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Stability and instability of quantum evolution are studied in the interaction between a two-level atom with
photon recoil and a quantized field mode in an ideal cavity, the basic model of cavity quantum electrodynam-
ics. It is shown that the Jaynes-Cummings dynamics can be unstable in the regime of chaotic motion of the
atomic center of mass in the quantized field of a standing wave in the absence of any kind of interaction with
environment. This kind of quantum instability manifests itself in strong variations of reduced quantum purity
and entropy, correlating with the respective classical Lyapunov exponent, and in exponential sensitivity of
fidelity of quantum states to small variations in the atom-field detuning. The connection between quantum
entanglement and fidelity and the center-of-mass motion is clarified analytically and numerically for a few
regimes of that motion. The results are illustrated with two specific initial field states: the Fock and coherent
ones. Numerical experiments demonstrate various manifestations of the quantum-classical correspondence,
including dynamical chaos and fractals, which can be, in principle, observed in real experiments with atoms
and photons in high-finesse cavities.
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I. INTRODUCTION

Entanglement is a birthmark of quantum mechanics. A
pure state of a closed quantum system evolves as a pure
state, and all the measures of entanglement remain constant
during the evolution. However, if the system is composed of
interacting subsystems, the reduced-density matrix of one of
them—a measure of coherence lost in this subsystem—does
not evolve in a unitary way. That is the reason for the loss of
coherence in a system interacting with an environment com-
posed of a large number of degrees of freedom. A lot of work
has been done to understanding decoherence, dynamics of
entanglement, and quantum chaos. One of the themes is the
behavior of entanglement in bipartite quantum systems in the
parameter regimes, where their underlying classical analog
are chaotic in the sense of exponential sensitivity to small
changes in initial conditions.

The basic models of quantum optics and cavity quantum
electrodynamics are the Jaynes-Cummings model �1�, de-
scribing the interaction between a two-level atom at rest and
a quantized mode of the radiation field, and the Dicke model
�2�, describing the interaction of a collection of two-level
atoms, located within a distance much smaller than the ra-
diation wavelength, with a quantized mode of the radiation
field. It has been known for a long time �3,4� that the clas-
sical limit of the Dicke model can be chaotic only beyond the
rotating-wave approximation. It has been found that initial
increase in the reduced linear entropy is faster for the initial
states, prepared as wave packets centered at chaotic regions
of the classical phase space, as compared to regular ones
�5,6�. The similar property has been found in the model of
weakly coupled quantum tops �7� and in the model of two-
component Bose-Einstein condensates �8�.

In the above-cited and other similar works, closed quan-
tum systems have been considered and the connection has

been studied between quantum entanglement and dynamical
chaos in the classical version of a quantum system under
consideration �i.e. between two different systems�. However,
the classical limit of a quantum system is not unique. For
example, there are different classical limits of the Jaynes-
Cummings model �1� and its generalization, the Dicke model
�2�, which even have different names: neoclassical, quasi-
classical, and semiclassical �9,10�. One may treat atoms
quantum mechanically and the field classically. There is a
choice how to couple the atoms with their radiation field.
The classical limit can be taken for both the atomic and field
subsystems. As a result, one derives different equations of
motion for expectation values of quantum operators for the
same physical system whose phase spaces may have differ-
ent properties. It is a problem to decide which classical limit
is “the best one” and should be used for comparison with
quantum treatment of the system.

In this paper we study the connection between the purely
quantum characteristics, such as entanglement and fidelity,
and classical chaos in the same system with dynamically
coupled quantum and classical degrees of freedom. The
quantum dynamics of a system with classical degrees of free-
dom is of great interest, not only from the point of view of
quantum chaos, but from the viewpoint of the correspon-
dence between quantum and classical mechanics as well.

The main purpose of this paper is to show that entangle-
ment between the atomic and field quantum states correlates
with the center-of-mass motion of an atom in the standing-
wave cavity field. Regular center-of-mass motion corre-
sponds to a regular evolution of the reduced quantum en-
tropy and fidelity of quantum states, whereas quantum
evolution is unstable under a chaotic �random� motion of the
atom. Quantum instability may arise in a quantum-classical
hybrid without introducing a bath with infinitely many de-
grees of freedom or any kind of noise to model environment

PHYSICAL REVIEW A 73, 023807 �2006�

1050-2947/2006/73�2�/023807�10�/$23.00 ©2006 The American Physical Society023807-1

http://dx.doi.org/10.1103/PhysRevA.73.023807


whose role is played in our model by a translational degree
of freedom. We prove that correlations between purely quan-
tum characteristics, such as entanglement and fidelity of the
atom-field states, and the classical measure of motion—the
maximal Lyapunov exponent—arise in a natural way with a
two-level atom moving in a single-mode quantized cavity
field. By numerical simulation we demonstrate various mani-
festations of the quantum-classical correspondence, includ-
ing dynamical chaos and dynamical fractals, which may be,
in principle, found in real experiments with atoms and pho-
tons in high-finesse cavities.

Atoms, interacting with the electromagnetic field, change
both their internal electronic states and external translational
states, the process known as a photon recoil. In the strong-
coupling regime, the respective Hamiltonian describes the
interaction between the field, electronic, and translational de-
grees of freedom. In our previous papers �11–13�, we have
studied the Hamiltonian dynamics of a two-level atom in a
self-consistent standing-wave cavity field in the semiclassi-
cal approximation in the limit of an infinite number of pho-
tons and found both regular and chaotic regimes of motion of
the atomic center of mass. The chaotic motion of atoms takes
place in a stationary standing wave and is quantified by the
positive values of the maximal Lyapunov exponent �11�.
Typical chaotic atomic trajectories consist of intervals of ran-
dom motion interrupted by regular oscillations near the bot-
tom of some wells of the optical potential and long ballistic
flights with practically constant velocity �so-called Lévy
flights �14��. In the language of a dynamical system’s theory,
there is a fractal-like chaotic invariant set consisting of all
chaotic and unstable periodic orbits in the phase space of the
strongly coupled atom-field system. As a sequence, a scatter-
ing of atoms even at a one-dimensional �1D� standing elec-
tromagnetic wave is fractal with prominent self-similarity of
their scattering function, for example, in dependence of exit
time on the atomic initial momentum �13�.

Classical instability is usually defined as an exponential
separation of two nearby trajectories in time with an
asymptotic rate given by the maximal Lyapunov exponent �.
Perfectly isolated quantum systems are unitary and cannot be
unstable in this sense even if their classical limits are chaotic
�15�. Long ago it had been proposed �16� to measure quan-
tum instability by the decay of fidelity or overlap of two
initially identical wave functions that evolve under slightly
different Hamiltonians. In a number of numerical studies
�see, for example, Refs. �17–21� and cited therein� for a va-
riety of classically chaotic models, it has been found that the
overlap decay is, in general, not universal and depends on
the strength of perturbations in Hamiltonians and other fac-
tors determining which decay regime prevails—algebraic,
Gaussian, or an exponential one. The usual strategy is to
compare the fidelity decay to a separation of nearby trajec-
tories in the phase space of a classical analog of the quantum
system under consideration. With our dynamically coupled
quantum-classical hybrid, a correlation between quantum
and classical measures of instability arises in a natural way
as a result of coupling between different characteristics of
the same system.

The paper is organized as follows. In Sec. II, we derive
the Hamilton-Schrödinger nonlinear equations, describing

interaction between a two-level atom with the classical trans-
lational degree of freedom and a single-mode quantized field
in an ideal cavity, and discuss possible regimes of the center-
of-mass motion in dependence on the values of the detuning
of the atom-field resonance. We express linear and von Neu-
mann entropies �measures of the atom-field entanglement�
and fidelity �measure of instability of the Jaynes-Cummings
quantum evolution� in terms of the respective probability
amplitudes. In some cases, we find exact and approximate
solutions of the equations of motion. In Sec. III, we study
correlations between the entanglement and fidelity and the
mode of the center-of-mass motion in a Fock-state cavity
field. In this case, the infinite-dimensional set of the equa-
tions of motion reduces to a few coupled nonlinear equations
that are analyzed for different regimes of the center-of-mass
motion. In fact, we deal with entanglement between two
similar quantum systems, a two-level atom and a three- �or
two-� level field. We find exact and approximate solutions for
the entanglement in the Fock field and demonstrate, numeri-
cally, the close correspondence between these quantum char-
acteristics and underlying classical chaos. In Sec. IV, we re-
port on correlations found between the entanglement and
fidelity and classical random motion of an atom in a
coherent-state field that are quantified in terms of the respec-
tive classical maximal Lyapunov exponent. Section V is for
concluding remarks.

II. TWO-LEVEL ATOM MOVING IN A QUANTIZED
CAVITY FIELD

A. Hamilton-Schrödinger equations of motion

To specify the problem, we consider the standard model
in cavity quantum electrodynamics �QED� with the Jaynes-
Cummings Hamiltonian �1�

Ĥ =
p̂2

2ma
+

1

2
� �a�̂z + � � f�â†â +

1

2
�

− � �0�â†�̂− + â�̂+�cos kfx̂ , �1�

which describes the interaction between a two-level atom
�with lower �1� and upper �2� states, the transition frequency
�a, and the Pauli operators �̂±,z� and a quantized
electromagnetic-field mode �with creation â† and annihila-
tion â operators� forming a standing wave with the frequency
� f and the wave vector kf in an ideal cavity. The atom and
field become dynamically entangled by their interaction with
the state of the combined system after the interaction time t

���t�� = 	
n=0

�

�an�t��2,n� + bn�t��1,n�� �2�

to be expanded over the Fock field states �n�, n=0,1 , . . ..
Here an�t� and bn�t� are the complex-valued probability am-
plitudes to find the field in the state �n� and the atom in the
states �2� and �1�, respectively. In the process of emitting and
absorbing photons, atoms not only change their internal elec-
tronic states, but their external translational states change as
well due to the photon recoil effect. If atoms are not too cold
and their average momenta are large as compared to the pho-
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ton momentum �kf, one can describe the translational degree
of freedom classically.

The whole dynamics is now governed by the Hamilton-
Schrödinger equations �22� that have the following normal-
ized form in the frame rotating with the frequency � f�n
+1/2�:

ẋ = �rp ,

ṗ = − 2 sin x	
n=0

�


n + 1 Re�anbn+1
* � ,

iȧn = −
�

2
an − 
n + 1bn+1cos x ,

iḃn+1 =
�

2
bn+1 − 
n + 1an cosx �3�

with a simple solution for the probability amplitude b0�	�

b0�	� = b0�0�e−i�	/2. �4�

Here x�kf�x̂� and p��p̂� / �kf are the atomic center-of-mass
position and momentum, respectively. The dot denotes dif-
ferentiation with respect to dimensionless time 	��0t,
where �0 is the amplitude coupling constant. The normal-
ized recoil frequency �r� �kf

2 /ma�0
1 and the atom-field
detuning ���� f −�a� /�0 are the control parameters. This
set possesses an infinite number of the integrals of motion

Rn � �an�2 + �bn+1�2 = const, 	
n=0

�

Rn � 1 �5�

and conserves the total energy

E �
�rp

2

2
−

�

2	
n=0

�

��an�2 − �bn+1�2�

− 2 cos x	
n=0

�


n + 1 Re�anbn+1
* � . �6�

By introducing new variables

un � 2 Re�anbn+1
* � ,

vn � − 2 Im�anbn+1
* � ,

zn � �an�2 − �bn+1�2, �7�

we can rewrite the set �3� in the following form:

ẋ = �rp, ṗ = − sin x	
n


n + 1un,

u̇n = �vn,

v̇n = − �un + 2
n + 1zncos x ,

żn = − 2
n + 1vncos x �8�

with the respective integrals of motion

un
2�	� + vn

2�	� + zn
2�	� = Rn

2 = const �9�

and the total energy

E =
�rp

2

2
−

�

2	
n=0

�

zn − cos x	
n=0

�


n + 1un. �10�

The inverse transformation gives us information about the
moduli of the probability amplitudes only

�an�2 =
Rn + zn

2
, �bn+1�2 =

Rn − zn

2
. �11�

The Hamilton-Schrödinger equations �3� and �8� describe
a quantum-classical hybrid with the classical part �the first
two equations in the sets�, driven by the quantum probability
amplitudes, and the quantum one �the other equations in the
sets� driven by the envelope of the standing wave. The quan-
tum part is still unitary and therefore cannot suffer from de-
coherence induced by the classical part. In other words, the
total quantum entropy is constant during the evolution. How-
ever, the quantum part is a system composed of two quantum
subsystems each of which may be characterized by a reduced
quantum entropy. The role of the classical motion for the
reduced entropy is not trivial and will be clarified in the other
sections.

B. Entanglement and fidelity of the atom-field states

The atomic population inversion z�	� is a difference of
probabilities to find an atom at the moment of time 	 in the
excited and ground states

z � 	
n=0

�

�an�2 − 	
n=0

�

�bn�2 = 	
n=0

�

zn − �b0�2. �12�

It is an important characteristic that can be measured in ex-
periments. The entanglement between the internal atomic
and field degrees of freedom can be characterized by the
quantity known as purity

P�	� � Tr �a
2�	� , �13�

where �a�	� is the reduced atomic density matrix

�a�	� � 	
n=0

�

�n���	��n� �14�

with the total density matrix to be ��	�����	�����	��. Pu-
rity is maximal if an atom is in one of its energetic states �1�
or �2�, i.e., Pmax=Tr �a

2=Tr �a=1. Purity is minimal if �a
= I /2, i.e., Pmin=1/2, where I is the identity matrix. In terms
of the probability amplitudes, it is given by

P = A2 + B2 + 2�C�2,

A � 	
n=0

�

�an�2, B � 	
n=0

�

�bn�2, C � 	
n=0

�

anbn
*. �15�

As similar standard measures of quantum “disorder,” we will
use the reduced linear entropy
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SL � 1 − Tr �a
2 = 1 − P �16�

and the reduced von Neumann entropy

SN � − Tr��aln �a� = − �1ln �1 − �2ln �2,

�1,2 = 1
2 ± 
1

4 + �C�2 − AB , �17�

where �1,2 are eigenvalues of the matrix �a.
To quantify instability of the Jaynes-Cummings quantum

evolution, we use the fidelity f�	�, which is the overlap of
two states ��1�	�� and ��2�	��, identical at 	=0, that evolve
under two Hamiltonians �1� with slightly different values of
one of the system’s parameters . In terms of the probability
amplitudes, it has the form

f�	,,�� � ����	,����	, + ���2

= 	
n=0

�

�an
*�	,�an�	, + ��

+ bn
*�	,�bn�	, + ���2

, �18�

where � is a small variation of the parameter . Different
from the reduced quantum entropies introduced above, fidel-
ity is a characteristic of the whole quantum system, not of its
part.

C. Analytical solutions with arbitrary field states

The Jaynes-Cummings dynamics of a single two-level
atom at rest, interacting with a single mode of the quantized
field, has been studied in detail by many authors �for a re-
view, see �23��. We are interested here in how the dynamical
coupling between the Jaynes-Cummings and classical de-
grees of freedom changes both the quantum and classical
dynamics.

The Hamilton-Schrödinger equations �3� are, in general,
nonintegrable. The type of the center-of-mass motion de-
pends strongly on the values of the detuning �. In the limit of
zero detuning and with initially excited or deexcited atoms,
the optical potential disappears and atoms move with a con-
stant velocity ẋ=�rp0. The quantum evolution is periodic
with the period � /�rp0, and exact solutions for purity, von
Neumann entropy, and other quantum characteristics can be
found in the explicit form. With arbitrary initial field and
atomic states, the variables un are constants, un=un�0�, for
each n. The Hamilton equations for the translational degree
of freedom are closed, and their solution can be easily found
in terms of the Jacobi elliptic functions �11�. For each n, we
get the following exact solution:

zn�� = 0�=�
Rn
2 − un

2�0�sin�2
n + 1� cos x�	�d	 + �n� ,

�n � � arcsin�zn�0�/
Rn
2 − un

2�0�� , �19�

that describes a frequency modulated signal. Exact solutions
for the amplitudes an and bn+1 are the following:

an�� = 0� = an�0�cos�
n + 1� cos x�	�d	�
+ ibn+1�0�sin�
n + 1� cos x�	�d	� , �20�

bn+1�� = 0� = bn+1�0�cos�
n + 1� cos x�	�d	�
+ ian�0�sin�
n + 1� cos x�	�d	� , �21�

where an�0� and bn+1�0� are the initial complex values of an

and bn+1. In the Raman-Nath limit, p� p0=const, the solu-
tion �19� is simplified

zn�� = 0� � � 
Rn
2 − un

2�0�sin�2
n + 1

�rp0
sin �rp0	 + �n� .

�22�

With the detuning being large, �� � �1, the optical poten-
tial is shallow, atom moves with almost a constant velocity,
��rp0, slightly modulated by the standing wave, and its in-
version oscillates with a small depth �except for the case of
the so-called Doppler-Rabi resonance with maximal Rabi os-
cillations that occur at the condition �� � ��r � p0� �24��. If the
atomic kinetic energy �rp

2 /2 is not enough to overcome
barriers of the optical potential, the atomic center of mass
oscillates nonlinearly in one of the potential wells.

With very fast atoms, �r � p0 � �max��� � ,2
n+1�, or large
detunings, �� � �max��r � p0 � ,2
n+1�, one can get the ap-
proximate amplitude-modulated solutions for zn

zn � zn�0� −
2
�Rn

2 − zn
2�0���n + 1�

�rp0
cos��	 + �n�sin x ,

�r�p0� � max��,2
n + 1�;

zn � zn�0� +
2
n + 1un�0�

�

−
2
�Rn

2 − zn
2�0���n + 1�
�

cos x sin��	 + �n� ,

� � max��r�p0�,2
n + 1� , �23�

where �n�arcsin�un�0� /
Rn
2−zn

2�0��. In both the cases, we
can find the respective approximate solutions for fidelity, i.e.,
overlap �18�� of two initially identical quantum states, evolv-
ing under Hamiltonians with slightly different values of the
detuning ��

f�	,�,��� � A2�0� + B2�0� + 2A�0�B�0�cos ��	 , �24�

where A�0�, B�0� are initial values of A and B defined in
�15�.

Inspecting the Hamilton-Schrödinger equations �3�, we
see that the translational motion is described by the equation
for a nonlinear oscillator with the frequency modulation that
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is caused by the Jaynes-Cummings dynamics. It has been
proven in Ref. �12� for this type of equations that, as the
result of interaction of nonlinear resonances, there arises a
stochastic layer in the respective classical phase space. The
width of this layer depends on the values of the detuning �.
With the detunings of the order �� � �1, the atomic center of
mass can move in an erratic way inside a cavity with a sta-
tionary standing wave. This type of motion may be called a
chaotic or random motion, and it is quantified by positive
values of the maximal Lyapunov exponent �. For a classical
standing wave, the Hamiltonian chaos has been studied in
detail in Refs. �11,13,14�, where the dynamical effects of
Lévy flights and atomic fractals have been found and de-
scribed.

III. ENTANGLEMENT, FIDELITY, AND QUANTUM-
CLASSICAL CORRELATION IN A FOCK FIELD

In this section, we describe a quantum-classical correla-
tion for a two-level atom moving in the quantized field pre-
pared initially in a Fock state. If the cavity mode is prepared
in the state �n� with an exactly specified number of photons
n, the infinite-dimensional set of the Hamilton-Schrödinger
equations �8� reduces to the following finite-dimensional set,
which is written in terms of the Bloch-like variables:

ẋ = �rp, ṗ = − �
nun−1 + 
n + 1un�sin x ,

u̇n−1 = �vn−1, u̇n = �vn,

v̇n−1 = − �un−1 + 2
nzn−1cos x ,

v̇n = − �un + 2
n + 1zncos x ,

żn−1 = − 2
nvn−1cos x, żn = − 2
n + 1vncos x . �25�

In fact, we deal with a two-level quantum system �an atom�
entangled with a three-level quantum system �a field state
that is a superposition of the three Fock states �n−1�, �n�, and
�n+1��. The atomic purity �13� can now be expressed in
terms of the components of the atomic population inversion
z�	�=zn−1�	�+zn�	� and the integrals of motion Rn−1 and Rn

�5�

Pn = 1
2 �1 + �zn + zn−1�2 + �Rn + zn��Rn−1 − zn−1�� . �26�

With the atom prepared initially in one of its energetic
states, say, in the excited state �2�, and the field, prepared in
a Fock state �n�, we get the simplest possible kind of en-
tanglement between these two two-level quantum systems.
The respective purity is extremely simplified

Pn = 1
2 �1 + zn

2� . �27�

We can now analyze, in detail, the correlations between the
quantum entanglement and the center-of-mass motion. At ex-
act resonance �=0, atoms, initially prepared in one of the
energetic states, fly through a cavity with a constant velocity
p0, and using �19� we get an exact solution for the purity

Pn�� = 0� =
1

2
+

1

2
cos2�2
n + 1

�rp0
sin �rp0	� , �28�

oscillating periodically between 1/2 and 1.
In the other limiting cases of fast atoms, �r � p0 �

�max��� � ,2
n+1�, and large detunings, �� �
�max��r � p0 � ,2
n+1�, the atomic center-of-mass motion is
regular �nonlinear oscillations in a well of the optical poten-
tial or a ballistic flight with almost a constant velocity �rp0
slightly modulated by the standing wave�, the atomic inver-
sion oscillates with a small depth, and the atomic purity is
Pn�1. But oscillations of the purity can be large with peri-
odically maximal entanglement between the atom and the
Fock field, if the condition of the Doppler-Rabi resonance,
�r � p � ����, is fulfilled. When the atom comes into the reso-
nance with one of the running waves, composing a standing
wave, the Rabi oscillations become maximal. Using the so-
lution for the atomic inversion found in �13�, it is easy to get
the respective atomic purity

Pn���� � �r�p�� �
1

2
+

1

2
� ���� − �r�p0��2

�n
2 +


n + 1

�n
2 cos �n	�2

,

�29�

oscillating periodically with the Rabi frequency �n

�
��� �−�r � p0 � �2+n+1 and the maximal amplitude at �� �
=�r � p0�.

Chaotic walking of the atomic center of mass in a stand-
ing wave which is initially prepared in a Fock state, is ex-
pected to occur in the detuning range �� � �1 for the chosen
values of the recoil frequency �r=0.001 and the number of
photons n=10. In Fig. 1, we plot the evolution of the atomic
purity Pn�	� �left panel� and the respective power spectra
�right panel� in different situations: Fig. 1�a� exact resonance
�=0 and p0=25, Fig. 1�b� a ballistic flight with large detun-
ing �=32 and p0=25, Fig. 1�c� the Doppler-Rabi resonance
with �=32 and p0=32000, and Fig. 1�d� a chaotic walking
with �=0.4 and p0=25. At exact resonance, the oscillations
of purity are frequency modulated but strictly periodic with
the period � /�rp0�125.6. The spectrum consist of a variety
of resolved peaks in the frequency range from �0.01 to 2.2
in units of the vacuum Rabi frequency �0 /2� �in the right
panel of Fig. 1�a� we show only the low- and high-frequency
parts of the whole spectrum�. Off-resonant oscillations of
purity is an amplitude-modulated signal the spectrum of
which contains mainly high frequencies �see Fig. 1�b� where
we cut off, for convenience, the part of the spectrum from
0.05 to 5 that does not contain any pronounced peaks�. The
Doppler-Rabi oscillations and spectrum �Fig. 1�c�� contain
the main harmonic with � /2��1 and a few high frequen-
cies. Purity oscillations with a randomly moving atom look
like chaotic ones with a broadened spectrum in the frequency
range from 0 to 2.2 �Fig. 1�d��.

The chaotic center-of-mass motion in the quantized field
has fractal properties similar to those that have been found
with atoms in a classical field �13�. Placing atoms at the
point x=0 with the same initial conditions and parameters
but with different values of initial momenta p0, we compute
the time T�p0�, the atom with a given value p0 needs to reach
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one of the nodes of the standing wave at x=−� /2 and x
=3� /2, and the number of times m when it changes its di-
rection of motion. The scattering function T�p0� is found to
have a self-similar structure with singularities on a Cantor-
like set of initial values of momenta p0. In Fig. 2�a� we
demonstrate the mechanism of generating this set at �=0.4 in
the initial Fock field with n=10 and initially excited atoms.
The exit-time function demonstrates an intermittency of
smooth curves and complicated structures that cannot be re-
solved in principle, no matter how large the magnification
factor. Figure 2�b� shows magnification of the function for
the small interval 45.9� p0�46.9. Further magnifications
reveal a self-similar structure.

There are two sets of atomic trajectories with T→�, the
countable one consisting of separatrixlike trajectories, corre-
sponding to the ends of the intervals in Fig. 2, and the un-
countable one consisting of trajectories with m=�. The cha-
otic motion can be, in principle, verified in experiments on
one-dimensional �1D� scattering of atoms at the standing
wave. Figure 3 demonstrates a sensitive dependence of the
atomic positions on p0 at a fixed time moment. A smooth
segment of this function in the range �p0 � �20 should be
attributed to atomic center-of-mass oscillations in the first

well of the optical potential since these values of p0 are not
enough to overcome the respective potential barrier. When p0
exceeds a critical value, atoms leave the well, and it is prac-
tically impossible to predict even the sign of the atomic po-
sition. The so-called predictability horizon can be estimated
as follows: 	p��−1ln��x /�x0�, where �x is the confidence
interval and �x0 the inaccuracy in preparing initial atomic
positions. In order to demonstrate the quantum-classical cor-
respondence in the chaotic regime, we compute the depen-
dence of the output values of the atomic population inversion
zout at a fixed moment on its initial values zin with the other
conditions and parameters to be the same. Figure 4 shows
that the predictability horizon of the quantum atomic degree
of freedom can be estimated to be 	�200.

The oscillations of purity of a chaotically moving atom
and its spectrum look like irregular ones �Fig. 1�d��. To quan-
tify the irregularity, we compute the root-mean-square vari-
ance of purity �P�
�P2�− �P�2 on a large time scale �with
�P� being a purity value averaged on this scale� in the range
of the detuning �� � �2 and compare the result to the depen-
dence ���� in the same range, where the maximal Lyapunov
exponent has been computed with the Fock system �25� with
the atom prepared at 	=0 in the superposition state ��1�

FIG. 1. Left panel: time evolution �	 is in units of �0
−1� of the atomic purity Pn with an atom initially prepared in the excited state and

the field initially in a Fock state with n=10. �a� Exact resonance, �=0 and p0=25; �b� a ballistic atom, �=32 and p0=25; �c� the
Doppler-Rabi resonance with �=32 and p0=32000; �d� chaotic moving with �=0.4 and p0=25. Right panel: the respective power spectra,
with the frequency � in units of �0.
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+ �2�� /
2 �z�0�=0� and initial conditions x0=0 and p0=25.
Figure 5 demonstrates that irregular oscillations of �P occur
on the same interval of the detuning �, where ��0. Since
similar correlations have been found with different initial
atomic and Fock states not only for the linear entropy but for
the von Neumann entropy SN as well, we may conclude that
the correlation between the quantum entanglement and the
classical motion has been established. The role of the trans-
lational atomic motion for purity is transparent with the Fock
field when P is expressed in terms of zn which are variables
of two oscillators coupled to the classical x–p oscillator �see
Eqs. �25��. When the latter one oscillates regularly, the first

ones do the same. When an atom moves randomly in a cav-
ity, it immediately causes chaotic oscillations in zn variables
and, therefore, in purity.

To quantify instability of quantum evolution of the atom-
field system, we compute the decay of the fidelity f�	�,
which is the overlap �18� of two states ��1�	�� and ��2�	��,
identical at 	=0, that evolve under two Hamiltonians �1�
with the slightly different detunings � and ����+��. Time

FIG. 2. Fock atomic fractal �a� and a zoom of one of its fragment �b� at n=10, �=0.4, and z�0�=1. The upper panels: how many times
m an atom with a given initial momentum p0 �in units of �kf� changes its direction of motion before leaving a cavity. The lower panels: the
time T �in units of �0

−1� atoms with given values of the initial momenta p0 spend in the cavity before leaving.

FIG. 3. Sensitive dependence of the atomic position xout �in
units of kf

−1� on the initial momentum p0 at �a� 	=300 and �b� 	
=1000. All the other conditions are the same as in Fig. 2.

FIG. 4. Sensitive dependence of the output values of the atomic
population inversion zout on its initial values zin: �a� 	=100, �b� 	
=200, and �c� zoom of a small interval of zin around zin=0 at 	
=200.
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evolution of fidelity with the Fock initial state �n=10� has
been computed with different values of the detuning and the
other conditions to be the same as specified above. For those
values of �, when the center-of-mass motion is chaotic and
the maximal Lyapunov exponent is positive, we have found
that fidelity rapidly decays to its minimal value f =0 with the
rate given approximately by the respective value of �, and
afterward f oscillates in an irregular manner. For the values
of �, where the center-of-mass motion is regular and ��0,
fidelity evolves much more regularly. In Fig. 6, we show for
convenience the evolution of the quantity log10�1− f� in the
chaotic �solid line, �=0.4� and regular regimes of the center-
of-mass motion �dotted line, �=0.8� with ��=10−4. The re-
sults obtained do not depend, qualitatively, on the values of
differences in the detuning ��.

The time evolution of fidelity can be explained as follows.
With an initially excited atom, the fidelity is

f�	,�,��� = �an
*�	,��an�	,� + ���

+ bn+1
* �	,��bn+1�	,� + ����2, �30�

where an and bn+1 are variables of a quantum oscillator
coupled to the classical x–p oscillator. At �=0.4 and with
any other values of � when the center-of-mass motion is
chaotic, all the oscillator variables are sensitive dependent
not only to small variations of initial conditions but to the
control parameters as well. However, the probability ampli-
tudes and fidelity are restrictive quantities. Because of an
initial exponential divergence of the quantities an�	 ,��,
an�	 ,�+���, bn+1�	 ,��, and bn+1�	 ,�+���, fidelity rapidly
decays up to its minimal value f =0 with the rate approxi-
mately given by the maximal Lyapunov exponent of the
Hamilton-Schrödinger equations for a chaotically moving
atom �solid line in Fig. 6�. After that, it oscillates irregularly
in a large range. At �=0.8 and at any other value of the
detuning when atoms move regularly in a cavity, fidelity f
decays much more slowly as compared to the chaotic case
and oscillates smoothly �dotted line in Fig. 6�.

IV. ENTANGLEMENT, FIDELITY, AND QUANTUM-
CLASSICAL CORRELATION IN A COHERENT FIELD

In this section, we consider the quantized field in a cavity
to be supposed initially in a coherent state

��� = e−���2/2	
n=0

�
�n


n!
�n� , �31�

where ���2= �n� is an average number of photons in the state
�31�. The equations of motion �3� and �8� are now infinite
dimensional, and their analytic solutions have been derived
in a few limiting cases in Sec. II C.

Because of an infinite number of incommensurate Rabi
frequencies, the population inversion of an atom in an ini-
tially coherent field oscillates in a complicated way. In the
Raman-Nath limit, the inversion z�	�, the atomic purity P�	�,
and the entropies SL and SN are periodic functions with the
period � /�rp0 given by the time of the atomic flight between
two neighboring nodes of the standing wave. Out of reso-
nance, the center-of-mass motion is regular at �� � �1 and
chaotic in approximately the same range, �� � �1, as in the
Fock field.

In numerical simulation, we truncate the set �3� at a finite
n=100, which is sufficient for all our purposes. Figure 7
demonstrates the correlation between � dependencies of the
variance of the atomic purity �P and of the maximal
Lyapunov exponent � with the atom prepared initially in the
energetic state �2� and the field at 	=0 in the coherent state
�31� with n̄=10 and the other conditions and parameters to
be the same as for the Fock field. Comparing Figs. 5 and 7
we see that the quantum-classical correlations in the coherent
and Fock fields are similar despite of the fact that purity in a
coherent field even in the limiting cases oscillates in a much
more complicated way as compared to purity in a Fock field.

In the regime of chaotic motion, atoms in a coherent field
demonstrate fractal scattering �Fig. 8�a�� and sensitive depen-
dencies on the initial states both in the classical �Fig. 8�b��

FIG. 5. Quantum-classical correlation between the dependencies
of the variance of the purity �P and the maximal Lyapunov expo-
nent � �in units of �0� on the atom-field detuning � �in units of �0�.
Initial Fock field with n=10 and an atom prepared initially in the
superposition state ��1�+ �2�� /
2.

FIG. 6. Time evolution of quantum fidelity �logarithmic scale�
in the chaotic �solid line at �=0.4� and regular �dotted line at �
=0.8� regimes of the center-of-mass motion in a Fock field with n
=10.
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and quantum �Fig. 8�c�� degrees of freedom. The strength of
chaos, measured by the value of �, is the same for both the
initial field states �n� and ��� �see Figs. 5 and 7�. The function
zout�zin� is regular in a wider range of zin with atoms in a
coherent field �Fig. 8�c�� than with atoms in a Fock field
�Fig. 4� simply because of choosing a specific value of the
phase of the coherent state ���.

We have found �see Fig. 8� that, with the initial momen-
tum p0=25 and �=0.4, the type of atomic motion depends
strongly on the initial atomic inversion z�0�. If an atom is
prepared initially in one of its energetic states, i.e., z�0�
= ±1, its classical and quantum dynamics are unstable,
whereas they are stable with z�0�=0 under the same other
conditions. In Fig. 9, we show the evolution of the quantity
log10�1− f� in the regimes of chaotic motion �thick and thin
lines, z�0�= ±1� and regular motion �dotted line, z�0�=0�
with ��=10−4. In the chaotic regime, the fidelity initially
decays exponentially with the rate ��0.04 to be equal to the
maximal Lyapunov exponent computed with the set �3�. This
result does not depend on the values of differences in the
detuning ��. The fidelity practically does not decay in the
regular regime at z�0�=0, and the respective maximal
Lyapunov exponent was computed to be zero.

With randomly moving atoms, initial decay of fidelity is
practically the same both in the Fock �Fig. 6� and coherent
�Fig. 9� initial field states and is quantified by the respective
Lyapunov exponents. After reaching zero value, fidelity dem-
onstrates erratical oscillations in both the cases. These oscil-
lations are more pronounced with the Fock field because
entanglement there occurs between a few quantum states,
whereas entanglement with a coherent field implies, in prin-
ciple, an infinite number of states. In any case, behavior of
fidelity strongly differs with regularly and randomly moving
atoms.

V. CONCLUSION

We have found the quantum-classical correspondence in
the basic model in cavity QED by proving that entanglement

between electronic and photonic degrees of freedom and fi-
delity of the Jaynes-Cummings dynamics correlate with the
center-of-mass motion of a two-level atom in a quantized
standing-wave cavity field. It has been shown analytically
and numerically both with initial Fock and coherent field
states that quantum entropy, purity, and fidelity of regularly
moving atoms evolve in a regular way, whereas the respec-
tive quantum evolution is unstable with atoms moving cha-
otically in a periodic standing wave. Instability of the quan-
tum evolution has been shown to be quantified by the
respective classical maximal Lyapunov exponent for differ-
ent initial electronic and field states and with different values
of the main control parameter, the atom-field detuning �. We
emphasize that this quantum instability and irreversibility is
caused by internal dynamical chaos and takes place without
any external environment.

We have done some numerical experiments and found
various manifestations of the quantum-classical correspon-

FIG. 7. Quantum-classical correlation between the dependencies
of the variance of quantum purity �P and the maximal Lyapunov
exponent � �in units of �0� on the atom-field detuning � �in units of
�0�. Initial coherent field with n̄=10 and an atom prepared initially
in the excited state. The other conditions are the same as in Fig. 5.

FIG. 8. �a� Fractal set of the initial momenta p0 �in units of �kf�
of atoms that leave a cavity with initially coherent field after m
turns. �b� Sensitive dependence of the atomic position xout �in units
kf

−1� on the initial momentum p0. �c� Sensitive dependence of the
output values of the atomic population inversion zout on its initial
values zin. Control parameters �=0.4, n̄=10, and �r=0.001.
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dence, including dynamical chaos and fractals, which can be,
in principle, observed in real experiments with atoms and
photons in high-finesse cavities. In this connection, we

should mention first of all the pioneering experiments of
Kimble’s and Rempe’s groups �25� on real-time position
control of a single atom in a high-finesse microcavity where
a photon may be periodically absorbed by the atom and re-
emitted into the cavity many times before being lost outside
the cavity. In the strong-coupling regime, when the coherent
coupling between a single atom and intracavity field domi-
nates atomic spontaneous emission and intracavity-field de-
cay, the center-of-mass position within the cavity mode can
be monitored in real time with high spatial and temporal
evolution by detecting the light transmitted by the cavity.
These achievements open up the possibilities in the control
and continuous measurement of the internal and external dy-
namical variables of atoms.
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