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We show how sub-Planck phase-space structures in the Wigner function [W. H. Zurek, Nature (London)
412, 712 (2001)] can be used to achieve Heisenberg-limited sensitivity in weak-force measurements. Nonclas-
sical states of harmonic oscillators, consisting of superpositions of coherent states, are shown to be useful for
the measurement of weak forces that cause translations or rotations in phase space, which is done by entangling

the quantum oscillator with a two-level system. Implementations of this strategy in cavity QED and ion traps

are described.
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INTRODUCTION

Quantum metrology encompasses the estimation of an un-
known parameter of a quantum system, and has been the
subject of increasing scientific and technological interest due
to enhanced measurement techniques allowed by quantum
mechanics [1]. The two typical problems of small quantum
parameter estimation are high-precision phase measurements
and the detection of weak forces [2]. Detection of a small
relative phase between two superposed quantum states in-
cludes two equivalent techniques, i.e., Ramsey spectroscopy
and Mach-Zehnder interferometry [3,4]. They involve detec-
tion of a rotation of the quantum state in phase space around
the origin. Thus, the problem of phase determination is ulti-
mately associated with the estimation of a small rotation
angle. Detection of weak forces can be traced back to the
pioneering work on gravitational wave detectors that pro-
posed to use a quantum-mechanical oscillator as an antenna
[5,6]. A weak force (exerted, e.g., by the wave) induces a
displacement of the quantum state in phase space in some
direction. Thus, in this case the quantum parameter estima-
tion can be reduced to the determination of a small linear
displacement.

The precision in quantum parameter estimation depends
on the energy resources (e.g., the average number 7 of pho-
tons) involved in the measurement process. It is well known
that using quasiclassical states the sensitivity is at the stan-
dard quantum limit (SQL), also known as the shot-noise
limit. In particular, coherent states are associated with SQL
The phase-space size of a coherent state is given by ~\h
and its distance from the origin is ~\hit. The smallest no-
ticeable rotation that will lead to approximate orthogonality
is_equal to its angular size as “seen from the origin,”
Vi/\hin=i12, i.e., the standard quantum limit (see Fig. 1).
The same argument implies that the smallest detectable dis-
placement is of the order of \ﬁ so the SQL for weak-force
detection is independent of 7, i.e., it scales as . The SQL
limit can be surpassed by using quantum effects (such as
entanglement and squeezing), reaching the so-called Heisen-
berg limit (HL), in which the sensitivity is higher than the
SQL by 7=!2 [4,7-9]. Sub-shot-noise sensitivities, approach-
ing the ultimate Heisenberg limit, can be achieved using

1050-2947/2006/73(2)/023803(7)/$23.00

023803-1

PACS number(s): 42.50.Dv, 03.65.—w, 42.50.Pq, 42.50.Vk

path-entangled states of photons [10-16] or ions [17-19],
recently produced in experiments.

In this paper we show that, as is already anticipated by the
brief discussion of the SQL above, the sensitivity of the
quantum state to displacements is related to the smallest
phase-space structures associated with its Wigner function
W. This connection was conjectured by one of us [20] in the
context of the discussion of the sub-Planck structures in W.
The area of these structures can be as small as a=A%/A,
where A is the action of the effective support of W. A is
limited from above by the classical action of the state, but it
can be much smaller than that. It is least for a coherent state,
i.e., A=h, which yields a=%%/fh=r, and then leads to the
SQL. Sub-SQL sensitivities can be achieved with coherent
squeezed states [21], which also have A=7 but, contrary to
coherent states, have unequal quadratures: one is contracted
proportionally to Vhe ", and the other is expanded propor-
tionally to Vhe (r>0 is the squeezing parameter).
Thus, squeezed states have sub-shot-noise sensitivity for per-
turbations acting along the squeezed direction. However, for
a fixed 7, we shall show that states with much larger values
o£ A= i’m can be found, which exhibit sensitivity set by
va= \yﬁ/ n to displacements; this then allows one to saturate
the Heisenberg limit. In this way, we shall demonstrate that

FIG. 1. Phase-space representation of the standard quantum
limit for rotatlons Coherent states have phase-space size of the
order &= #. A coherent state of complex amplitude VA is rotated
around the origin by a small angle . The initial and final coherent
states are distinguishable (approximately orthogonal) when the lin-
car displacement &~ s = \%|a|6, which leads to SQL sensitivity for
rotations 6=1/|a|=1/.
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the sub-Planck-scale #2/A determines the sensitivity of small
parameter estimation.

Our paper is organized as follows. In the next section we
explain the connection between sub-Planck phase-space
structures and Heisenberg-limited sensitivity in quantum me-
trology. In the following section we discuss a general scheme
for measuring small displacements and rotations in phase
space by using nonclassical states of a harmonic oscillator,
suitably coupled to a two-level system (TLS). We describe in
the next section how to implement our proposal in both cav-
ity QED and ion-trap experiments, which can take advantage
of sub-Planck structures for quantum-enhanced measure-
ments. Finally, we present our conclusions.

SUB-PLANCK STRUCTURES FOR QUANTUM
METROLOGY

Let us consider superpositions of M coherent states, equi-
distantly placed on a circle C of radius |a|>1,

M

1 N
[caty) = ——=2, e'|e™%*a), (1)
VM =1

where ¢,=27k/M, and the 7y,’s are arbitrary phases. These
“circular states” are nonclassical states of a harmonic oscil-
lator for which the mean number of excitations is
i1={caty|a@’d|cat)) =|a|?. States of the form (1) include the
periodic case of the “generalized coherent states” considered
in [22,23]. These nonclassical states can be generated by
nonlinear optical processes [24,25], and by quantum-
nondemolition measurements of the photon number in cavity
QED [26] or the vibrational number of a trapped ion [27].
Some properties of these states were studied in [28,29]. Ex-
amples are the Schrédinger cat (macroscopic superposition)
state

[caty) = (@) + |- )2, 2)
and the compass state [20]
|compass) = |caty) = (|a) + |- @) + |ia) + |- ia))/2.  (3)

We show in the following that when a unitary perturbation

UX induces a small linear displacement of magnitude x, the
overlap between the unperturbed state |caty,) and the per-

turbed one |caty,(x))=U |cat,,) oscillates with a typical fre-
quency ~|a|. Therefore, the least linear displacement x=s
needed to distinguish the two states is s~ 1/|a|. This scale
defines the Heisenberg limit for displacement measurement.
In the case of a rotation x=#6, quasiorthogonality occurs
when the rotation induces a linear displacement of the center
of the circle C of the order of s~ 6|a|, with s~ 1/|a]|. There-
fore, the detectable angle is 6~ 1/|a/?, defining in this case
the Heisenberg limit for rotation measurements. We also
show that the oscillatory behavior of the overlap function
[(cat,,| caty,(x))|* has its origin in the overlap between the
oscillatory structure of the Wigner functions of the unper-
turbed and the perturbed states whose typical frequency of
their oscillations is precisely proportional to |a|. Thus, we
prove that the sub-Planck phase-space structure of the states
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in Eq. (1) determines its Heisenberg-limited sensitivity for
quantum metrology applications.

Displacements

We consider a small linear displacement given by the uni-
tary operator D(B)=eP? £ 4 in an arbitrary direction
B=e'?as/|a| with magnitude |8|=s<< 1. This operation trans-
forms the unperturbed state |cat,,) into the perturbed state
|caty,(s)) = D(B)|cat,,). The overlap between these two states
can be calculated as the integral over phase space @ of the
overlap between their respective Wigner functions,

o

|(caty|caty,(s))|* = f Wieat, p(@) Wear, (@) (4)

aw

The Wigner function Wy (5)(@) of the perturbed state is

M M

—~ 1 i(y,— isa,|«a S (=

Wiea, (op(@) = — 2, X, e/ ne i (@),  (5)
Iy

where W;, are the Weyl-Wigner functions [30,31] corre-
sponding to the operators |e/%a+B)e?a+f|, and
ay=sin(¢— ) —sin(¢—¢;). The Wigner function Wic, (@)
of the unperturbed state is obtained from Eq. (5) by setting
s=0. The resulting Weyl-Wigner functions W;,= Wi?o are

(252

Xexp{i2 Im[— (et — e7 )" @]}
Xexp[i2 Im(e'®r¥|a?)]. (6)

Wu(a)=2 exp{— 2

Therefore, the Wigner function Wieat,,) of the unperturbed
state consists of M Gaussian functions W, centered at the
phase-space points e¢'¢, plus interference terms W, (I+# k)
which oscillate with a typical frequency «|a| (see Fig. 2).

Expressing the overlap Eq. (4) in terms of the Weyl-
Wigner functions and using that |a|>1 we get

|{caty,|caty,(s))]?

1| X a
=P Z f?Wkk(O_l)Wik(O_l)

M M -

+2 2 2Re(ei“k1'“'* J diwlk(&)vvil(m)]. (7)
k=1 >k w

Here we have neglected contributions

[da@ I MW (@W,, (@) =~0(e o) for 1#1" and k#K'. A

further simplification can be achieved using the fact that the

perturbation is small, B| =s<<1. Indeed, in this case we have

D(B)|a)=e! B gt By~ 2 m(Ba))| ), 5o that the per-
turbed and unperturbed Weyl-Wigner functions are related as

Wil@) = esalely, (@). (8)

Therefore, the integral in the first term of Eq. (7) is equal to
1, and the integral of the second term is equal to el
Finally, the overlap reads
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FIG. 2. (Color) The Wigner functions in the « plane for: (a) the displaced cat state \E)EDA(a)\catz), and (b) the compass state
|compass) for a=4i. The displaced cat state is quasiorthogonal to the rotated state R(6)|cat,) (6=/4|a|?) in (c) at the Heisenberg limit scale

6~ 1/|al>. The compass state is quasiorthogonal to the translated compass state D(3)|compass) (B=e/™*1/212|a|) in (d) at the Heisenberg
limit scale ||~ 1/|a|. The insets enlarge the central interference pattern of the displayed Wigner functions. In (e) and (f) we display the
respective products of the unperturbed and perturbed Wigner functions. When performing the integration over the « plane, the negative

contributions (in blue) cancel the positive ones (in red), leading to quasiorthogonality.

M M

[{caty,|caty, (s))]|* = #(M +2 22 cos(2sak,|a|)> .

k=1 1>k
)

We see that the oscillations in the function [{cat,,|cat,,(s))|?
come from the overlap between the interference patterns Wy,
and Wy, (I#k) of the Wigner functions of the unperturbed
and perturbed states, respectively. The typical frequency of
these oscillations is proportional to |a|, and implies that the
states |caty,) are Heisenberg-limited sensitive to displace-
ments (s~ 1/|a|). Similar oscillations when the initial state
is a Fock state were discussed in [32].

Rotations

Small rotations in phase space, induced by the operator
Ii’(ﬁ):eio‘ﬂ‘i, with #<<1, can be treated in a similar way. It is
first necessary to displace the state |cat)) so that the dis-
placed circle C contains the origin of phase space. This can
be achieved by considering the displaced state |caty,)
E15(7])|(:atM), with »p=a. If we now rotate this displaced
state in an angle 6 around the origin we obtain

2iflaf> M

—> ei(7k+29\a|2bk)|ei¢ka+ 7, (10)
M k=i

R(0)[catyy) = =

where b,=cos(¢;)—sin(¢;). To obtain this equation we
have used that, in the limit 6<1/2|a|, we have R(6)|e)
=|e!%a)~|a+ifa), and D(B)|a)=~e*™Ba)|a). The state
given in Eq. (10) is the same one obtains by applying a
linear displacement 3 to the state |caty,) provided that 3 is
orthogonal to 7 (i.e., B=ins/|n|), and has a magnitude
|Bl=s=|a|#< 1. Then, the overlap function between the dis-
placed state |caty,) and the corresponding rotated state

|caty,(6)) = R(6)[caty,) is

|(caty|caty, ()] = |(caty,|D(B) caty)|?

= |(caty,|D(B)|caty)]*. (11)

The last overlap of this equation is given by Eq. (9) with
s=6la| (see Fig. 1). This shows that the displaced
states |cat,,) are HL sensitive to rotations (8~ 1/|a|?).
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MEASUREMENT STRATEGY

Let us consider the simplest case with M =2, i.e., the cat
state |cat,). After a small displacement B=ias/|a|, in a di-
rection orthogonal to « (which is the direction of maximum-
sensitivity), the overlap function according to Eq. (9) is

[{cat,|caty(s))|? = [1 + cos(4]als)]/2. (12)

As we have seen, this is also the overlap function when we
consider a small rotation, of angle #=s/|al, applied to the
state |cat,)=D(a)|cat,)=(1/12)(|2a)+|0)). We see that if
we could measure these overlap functions, we could deter-
mine the parameters s or f=s/|a| at the Heisenberg limit,
i.e., with a sensitivity proportional to 1/|a| and 1/]a|?, re-
spectively. It should be noted that the M >2 generalized co-
herent states, such as the compass state (M=4), have sub-
Planck structures that lead to HL sensitivity for
displacements in any direction 8. The cat state, however,
has minimal (zero) sensitivity for displacements along the
direction «a.

The measurement of the small perturbations can be real-
ized by entangling the system with a two-level system. The
general method is the following. We initially prepare the os-
cillator in a large-amplitude coherent state |a), and the TLS
in one of its two states, say in the upper state |e). The com-
posite system is then evolved during a certain time =7 un-

der a unitary evolution U, which includes the interaction of
the oscillator with the TLS as well as possible additional
unitary operations acting only either on the states of the os-

cillator or on those of the TLS. The unitary perturbation 0 (18
then applied to the oscillator (assuming that it does not affect

the state of the TLS), and finally the unitary evolution Uis
undone. The final entangled state of the composite system is
e,a)=PJe, ¥y +\P,

W)= 0'(D)U,0(T)

g Ve,
(13)

where P, and P,=1-P, are the probabilities of measuring
the TLS in levels e and g, respectively. The unitary operator

U must be such that the intermediate states |¥)= Ule,a) and

|DY=U.Ule,a) verify |(¥|®)2~]|(caty|caty,(x))]>. Given

that [(e, | W )|*=|(W | )|, the information about the pertur-

bation parameter x, contained in the overlap function

[(cat,, | caty,(x))|? is then translated into the probabilities, i.e.,
|<€,a|q’f>|2 |(caty|caty, (x))]*

Pe=1_Pg= 12 = ND . (14)

[{a¥$)] (e ¥
The method proposed above can also be used to measure

the Loschmidt echo, which quantifies the sensitivity of a
quantum system to perturbations [33-36].

CAVITY QED AND ION-TRAP IMPLEMENTATIONS

The strategy of measuring small perturbations on super-
positions of coherent states of quantum harmonic oscillators
via two-level systems can be implemented in cavity QED
and ion-trap experiments. In the following we describe in
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detail all the necessary steps for the implementation of the
cat state (M=2). Similar strategies can be used for higher
(M >2) generalized coherent states. For example, the com-
pass state can be generated in ion traps by means of engi-
neering the ion-laser interaction in order to realize a nonlin-
ear multiquantum Jaynes-Cummings dynamics. This will be
the subject of a future publication [37].

Let us consider the interaction between a harmonic oscil-
lator mode and a two-level system as given by the Jaynes-
Cummings (JC) model [38]. In a cavity QED scenario
[26,39], the harmonic oscillator is a single mode of the quan-
tized electromagnetic field in the cavity and the TLS is a
Rydberg atom with a two-level electronic transition coupled
to the field through the JC evolution. In an ion-trap scenario
[40], the harmonic oscillator corresponds to the center-of-
mass motion of the trapped ion, and it couples to the TLS
(which corresponds to an internal atomic transition) when
the ion is irradiated by a laser. In the following we adopt the
cavity QED scenario, adding short remarks on issues that
may be specific for trapped-ion implementations.

The coherent dynamics in the JC model is described by
the Hamiltonian

PAI‘/C=I:IA+I:IF+I:IAF, (15)

where H 1=(hwy/2)3d, is the atomic TLS Hamiltonian, with
&.=le)(e|-|g){g|, and w, is the transition frequency between
the lower |g) and the upper |e) states. The harmonic field

mode is described by H r=hwd'a and the interaction Hamil-
tonian is H,r= (A€/2)(6"a+6a") where 6=|g)(e| and €
is the vacuum Rabi frequency. It is more convenient to use
the interaction picture with respect to the free evolution

HA+I§7 > so the JC dynamics is described by
H = (1Qy/2) (6 a + e P 6a%), (16)

where 0= w)— w is the detuning. Our method applies to both
the dispersive and the resonant regime.

Dispersive interaction

We _assume first a dispersive interaction, with |5
>\, i.e., the frequency of the field w is far detuned from
the transition frequency w, of the TLS, and we assume that
the atom has three relevant states | g), |e), and |i), so that the
field in the high-Q cavity couples dispersively with the states
|g) and |i), while transitions involving |e) can be neglected. A
similar level scheme was adopted in Ref. [26]. We start
with the atom in the state |g) and the field in the cavity
in a large-amplitude coherent state |a). Before the atom en-
ters into the high-Q cavity it passes through a low-Q
cavity and suffers a_resonant 7/2 pulse, so it evolves into
U.nlg)=(le)+|g))/V2. The interaction time between the
atom and the field in the high-Q cavity may be adjusted by
atomic velocity selection and Stark-shifting the atomic lev-
els, so that the interaction ceases when these levels become
highly detuned from the cavity mode [39]. In this way, the
interaction time 7 up to the middle of the cavity is adjusted
so that QST/ 46=m, where 0=w;,— w is the detuning between
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the frequency of the field in the cavity, w, and the frequency

w;, of the transition g« i. Therefore, U o(Dg, a)=|g,—a),
while the state |e, @) remains the same. The state of the sys-
tem right before the application of the perturbation is

|¥)=U,(T)U, g, @), and reads
[9) = (e, ) +[g,— )2, (17)

Assume now a displacement perturbation, corresponding

e,a)+

to the unitary operation U,=D(B), with B=ias/|a| and
|B|=s<1, is applied to this state. Displacements of the cav-
ity field can be induced by injecting into the cavity coherent
fields, produced for instance by a microwave generator,
while in the ion-trap setting they can be generated by forces
that displace the equilibrium position of the ion. For detect-
ing a small rotation, we first apply the displacement operator

ﬁ(a), during a time Ar<<T, which leads to the state

W) = ( 2.0NN2. (18)

e2a)+

A small rotation R(H) of the cavity field can be implemented
by a percussive dislocation of one of the mirrors of the cav-
ity, thus changing the frequency of the mode by a small
amount during a small time interval. Alternatively, one may
send through the cavity a fast atom, which interacts disper-
sively with the field, and follows a trajectory that avoids the
interaction with the first atom. In the ion-trap context, the
same kind of perturbation can be implemented by slightly
changing the frequency of the harmonic trapping potential.
Note that for the state in Eq. (17) the overlap function
[(W|D(B)|W)|? is equal to [(cat, |caty(s))|* given by Eq. (12).
In an analogous way, for the state in Eq. (18) we have
|(W|R(6)|W)|2=|(cat, |cat,(6))|% also given by Eq. (12) with
s=0|al.

After the perturbation is applied, we undo the total unitary
evolution U,(T)U ,, [or D(a)U,(T)U,,, for a rotation per-
turbation], by letting the atom interact with the cavity field
again for a time 7. Since T is half the period of the dispersive
JC evolution, when the atom leaves the cavity at time 27 the
JC dynamics is automatically undone. Up to a global phase,
the final state is

1 . 1 .
W=7~ o) e, a) + E(el‘”a\f +1)|g.@).  (19)
For a small rotation 6, we obtain the same final state with the
displacement s replaced by 6|al.

The probabilities that the atom exits the cavity in the up-
per and lower states depend on the small parameter s

(equivalently 6=s/|al),
P,=1-P,=[1-cos(4|als)]/2, (20)

thus exhibiting the characteristic oscillation associated with
the interference pattern of the Wigner function. A good esti-
mate of the unknown parameter s requires repeating the mea-
surement several times. After R repetitions, the probability
that the outcome |e) is obtained r times is given by a
binomial distribution. In the large-R limit, it is well
approximated by a Gaussian distribution in the variable
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&é=r/R, which can be regarded as effectively continuous
[41]. In this limit the probability distribution for the
estimator S=arccos(2r/R—1)/4|a| of the true displacement s
is [42]

- ‘y)2/2A§2’ 1)

P(5) =

\27AF?

where the uncertainty of 5 is As=1/ 8\R1I, reaching the
Heisenberg precision for displacement since R# is the total
number of photons used in the measurement.

Resonant interaction

We discuss now the case of resonant coupling, 6=0. This
case has over the dispersive case the advantage of requiring
much shorter transit times. The corresponding experimental
setup leads to collapses and revivals of the atomic population
[43]. We start with an initial product state of the TLS-
oscillator composite system |e, &) in which the field coherent
state has a mesoscopic mean number of photons i7=|a|*. The
joint evolution of the atom-field system inside the cavity is

given by U jCEexp(—iI:If4 pt/f), and it can be calculated fol-
lowing the approach developed in [44]. Since the field in the
cavity is a superposition of different number of photon states,
the corresponding Rabi frequencies are spread. Therefore,
the atom gets entangled with the field in a quantum superpo-
sition of two coherent components that rotate in opposite
directions in phase space [45]. We set up the velocity of the
atom so that the transit time 7" up to the middle of the cavity
is half the revival time Tr=4mVn/ ). This transit time is
much shorter than the one for the dispersive case. The

evolved state [W)=U,(T)
state [44,45],

e,a) turns out to be the product

W) = (7| iy — i\ | By, (22)

where ), = (1/12)(e™]e)+e7 e g)).

A small displacement is then applied to the field. At this
point the JC dynamics must be inverted. This can be done by
a procedure developed in [46]: one applies a percussive con-
trolled phase kick corresponding to the unitary operation

U, \ick =0, that changes the sign of the relative phase between
the atomic levels. This amounts to changing the sign of the
interaction Hamiltonian (6— —3), so the phase kick mimics
the time-reversal operation. This idea was experimentally
implemented in cavity QED [47] and can be similarly ap-
plied in the context of ion traps. The final state

(W )=U5(DD(B)U,c(T)|e, ), up to a global phase, is

1 . b )
\PE E(e"*\“ls +Dle,a)+ (1~ ettlals)

ga), (23)

where b=e¢" 2@ For small rotations, one proceeds as in
the previous case, first displacing the field state in Eq. (22),
then applying the rotation, and subsequently inverting the
displacement and the time evolution. With the replacement
s— 6|al, one gets the same final state (23). Given this final
state, one can easily evaluate the probabilities P, and P, that
the atom exits the cavity in the upper and lower level, and
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conclude that also in the case of resonant Jaynes-Cummings
interaction one can measure weak forces at the Heisenberg
limit.

From an experimental point of view, the resonant case is
more convenient than the dispersive one because the interac-
tion times are much shorter. One should also note that, in-
stead of applying the percussive time-inversion pulse, the
same result would be obtained by letting the first atom go
away of the cavity, after disentanglement, and then sending a
second atom, prepared in the “time-inverted” state, obtained
from | ), by changing the sign of the relative phase between
the states |e) and |g). Further shortening of the interaction
time can be achieved by letting the atom interact with the
field for a time Ar<<Tg/2, so that in the intermediate state
the atom is entangled with the two coherent states
|ae*®2y (p=QA1/2\71), and then inverting the dynamics.
After an equal amount of time, one gets again a state like the
one in Eq. (23), with s replaced by s sin(¢/2), which implies
reduced sensitivity, but does not change the scaling of the
minimum detectable displacements and rotations.

Finally, we discuss the viability of experimental demon-
stration with cavity QED and ion-trap implementations.
For cav_ity QED, one should have the interaction time
T=2m\i1/ €, much smaller than the decoherence time, given
for the low temperatures used in typical experiments by
Teav! 1, Where 7, is the damping time of the cavity field (this
condition is probably too strict, in view of the fact that the
maximum distance in phase space between the two coherent
components of the cat state, and therefore the maximum de-
coherence rate, is achieved only when the atom is in the
middle of its trajectory). According to this criterium, one
should have therefore 7,,, > 2(i7)*?/ (). For a typical value
0y=3%x10° s~! and 7=20, one gets that 7.,,> 1.9 ms. This
condition is within reach of present techniques in cavity
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QED, where damping times of the order of 15 ms can be
achieved [48]. Atomic state detection has also been per-
fected. Present efficiency is between 80% and 100% [49],
which should be sufficient to detect the sub-Planck oscilla-
tions.

For ions, detection efficiency is close to 100%, but one
still has to consider decoherence effects affecting the vibra-
tional cat state. Considering a typical value 27/ Q=140 us,
one gets 7~0.6 ms for a vibrational state with 7=20. As-
suming a damping time for the center-of-mass motion of
100-200 ms, which is compatible with present experiments
[50], the decoherence time for the vibrational cat state would
be between 5 and 10 ms, thus satisfying the requirement that
it should be much larger than the interaction time 7.

CONCLUSIONS

We have shown that sub-Planck quantum phase-space
structures [20] have remarkable implications for quantum pa-
rameter estimation, as they are responsible for Heisenberg-
limited sensitivity to perturbations. We have proposed a gen-
eral method to measure perturbations with such high
sensitivity, coupling a harmonic oscillator with a two-level
system. This method was applied to cavity QED and ion-trap
settings, which should be within experimental reach.
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