case for the one-dimensional geometry with
equal mode parameters, which would yield completely sym-
metric Stokes spectra. Such asymmetry was seen to appear
only when there was also depletion of the pump pulse, indi-
cating that the important symmetry-breaking component is
again the nonlinear mixing of the pump and Stokes pulses.
Unfortunately, the size of the focused-beam simulations re-
stricted the size of the parameter space that could be
searched, and we did not find a particular set of parameters
that could produce Stokes spectra with a �L dependence that

more closely matched the experimental results.
It is again difficult to gauge the relative contribution of

this mechanism as compared to the previous two mecha-
nisms identified in Secs. II and III without additional input
from experiment. The details of the focal spot, and hence the
nonlinear response of the stimulated Raman scattering at the
high-intensity region, depend sensitively on the spatial pro-
file of the pump pulse. This is especially true once self- and
cross-focusing effects are included, which we neglected in
our focused-beam simulations. Information about the spatial
profile after pulse shaping was not recorded in the experi-
ments �5�. A reliable quantitative analysis of the focusing
effects in these experiments is therefore not possible.

V. EXCITED-STATE COUPLING

Finally, we consider the proposal of Ref. �5� that transi-
tions between the excited states, driven by either the pump
pulse alone and/or the Stokes pulse alone �Fig. 6�, can ac-
count for the observed control. Here we show that such con-
tributions are negligible.

The couplings terms corresponding to these contributions
are derived in analogy with the derivation of the Raman
couplings �12�. The equations of motion for the off-diagonal
density matrix elements, with these terms included, are

�

�t
Q21�z,t� = i�21EL�z,t�ES

*�z,t�ei��/2�t + iQ31�z,t��23��EL�z,t��2

+ �ES�z,t��2�ei�t − �2Q21�z,t� + F2, �10a�

FIG. 6. Two-photon �a� laser- and �b� Stokes-driven transitions
between the excited states. These transitions are all detuned by ±�.

FIG. 5. Spectrum of the Stokes emission us-
ing a focused-beam geometry, for the case of
equal Raman mode parameters, and for the three
phase offsets �L=0, � /2, �.
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�

�t
Q31�z,t� = i�31EL�z,t�ES

*�z,t�e−i��/2�t

+ iQ21�z,t��23��EL�z,t��2 + �ES�z,t��2�e−i�t

− �3Q31�z,t� + F3, �10b�

where

�23 = �
m


2m
3m� 1

�m1 − �L
+

1

�m1 + �S
	 . �11�

The lowest-order contributions that these new coupling terms
make to the polarization are

PS
�5��z,t� = PS2

�5��z,t� + PS3
�5��z,t� �12�

where

PS2
�5��z,t� = − N�31

* �21�23EL�z,t�ei��/2�t

� e−�2t�
−�

t

dt�e�2t���EL�z,t���2 + �ES�z,t���2�e−i�t�

� e−�3t��
−�

t�
dt�e�3t�EL

*�z,t��ES�z,t��ei��/2�t� �13a�

and

PS3
�5��z,t� = − N�31�21

* �23EL�z,t�e−i��/2�t

� e−�3t�
−�

t

dt�e�3t���EL�z,t���2 + �ES�z,t���2�ei�t�

� e−�2t��
−�

t�
dt�e�2t�EL

*�z,t��ES�z,t��e−i��/2�t�.

�13b�

It is important to recognize that these additional contribu-
tions to the polarization are fifth order in the electric fields.
At the Stokes wavelength, we would expect the fifth-order
response to be negligible compared to the stimulated Raman
terms, which are third-order nonlinear effects.

To demonstrate this numerically, the calculations of the
previous section were repeated with the excited-state cou-
pling terms �those leading to Eqs. �13�� included. With the
excited-state coupling constant �23= ��21+�31� /2, the results
were found to change by �1%. The excited-state coupling
terms were found to dominate the dynamics only when �23
was about 1000 times larger than �21 and �31, a highly un-
physical situation. Such a large value of �23 would be re-
quired to affect the results because the excited-state coupling
terms appearing in Eqs. �10� are diminished by the off-
diagonal density matrix elements Q21 and Q31, while the
terms driving the Raman transitions, i�21EL�z , t�ES

*�z , t�ei��/2�t

and i�31EL�z , t�ES
*�z , t�e−i��/2�t, are not. �In our case, Q21 and

Q31�1, a result of small ground-state population depletion.�
We conclude that the excited-state coupling terms �Fig. 6�

do not play an important role in the control of the Stokes
emission.

VI. SUMMARY

We have exposed the mechanisms underlying a recent
molecular control experiment �5� in liquid methanol that
showed Stokes emission control by varying the relative
phase between two frequency-shifted Gaussian pulse. Spe-
cifically, we found that control of the Stokes emission is only
possible, in this particular scenario, when the pump and
Stokes pulses undergo coupled nonlinear optical modula-
tions. The specific effects studied included stimulated Raman
scattering in the saturated regime �9�, and self- and cross-
phase-modulation due to the intensity-dependent refractive
index �11�. It was also demonstrated that the presence of a
focused-beam geometry can affect the final asymmetry seen
in the Stokes spectra.

In all the mechanisms studied, the ratio of peak heights in
the simulated Stokes spectra did not reflect the ratio of vi-
brational populations in the two Raman modes, as was pre-
viously assumed �1–5�. Moreover, quantum interference ef-
fects are not needed to qualitatively explain the control of the
Stokes emission—the control can be modeled as a classical
nonlinear optical effect �11� that arises once the bandwidth of
the pump pulse is on the order of the energy separation of the
two Raman modes. If they exist, quantum interference ef-
fects will first appear in the fifth-order polarization of the
medium. However, the fifth-order contribution to the emis-
sion at the Stokes wavelengths was found to be negligible as
compared to that of third-order stimulated Raman scattering.

We also included SPM and XPM into the focused-beam
simulations, but these results can be extended. Specifically,
we could not sample enough of the large parameter space to
characterize the various nonlinear effects. In general, how-
ever, the Stokes spectra were found to depend quite sensi-
tively on the relative strength of all the nonlinear terms. Part
of the sensitivity comes from the overlapping thresholdlike
behavior of the various nonlinear effects and part from the
numerical instabilities of the low-order numerical methods
used to propagate the Raman coupling and SPM and XPM
terms that appear if the numerical method is pushed deeper
into the strongly driven regime, for example, when using
longer propagation length or larger pump pulse intensities.
More advanced numerical techniques �20,21� would need to
be implemented in order to study farther into this regime.

In conclusion, competing nonlinear optical effects may
often be important when interpreting strong-field laser con-
trol experiments in liquids. Due to the large number densi-
ties, the strong nonlinear response of the liquid medium may
cause significant changes in the pump pulse, which could
then affect the underlying molecular control scenario.
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