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A single-mode laser noise model driven by quadratic pump noise and quantum noise with cross-correlation
between the real and imaginary parts of the noises is proposed. The approximate Fokker-Planck equation
�AFPE� of the model for the laser phase and the laser amplitude is derived. It is found that the laser phase is
controlled intensively by the correlation between the real and imaginary parts of the pump noise and that of the
quantum noise. The correlation between the real and imaginary parts of quantum noise �q tends to lead the
laser phase to be locked at some values and the correlation between the real and imaginary parts of the pump
noise �p tends to destroy or confine the laser phase lock. Quantitative results are presented and discussed in
detail. As an important application of the above-mentioned results, we take a phase lock approximation to get
a Langevin equation for the laser field amplitude and an AFPE of the laser intensity.
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I. INTRODUCTION

The noises present in the single-mode laser model are
usually assumed to be uncorrelated. The real and imaginary
parts of the complex noise of a single-mode laser are also
assumed to be uncorrelated. It was so until 1993 when Zhu
investigated theoretically the statistical fluctuations of a
single-mode laser with correlation between additive and mul-
tiplicative white-noise terms. The mean, variance, and skew-
ness of the steady-state laser intensity are calculated by Zhu
through a one-dimensional laser Langevin equation �1�. In
Refs. �2,3� we have introduced the phenomenological corre-
lation between the additive and multiplicative noises in a
single-mode laser cubic model and studied the stochastic
equivalent of various one-dimensional models. Subsequently,
we have discussed the mechanisms �4� that make the multi-
plicative noise correlate with the additive noise in a single-
mode laser and studied the noise-induced phenomena for the
laser intensity �5� and the laser phase �6�. The interplay of
noise cross-correlation and nonlinearity in a system far from
equilibrium results in some unusual phenomena. Recently,
progress for the noise cross-correlation effects in nonlinear
systems has been reported �7–15�. However, there are few
previous studies in which the effect of cross-correlation be-
tween the real and imaginary parts of quantum noise is con-
sidered. In 1996, Zhou, Gao, and Zhu first took into account
the cross-correlation between the real and imaginary parts of
quantum noise in a single-mode laser �16�. In their research,
the amplitude equation was not decoupled from the phase
equation, and they dealt with it in the two-dimensional case.
Soon afterwards Ke et al. �17� also considered the cross-
correlation between the real and imaginary parts of the quan-
tum noise, but they adopted the locked phase method to

make the amplitude equation decouple from the phase equa-
tion. Subsequently, Zhang et al. �18� further studied the ef-
fect of cross-correlation between the real and imaginary parts
of quantum noise in terms of the white-gain-noise laser
model: the corresponding stationary and transient properties
were calculated and compared with the experimental data. To
our knowledge, there are no works in which the effect of
cross-correlation between the real and imaginary parts of
pump noise is considered. The reason is that in the single-
mode laser model used, the cross-correlation coefficient be-
tween the real and imaginary parts of pump noise does not
appear in the laser-intensity Langevin equation. This is an
inherent property of the linear pump-noise laser model. We
find that when quadratic pump noise is introduced to the
laser field equation, the cross-correlation coefficient of the
real and imaginary parts of the pump noise should appear in
the decoupled intensity Langevin equation and it strongly
alters the statistical properties of the output laser light. In the
present paper, our goals are twofold: �i� In comparison with
the linear pump-noise laser model, in which the white-noise
limit of pump noise can exist, the pump noise in the qua-
dratic pump-noise laser model must be colored in nature be-
cause the quadratic Dirac � function is not well defined. So
we must face a non-Markovian process. The first goal of the
paper is to make a Markovain approximation of the process.
Based on our early work of the approximate Fokker-Planck
equation �AFPE� for systems driven by nonlinear external
noise �19�, we derive an AFPE for the model proposed in this
paper. �ii� It has been shown that the pump noise comes from
the fluctuation in the pump laser and those in the active
medium �for dye laser�. So the pump noise is an external
noise in nature. That is, randomness in the external condi-
tions entails the parameters of a dynamical system to fluctu-
ate. The extent of these fluctuations is independent of any
thermodynamic characteristic of the system in contrast to
intrinsic fluctuations, the amplitude of which is proportional
to the equilibrium temperature, in accordance with the
fluctuation-dissipation theorem. The physical foundation of
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the quadratic pump-noise laser model proposed in this paper
is that the fluctuation of the external condition, the pump
laser field, makes the net gain fluctuate with quadratic non-
linearity in the noise �20�.

The rest of this paper is arranged as follows. In Sec. II,
the model is proposed. An approximate Fokker-Planck equa-
tion of the model for the laser phase is derived. In Sec. III,
the laser phase lock is discussed in detail. It is found that the
laser phase is controlled intensively by the correlation be-
tween the real and imaginary parts of the pump noise and
that of the quantum noise. The quantitative results are dis-
cussed in detail. In Sec. IV, as an important application of the
above-mentioned results, we take a phase lock approxima-
tion to get a Langevin equation for the laser field amplitude.
An AFPE of the laser intensity and its solution are given in
Sec. V. Section VI contains some concluding remarks.

II. APPROXIMATE FOKKER-PLANCK EQUATION FOR
THE LASER PHASE

To investigate the effects of correlation between the
real and imaginary parts of the pump noise, we propose a
single-mode laser cubic model driven by quadratic pump
noise described by the following Langevin equation for the
laser field E:

Ė = aE − A�E�2E + �2�t�E + q�t� . �1�

Equation �1� retains the saturation parameter A of the laser
theory. a is the net gain. q�t� denotes the complex quantum
noise, q�t�=q1�t�+ iq2�t�, with correlation between its real
and imaginary parts �16–18�:

�q�t�� = 0, �2�

�qi�t�qj�t��� = ��ij + �q�1 − �ij��D��t − t�� �i, j = 1,2� ,

�3�

where �q is the correlation coefficient, −1��q�1.
In Eq. �1�, the quadratic pump noise term �2�t�E is intro-

duced. ��t� is a complex pump noise, ��t�=�1�t�+ i�2�t�, and
its statistical properties are assumed to be

���t�� = 0, �4�

��i�t�� j�t��� = ��ij + �p�1 − �ij��
Q

�
e−�t−t��/� �i, j = 1,2� ,

�5�

��i�t�qj�t��� = 0, �i, j = 1,2� , �6�

where �p stands for the correlation coefficient between the
real and imaginary parts of the pump noise, −1��p�1. We
introduce ��t�=�2�t�=�1�t�+ i�2�t�, so the real and imagi-
nary parts of ��t� are given by

�1�t� = �1
2�t� − �2

2�t�, �2�t� = 2�1�t��2�t� . �7�

In this, Eq. �1� can be written as

ṙ = ar − Ar3 + �1�t�r + �r�t� , �8�

	̇ = �	�t�/r + �2�t� . �9�

Here we have used E=rei	 and r and 	 are the amplitude and
phase of the laser field. �r�t� and �	�t� are defined as

�r�t� = q2�t�sin 	 + q1�t�cos 	 , �10�

�	�t� = q2�t�cos 	 − q1�t�sin 	 . �11�

Based on the following analysis for the phase Langevin
equation �9�, it can be seen that the correlation between the
real and imaginary parts of the quantum noise leads to the
laser phase being locked at a stationary value, while the cor-
relation between the real and imaginary parts of the pump
noise tends to destroy this phase lock. The analysis is based
on the small fluctuation approximation in which the laser
amplitude r in Eq. �9� can be viewed as a deterministic
steady value of rs=�a /A. Since the average values of ��	�t��
and ��2�t�� are not zero, we write

�	�t� = ��	�t�� + �	�t�˜ �12�

and

�2�t� = ��2�t�� + �2�t�˜ . �13�

Using the techniques developed in Ref. �20� to calculate
��	�t��, ��2�t��, and the noise correlation, we obtain the fol-
lowing equations from Eq. �9�:

	̇ = ��	�t��/rs + ��2�t�� + �	�t�˜ /rs + �2�t�˜ , �14�

with

��	�t�� = −
D

2rs
�q cos 2	 , �15�

��2�t�� = 2�p
Q

�
. �16�

Here �	�t�˜ and �2�t�˜ are the noises with

��	�t�˜ � = ��2�t�˜ � = 0, �17�

��	�t�˜ �	�t��˜ � = D�1 − �q sin 2	���t − t�� , �18�

��2�t�˜ �2�t��˜ � = 4�1 + �p
2�	Q

�

2

e−2�t−t��/�. �19�

What is new in Eq. �14� with Eqs. �15�–�19� is the pres-
ence of nonzero drift terms. They are controlled intensively
by the correlations between the real and imaginary parts of
complex noises: the quantum noise and the pump noise. Due
to the form of Eqs. �14�–�19�, the laser phase may be locked
at a stationary value. To see this, we need to make a Mar-
kovian approximation to the non-Markovian process gov-
erned by Eq. �14�. This can be done by using a nonlinear
external noise theory proposed by the authors �19� to obtain
an AFPE for the non-Markovian process �14�–�19�. Follow-
ing Ref. �19�, we have
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�

�t
p�	,t� = −

�

�	
A�	�p�	,t� +

�2

�	2K2�	�p�	,t� , �20�

in which

A�	� = −
D

rs
2�q cos 2	 + 2�p

Q

�
, �21�

K2�	� =
D

rs
2 �1 − �q sin 2	� + 4�1 + �p

2�
Q2

�
. �22�

III. PHASE LOCKING

It is known that Eqs. �20�–�22� are equivalent to the
Langevin equation �21�

	̇ = −
D

2rs
2�q cos 2	 + 2�p

Q

�
+ f�	�
�t� , �23�

where 
�t� is a Gaussian white noise with

�
�t�� = 0, �24�

�
�t�
�t��� = ��t − t�� . �25�

The multiplicative function

f„	�t − �t�… = 	D

rs
2 �1 − �q sin 2	�t − �t�� + 4�1 + �p

2�
Q2

�

1/2

�26�

is not a functional of noise 
�t� due to �t�0 and thus 	�t
−�t� is independent of the noise 
�t� at the time t �2�.

Now we determine the phase lock value using Eqs.
�23�–�26�. The lock condition is

�	̇� = 0. �27�

The condition for the phase lock to be stable is �3�

�

�	
�	̇� −

1

2

�2

�	2 ��f�	�
�t��2�  0. �28�

Condition �27� leads to the lock value 	0 determined by

cos 2	0 = J
�p

�q
�29�

with J=4aQ /AD�. And condition �28� gives

�q sin 2	0 � 0. �30�

General conclusions are as follows.
�i� The combination of conditions �29� and �30� can be

written as a single equation

�q sin 2	0 = ��q sin arccos J
�p

�q
�, with �q � 0. �31�

�ii� If �q�0 and �p=0, Eq. �31� reduces to �q sin 2	0
= ��q� and the phase lock is determined by the correlation
between the real and imaginary parts of quantum noise
only.

�iii� As can be seen from Eq. �31�, if both �q�0 and
�p�0, for a fixed value of J /�q, there exists a critical value
of the correlation coefficient �p

c determined by �J�p
c /�q�=1.

When ��p�� ��p
c �, no phase lock value of 	0 exists and the

laser phase diffuses freely.
�iv� The physical aspect of the appearance of the laser

phase lock lies in the presence of a new drift term
�−D /2rs

2��q cos 2	 in Eq. �23� which arises from the nonzero
correlation coefficient �q.

�v� If �q=0 but �p�0, it can be seen from Eq. �23� that,
in addition to the diffusion arising from the noise, a constant
force, which comes from the correlation between the real
and imaginary parts of the pump noise, 2�pQ /�, makes the
laser phase increase linearly with time at an average speed
V	=2�pQ /�. This feature has a potential application.

�vi� In the case when both �q=0 and �p=0, the laser
phase diffuses freely as in the usual laser theory.

To sum up, the correlation between the real and imaginary
parts of the quantum noise �q tends to lead the laser phase to
be locked at some values and the correlation between the real
and imaginary parts of the pump noise �p tends to destroy or
confine the laser phase lock.

The key for the experimental realization of various
phase-locking possibilities discussed above is to control
the correlation between the real and imaginary parts of
the complex pump noise �p. The control can be experimen-
tally realized in the following way. A real Ornstein-
Uhlenbeck �OU� noise is generated using a noise source
and is split into two parts. One of the two goes through a
linear system and then is combined with the other part as
the real and imaginary parts of a complex noise. Note that
the input and output of a linear system are correlated and
that their correlation coefficients are controllable. Moreover,
a linear system preserves the Gaussian nature of the noise.
The complex noise so generated is Gaussian, and its real
and imaginary parts are correlated with correlation coeffi-
cients that are adjustable. This complex noise passes through
a square device and then multiplies with the feedback laser
obtained by an external mirror �22�. When this is input
into the lasing cavity, the square noise term in Eq. �1� is
realized �23�.

IV. PHASE LOCK APPROXIMATION AND THE
LANGEVIN EQUATION OF LASER FIELD AMPLITUDE

As an important application of the phase dynamics dis-
cussed above, we take a phase locking approximation to get
a Langevin equation for the laser field amplitude and an
AFPE of the laser intensity and to obtain an exact steady-
state solution for the AFPE.

The Langevin equation �8� with Eqs. �7� and �10� is not
closed due to the coupling with the laser phase 	. In order to
obtain a closed equation for the laser field amplitude r, we
use a phase locking approximation—that is, replace the
phase variable 	 in Eq. �8� by its stable lock value 	0 deter-
mined by Eqs. �29� and �30�. Before doing this, we make a
transformation of Eq. �8�. Because the average value of
��r�t�� is not zero, we write
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�r�t� = ��r�t�� + �r�t�˜ . �32�

Using the techniques developed in Ref. �20� to calculate
��r�t�� and the noise correlation, we obtain

��r�t�� =
D

2r
�1 − �q sin 2	� , �33�

��r�t�˜ � = 0, �34�

��r�t�˜ �r�t��˜ � = D�1 + �q sin 2	���t − t�� . �35�

Now we use a phase locking approximation to replace the
phase variable 	 in Eqs. �33� and �35� by its stable lock value
	0. Then Eq. �8� becomes

r
·

= ar − Ar3 +
D

2r
�1 − ��q sin 2	0�� + �1�t�r + �r�t�˜ ,

�36�

with

��1�t�� = 0, ��1�t��1�t��� = 2�1 − �p
2�	Q

�

2

e−2�t−t��/�

�37�

and

��r�t�˜ �r�t,�˜ � = D�1 + ��q sin 2	0����t − t�� . �38�

V. APPROXIMATE FOKKER-PLANCK EQUATION AND
STEADY-STATE PROBABILITY DISTRIBUTION

FOR LASER INTENSITY

We now change the field amplitude Langevin equation
�36� to a Langevin equation for the laser intensity I by using
the relation I=r2:

I
·

= 2aI − 2AI2 + D�1 − ��q sin 2	0�� + 2I�1�t� + 2�I�r�t�˜ .

�39�

Equation �39� determines a non-Markovian process. We
also need to make a Markovian approximation to the non-
Markovian process governed by Eq. �39�. In accordance with
Ref. �19�, the AFPE for the non-Markovian process �39� is as
follows:

�

�t
p�I,t� = −

�

�I
D�1��I�p�I,t� +

�2

�I2D�2��I�p�I,t� , �40�

in which

FIG. 1. The phase diagram according to Eq. �43�. Below the
C=0 boundary is the parameter region of a single extremum. In the
half plane of B�0, the region sandwiched by the C=0 and
B2−4AC=0 boundaries is where there are two extrema. The left-
over region above the C=0 boundary is where there is no extre-
mum. The parameters are a=0.18, A=40, �=0.1, Q=0.1, and
�q=0.6.

FIG. 2. The P�I�� I curves. The curves in �a�, �b�, and �c�
correspond, respectively, to points 1, 2, and 3 in Fig. 1. The values
of other parameters are a=0.18, A=40, �=0.1, Q=0.1, and
�q=0.6.
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D�1��I� = 2aI − 2AI2 + 2D + 4�1 − �p
2�

Q2

�
I , �41�

D�2��I� = 2D�1 + ��q sin 2	0��I + 4�1 − �p
2�

Q2

�
I2. �42�

Under the condition �Q��1, the AFPE �40� is a good Mar-
kovian approximation of the non-Markovian process �39�
�19�.

Solving Eqs. �40�–�42� with �� /�t�p�I , t�=0, we get the
steady-state probability distribution p�I� �21�:

p�I� =
N

D�2��I�
exp	I D�1��I��

D�2��I��
dI�


= N�2D�1 + ��q sin 2	0�� + 4�1 − �p
2�

Q2

�
I��

I�e−�I.

�43�

In Eq. �43�,

� =
a

2�1 − �p
2�

Q2

�

+
AD�1 + ��q sin 2	0��

	2�1 − �p
2�

Q2

�

2

−
1

2D�1 + ��q sin 2	0��
, �44�

� =
1

2D�1 + ��q sin 2	0��
− 1, �45�

� =
A

2�1 − �p
2�

Q2

�

. �46�

N is the normalization constant.
Now we analyze various types of P�I�� I curves using

our analytical solution �43�. Setting dP�I� /dI=0, Eq. �43�
yields the quadratic equation

AI2 + BI + C = 0, �47�

where A=4�1−�p
2�Q2� /�, B=2D�1+ ��q sin 2	0���−4�1

−�p
2�Q2��+�� /�, and C=−2D�1+ ��q sin 2	0���. On the

two-dimensional plane of ��p ,D�, we draw the phase bound-
aries C=0, B=0, and B2−4AC=0. The result is the phase
diagram in Fig. 1. Below the C=0 boundary is the parameter
region of a single extremum. In the half plane of B�0, the
region sandwiched by the C=0 and B2−4AC=0 boundaries
is where there are two extrema. The leftover region above
the C=0 boundary is where there is no extremum. The
P�I�� I curves in Figs. 2�a�–2�c� correspond to points 1, 2,
and 3 in Fig. 1, respectively. When �p�p

0 =�1−�a /2Q2, the
P�I�� I curve has zero or one extremum. When �p��p

0, the
P�I�� I curve can have two extrema. From Figs. 1, 2�a�, and
2�b�, we can draw an interesting conclusion: when the value
of �p is decreased, the system goes through a first-order
phase transition from the single-extremum region to the
double-extremum region.

VI. CONCLUSIONS

The important physical conclusions of this paper are sum-
marized as follows.

�i� We derived the phase dynamics equations �20�–�22� for
the laser model we proposed in this paper and obtained Eq.
�31� satisfied by the phase locking value 	0.

�ii�. Our analysis of Eq. �31� shows that the functions of
�q and �p are as follows: The correlation between the real
and imaginary parts of the quantum noise �q tends to lead the
laser phase to be locked at some values, and the correlation
between the real and imaginary parts of the pump noise �p
tends to destroy or confine the laser phase lock.

�iii� Using the phase locking approximation, we obtained
AFPE �40� for the laser-intensity probability distribution and
the analytical solution �43� for the stationary-state distribu-
tion of the laser intensity.

�iv� Using the extremum condition equation of the
laser-intensity distribution �43�, we drew the phase diagram
on the two-dimensional ��p ,D� plane in Fig. 1. When �p

is tuned, we see the first-order phase transition in the shape
of the P�I�� I curve from single extremum to double
extrema.
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