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We propose an experiment to extract ponderomotive squeezing from an interferometer with high circulating
power and low mass mirrors. In this interferometer, optical resonances of the arm cavities are detuned from the
laser frequency, creating a mechanical rigidity that dramatically suppresses displacement noises. After taking
into account imperfection of optical elements, laser noise, and other technical noise consistent with existing
laser and optical technologies and typical laboratory environments, we expect the output light from the inter-
ferometer to have measurable squeezing of 5 dB, with a frequency-independent squeeze angle for frequencies
below 1 kHz. This squeeze source is well suited for injection into a gravitational-wave interferometer, leading
to improved sensitivity from reduction in the quantum noise. Furthermore, this design provides an experimen-
tal test of quantum-limited radiation pressure effects, which have not previously been tested.
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I. INTRODUCTION

Next-generation gravitational-wave �GW� interferom-
eters, such as those planned for Advanced LIGO �1,2�, are
designed to have a 15-fold improvement in sensitivity over
present-day detectors �3�. Advanced detector sensitivity at
almost all frequencies in the detection band is expected to be
limited by quantum noise �4�. At higher frequencies �above
�200 Hz for advanced LIGO�, quantum noise is dominated
by shot noise, which reflects the accuracy at which test-mass
motion is measured at individual instants; shot noise de-
creases with increased input laser power. At lower frequen-
cies �below �100 Hz�, quantum noise is dominated by
radiation-pressure noise, which arises from random forces
exerted on the test masses by amplitude fluctuations of the
light; radiation-pressure noise increases with increased laser
power. At any given frequency, the spectral density of the
quantum noise is a sum of those of the shot noise, the
radiation-pressure noise, and a term arising from their corre-
lation. The standard quantum limit �SQL� on precise mea-
surement of the motion arises when the two noise sources are
uncorrelated �5,6�.

Since both types of quantum noise can be attributed to
vacuum fields entering the interferometer from its antisym-
metric port �4�, injecting squeezed vacuum into this port can
improve the sensitivity of the interferometer �4,7�. However,
for different kinds of interferometers, the required squeezed
vacuum may be very different. For example, for a Michelson
interferometer with Fabry-Perot cavities in each arm that are
tuned to the carrier frequency, and using a homodyne scheme
to detect the phase quadrature of the output light �the quadra-
ture in which the signal due to differential arm length
changes resides�, shot noise is associated with the phase
quadrature of the input vacuum field, while radiation-
pressure noise is associated with the input amplitude quadra-
ture. As a consequence, a nearly phase-squeezed vacuum is
required for higher frequencies, at which shot noise domi-
nates; while a nearly amplitude-squeezed vacuum is required

for lower frequencies, at which radiation-pressure noise
dominates �8�. As another example, for a narrow-band
signal-recycled configuration with homodyne detection, the
squeezed quadrature of the input squeezed vacuum needs to
go through a rapid change from below to above the optical
resonant frequency in order for noise in the detected output
quadrature to be suppressed �instead of amplified� through-
out in this narrow frequency band �9�. Moreover, speed
meters have the property that their optimal squeezed quadra-
ture stays fairly constant for a broad frequency band �10–12�.
Fortunately, it has been shown that detuned Fabry-Perot
cavities can act as optical filters, which convert a squeezed
vacuum with frequency-independent squeeze quadrature into
one with frequency-dependent squeeze quadrature �8�, where
� is the sideband frequency �11�. These filters have been
shown to be broadly applicable to existing interferometer
configurations �8,9,11,12�. Amplitude filters, which do not
rotate the squeeze quadrature, but instead filter out �i.e., sub-
stitute with ordinary vacuum� the squeezed vacuum at above
or below certain frequencies, have also been analyzed �13�.
With these filters as tools, it is sufficient to construct a device
which generates frequency-independent squeezed vacuum.

The injection of squeezed light into the antisymmetric
port of an interferometer has been experimentally demon-
strated �14,15�. In these experiments, the traditional method
for preparing squeezed states of light using the ��2� nonlin-
earity in optical media was employed. The squeezed light
was generated using optical parametric processes, and then
injected into the antisymmetric port of the interferometer.
The use of detuned Fabry-Perot filters in generating
frequency-dependent squeezed quadratures also has been
demonstrated recently �16�. In all of these experiments, sub-
vacuum noise performance was measured in the few MHz
frequency band, where the deleterious effects of classical
noise sources, such as laser intensity and frequency noise,
are greatly reduced. On the other hand, for GW detection, it
is necessary to inject vacuum states that are squeezed in the
GW band, from 10 Hz to 10 kHz. A recent experimental
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demonstration of squeezed vacuum at frequencies as low as
280 Hz �17� has shown that low frequency squeezing is pos-
sible using optical parametric processes, but there may be
technical limits to the level of squeezing that can be achieved
by this technique, e.g., arising from photothermally driven
fluctuations �18�.

An alternative technique is to extract the radiation-
pressure-induced—or ponderomotive—squeezing generated
inside an interferometer as a result of the coupling between
the optical field and the mechanical motion of the mirrors.
The properties of the ponderomotive squeezed state depend
on the intensity of the laser light incident on the movable
mirror, optical properties of the interferometer, and on me-
chanical properties of the mirror. In this paper, we propose
and analyze a ponderomotive squeezing experiment, which
is a variant of the interferometer that was analyzed in Ref.
�19�. The main features of this interferometer are high-power
optical field and low-mass mirrors, suspended as pendulums,
in order to enhance the radiation pressure forces; and the use
of detuned Fabry-Perot arm cavities, which induces a opto-
mechanical rigidity, or optical spring. Our proposal to use
the optical spring effect is the major innovation over previ-
ous attempts to extract ponderomotive squeezing from inter-
ferometers �20�. With our high-power and low-mass system,
the optical spring can be very stiff, and will shift the resonant
frequency of the test mass from the suspension pendulum
frequency of �p�2��1 Hz up to ��2��5 kHz. There
are two main consequences following this shift; for a side-
band frequency � between �p and �: �i� all thermal and
seismic forces will now induce much less motion of the mir-
ror, with a reduction factor of �� /��2, and �ii� since the
mirrors response to driving forces is frequency independent
at ���, the ponderomotive squeezing generated in this fre-
quency band is frequency independent.

Experiments with the goal of directly measuring the SQL
on the motion of macroscopic oscillators are similar to the
experiment proposed here in that they must reach a sensitiv-
ity that is limited by quantum-limited radiation pressure.
SQL experiments, however, rely on measuring at a quadra-
ture where the radiation pressure noise and shot noise remain
uncorrelated, whereas this experiment relies on measuring at
a quadrature where the two noises are correlated. Further-
more, the optical spring in the ponderomotive squeezing ex-
periment modifies the dynamics of the system, and allows
squeezing to be observed without measuring at the level of
the SQL, which greatly relaxes the sensitivity requirements
compared to the SQL experiments.

The paper is organized as follows: In Sec. II we discuss
the origin of ponderomotive squeezing using a single Fabry-
Perot cavity as a simple but instructive case that explains
many features of our experiment, and will guide our choice
of parameters; in Sec. III we present and motivate the more
complex design of the experiment; in Sec. IV we calculate
contributions from expected noise sources; and in Sec. V we
summarize our conclusions.

II. SIMPLIFIED CONSIDERATION: AN OPTICAL CAVITY

In this section we consider the ideal case of a short, loss-
less Fabry-Perot cavity. For clarity and simplicity, we restrict

ourselves to the quasistatic regime, in which the cavity band-
width is much larger than the frequency of observation. This
approximation provides quantitatively correct results in cer-
tain limited test cases.

Consider a Fabry-Perot �FP� cavity with a movable and
perfectly reflective end mirror. Suppose laser light with fre-
quency �0 �the carrier� is incident on a fixed and highly
reflective input mirror, and assuming the cavity to be close to
resonance, we list several quantities characterizing the state
of the cavity, namely its linewidth �, finesse F, circulating
power W, and the phase shift 	 gained by the carrier as it
comes out from the cavity, in terms of more basic param-
eters,

� =
cTI

4L
, �1�

F =
2�

TI
, �2�

W�I0,
�� =
4I0

TI

1

�1 + 
�
2�

, �3�

	�
�� = − 2 arctan�
�� . �4�

Here L is the cavity length, TI the input-mirror power trans-
missivity, I0 the incident power, and c the speed of light. The
detuning parameter 
�,


� �



�
, �5�

is defined in terms of 
��res−�0, the difference between
the cavity’s �most nearby� resonant frequency and laser fre-
quency. Note that in Eqs. �3� and �4�, we have explicated the
dependence of W on I0 and 
�, and the dependence of 	 on

�. Mathematically, our assumptions of highly reflective in-
put mirror and the cavity’s closeness to resonance amounts to
keeping results up to leading order in TI and 
L /c.

The radiation pressure, or ponderomotive, force F acting
on the end mirror is proportional to the optical power W
circulating in the cavity,

F =
2W

c
. �6�

For a particular constant set of input power I0 and detuning
parameter 
�, a dc force acting on the end mirror, e.g., from
the pendulum, can balance the associated ponderomotive
force and keep the mirror in mechanical equilibrium. Now
suppose we shift the mirror statically, by dx, from this equi-
librium condition. Because the detuning parameter 
� will
change, the ponderomotive force will also change, giving
rise to an additional restoring force to that from the pendu-
lum. The total restoring force can be written as �with �p the
pendulum frequency and M the end-mirror mass�:
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�7�

As we shall see later in this paper, the optical rigidity �or
spring constant� that appears in this equation will be crucial
for our ponderomotive squeezer. Note that Eq. �7� is valid
not only for static changes in cavity length, but for all mirror
motion band-limited well below the cavity linewidth—the
quasistatic regime. It is also easy to obtain

d
�

dx
= −

4�0

cTI
. �8�

We are now ready to set up the frequency-domain equa-
tion of motion for the mirror, at nonzero frequencies well
below the cavity linewidth �i.e., in the quasistatic regime�:

− M�2x̃ = − �M�p
2 + Kopt�x̃ +

2

c

�W�I0,
��
�I0

I0 + F̃ext. �9�

In this equation, the ponderomotive force associated with ac

power fluctuation Ĩ0 and external forces F̃ext have been con-
sidered. As for the output field, the ac component of the
phase of the output carrier can be written as �cf. Eqs. �4� and
�8��:

	̃ = �d	�
��
d
�

��d
�

dx
�x̃ . �10�

Here and henceforth in this section, we shall use �Ī0 , 
̄� ,	̄�
to denote dc components of the input power, detuning param-

eter, and carrier phase shift, and use �Ĩ0 , 
̃� ,	̃� to denote
their ac components.

As can already be seen from Eqs. �9� and �10�, any sus-
pended cavity �not necessarily detuned� will convert input
amplitude fluctuation into mirror motion, and subsequently
output phase fluctuation—producing ponderomotive squeez-
ing when the input fluctuations are quantum limited. Hence-
forth in this section, we shall further develop and apply these
equations and study main features �in particular advantages�
of a ponderomotive squeezer based on detuned cavities with
optical rigidity. Before doing that, let us point out that in the
case both mirrors are suspended, we can replace M in the
above formulas by the reduced mass

m =
MIME

MI + ME
, �11�

where MI and ME are the masses of the input and end mirrors
of the cavity, respectively. �Throughout the paper we refer to
the input and end mirrors of cavities as input mirror �IM� and
end mirror �EM�, respectively.� We can do so because the
cavity finesse is high, and the ponderomotive forces acting
on the IM and EM are equal, with a value that only depends
on their relative distance.

A. Input-output relation

Let us now put the above discussions, in particular Eqs.
�9� and �10�, into the two-photon formalism �21�. The input
field can be written as

a�t� = �A + aA�cos �0t + aP sin �0t , �12�

where A is the mean amplitude and aA,P are quantum ampli-
tude and phase fluctuations. It is convenient to normalize a
coherent-state input wave as

��0A2 = 2Ī0, SaA
= SaP

= 1, SaAaP
= 0, �13�

where SaA
, SaP

, and SaAaP
are the single-sided spectral densi-

ties of aA and aP, and their cross spectral density, respec-
tively. In the quasistatic regime, the entire output field b�t�
will simply be phase-shifted from a�t� by 	�
��t��, or

b�t� = �A + aA�cos��0t − 	� + aP sin��0t − 	� . �14�

Decomposing 	 into its dc �	̄� and ac �	̃� components, and

treating 	̃ as a small quantity, we obtain

b�t� = �A + bA�cos��0t − 	̄� + bP sin��0t − 	̄� , �15�

with

bA = aA,

bP = aP + A	̃ = aP + � 4

TI

1

1 + 
̄ �
2�2A�0x̃

c
, �16�

where in the second line we have inserted Eq. �10�.
So far we have essentially set Eq. �10� into the two-

photon formalism, let us now further develop Eq. �9�. From
Eqs. �7� and �3�, we have

Kopt = −
4�0W̄

�Lc


̄ �

1 + 
̄ �
2

. �17�

From this, we can further define a characteristic frequency,

�2 �
Kopt

M
= −

1

�

4�0W̄

MLc


̄�

1 + 
̄ �
2

= −
4�0I0
̄�

Mc2 � 4

TI

1

1 + 
̄ �
2�2

.

�18�

Note that � can either be real �
̄��0� or be purely imagi-

nary �
̄��0�.
On the other hand, the fluctuating part of the power inci-

dent on the cavity is

Ĩ0 = ��0AaA, �19�

which induces a fluctuating force of

2

c

�W�I0,
��
�I0

Ĩ0 = � 4

TI

1

1 + 
̄ �
2�2��0A

c
aA �20�

on the mirror �cf. Eq. �9��. Inserting Eqs. �17�–�20� into Eq.
�9�, we get
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M��2 + �p
2 − �2�x̃ = � 4

TI

1

1 + 
̄ �
2�2��0A

c
aA + F̃ext.

�21�

This means the mirror’s �complex� mechanical resonant fre-
quencies will shift from ±�p to ±	�p

2 +�2—if the latter lie
within the quasistatic regime. Suppose this is true, and that
�p is much lower than 
�
, then ±� gives the mirror me-
chanical resonant frequencies. These could correspond either
to a resonance in the usual sense when � is real, or to a pure
instability when � is purely imaginary.

Finally, the input-output relation of the cavity can be ob-
tained by inserting Eq. �21� into Eq. �16�.

B. Quadrature coupling and squeezing

Assuming no external forces acting on the mirrors, we can
set the frequency-domain input-output relation in a very
simple form,

�bA

bP
� = � 1 0

− 2K��� 1
��aA

aP
� �22�

with a coupling constant

K��� = � 1

1 − ��2 − �p
2�/�2� 1


̄�

. �23�

Clearly, K couples the output amplitude and phase quadra-
tures, and gives rise to squeezing in the output state.

In order to quantify squeezing, we look at the quadrature
field measured by a homodyne detector, which is given by

2b�t�cos��0t − 	̄ − 
� = �A + bA�cos 
 + bP sin 
 , �24�

where 
 is the homodyne angle, with a convention in which

=0 corresponds to the simple amplitude detection of the
output field. The fluctuating part of the output quadrature is

bA cos 
 + bP sin 
 = aA�cos 
 − 2K sin 
� + aP sin 
 ,

�25�

with a spectral density of

S
��� = 1 + 2K2 − 2K�sin 2
 + K cos 2
� � �

2��� .

�26�

Note that for an unsqueezed vacuum state we have S
���
=1.

By minimizing �
��� over quadratures, we obtain the am-
plitude squeeze factor

�min��� =
1


K���
 + 	1 + K2���
, �27�

which is achieved at


min��� =
1

2
arctan

1

K���
. �28�

In configurations considered here, the pendulum fre-
quency �p is always much below � and 
�
, and thus neg-

ligible. Now we can divide the value of � into three regimes,
if 
�
 lies within the quasistatic regime �otherwise only the
first regime exists�. First, when �� 
�
, we have a constant

K of 1/ 
̄�, which means we have a frequency independent
squeezed state. The amplitude squeeze factor and squeeze
angle of this state are

�min�� � 
�
� =


̄�


1 + 	
̄ �
2 + 1

, �29�


min�� � 
�
� =
1

2
arctan 
̄�. �30�

Second, for ���, the coupling constant K tends to zero and
the output state becomes vacuum. Third, for ��
�
, the
system goes through a resonance, with strong squeezing and
highly frequency-dependent squeeze angle, if � is real, and
goes through a smooth transition if � is purely imaginary.1

Consequently, we obtain a frequency-independent pon-
deromotively squeezed source with squeeze factor �29�
�which depends only on the detuning parameter 
̄��, and
bandwidth �. Although the squeeze factor �min can be low-

ered indefinitely by taking 
̄�→0, the bandwidth � will also
drop in this process, according to Eq. �18�—unless input
power and/or cavity finesse are increased.

As discussed in the introduction, such a squeezed state
can be transformed into frequency-dependent squeezed states
by optical filters �8,9,11,13,16�. Technically, the indepen-
dence in frequency makes it easier to reduce laser noise,
allowing broad-band squeezing, as we shall discuss in Sec.
IV D; it also simplifies our readout scheme.

C. Susceptibility to force noises

Let us now take into account the influence of noisy exter-

nal forces �cf. �21��. For the same F̃ext, if we denote the
mirror’s response, in the absence of optical rigidity, by x̃�0�,
then the mirror’s response in the presence of optical rigidity
can be written as

x̃ = −
�2

�2 − �2x�0�, �31�

which is suppressed by a factor �2 /�2, when ���. On the
other hand, the transfer function from mirror motion to out-
put optical field is not modified in any special way by the
optical spring �cf. Eq. �16��. In the end, optical-field fluctua-
tions caused by external forces on the mirror at the output
port of an optical-spring system is suppressed by the same
factor �2 /�2 from a free-mass system with comparable cir-
culating power, optical bandwidth, and external force distur-
bances.

This dramatic suppression, which applies to seismic noise
and all thermal noises, can easily be as large as two orders of

1In reality, we must also consider the influence from a controller,
which is necessary for stabilizing the detuned cavity, see Secs. II D
and IV C.
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magnitude in amplitude, and is the most important reason for
choosing an optical spring system as our candidate design for
the ponderomotive squeezer. Theoretically, such a suppres-
sion is present even when a mechanical spring is used. How-
ever, mechanical springs introduce thermal noise, which are
in general orders of magnitude higher than the vacuum noise
associated with optical springs �23,24�.

D. Radiation-pressure-driven instabilities

The quasistatic approximation we used in this section can-
not describe the ponderomotive damping associated with op-
tical rigidity. The sign of this damping is known to be oppo-
site to that of the rigidity �22�. In case we have a positive
rigidity, the damping will then be negative, leading an oscil-
latory instability at the resonance frequency, �, with a char-
acteristic time

�instab =
��1 + 
̄ �

2�
2�2 . �32�

It can, therefore, be suppressed by a feedback system acting
in restricted band �±1/�instab, which is outside of our fre-
quency band of interest ���. The control system for sup-
pressing this instability is detailed in Sec. IV C.

High circulating power in the detuned cavities, coupled
with high quality factor �Q� mechanical modes of the mir-
rors, may give rise another type of radiation-pressure in-
duced instability �25�. The motion of the mechanical modes
of the mirror creates phase modulation of the intracavity
field, which are converted into intensity modulation due to
the detuning of the cavity. The intensity fluctuations, in turn,
push back against the mechanical modes of the mirror. This
mechanism forms an optical feedback loop that may become
unstable in certain circumstances. In our case, the most likely
form of instability is that in which the frequency of the me-
chanical mode is comparable to the cavity linewidth. This
instability, which has been experimentally observed and
characterized for the input mirror modes of our experiment
�26�, is well outside the bandwidth of our experiment, and
stabilizing it with a narrow band velocity damping loop
should have little effect on the experiment. The modes of the
end mirror are likely to be too high in frequency �compared
to the cavity linewidth� to become unstable.

Radiation-pressure-induced torques can also lead to angu-
lar instability. Fabry-Perot cavities with suspended mirrors
are susceptible to a dynamical tilt instability �27�: as the
cavity mirrors tilt, the beam spots also walk away from the
center of the mirrors, which induces a torque that drives the
mirrors further away. This effect is considered in detail in
Sec. III A.

E. Optical losses

When a cavity with nonzero losses is considered, the
noise spectrum at the 
 quadrature becomes

S

loss��� =

TIS
��� + A
TI + A

, �33�

where S
��� is the lossless noise spectrum of Eq. �26�, and
A is the total loss per bounce in the cavity. Assuming that
A /TI��min and A�TI, we have

�min
loss��� � �min��� +

A
2TI

. �34�

III. EXPERIMENTAL DESIGN

In this section we describe the optical and mechanical
design of a realistic experimental setup for the ponderomo-
tive squeezer. The interferometer configuration shown in Fig.
1 is the baseline design for the experiment. The interferom-
eter is similar to that used in GW detection: a Michelson
interferometer with Fabry-Perot cavities in each arm. All the
mirrors of the interferometer are suspended as pendulums.
While squeezed light could be produced with the use of a
single cavity and suspended mirror, as shown in Sec. II, the
use of interferometry is necessary to introduce common
mode rejection of the laser noise, which would otherwise
mask the squeezed light. Moreover, dark fringe operation of
the Michelson interferometer allows for keeping the dc

FIG. 1. �Color online� Schematic of a interferometer designed to
extract ponderomotively squeezed light due to radiation-pressure-
induced motion of the low-mass end mirrors. Light from a highly
amplitude- and phase-stabilized laser source is incident on the beam
splitter. High-finesse Fabry-Perot cavities in the arms of the Mich-
elson interferometer are used to build up the carrier field incident on
the end mirrors of the cavity. All interferometer components in the
shaded triangle are mounted on a seismically isolated platform in
vacuum. The input optical path comprises a pre-stabilized 10 Watt
laser, equipped with both an intensity stabilization servo and a fre-
quency stabilization servo. FI is a Faraday isolator.
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power below photodetector saturation levels.2

We consider the design features most critical to the goal
of achieving measurable levels of squeezing. The optical de-
sign, described in Sec. III A, includes the following.

�a� A powerful input laser beam with stringent but
achievable requirements on frequency and intensity stability
to mitigate the effects of laser noise coupling.

�b� A Michelson interferometer with good contrast for
common-mode rejection of laser noise at the output.

�c� Fabry-Perot cavities with
�i� high finesse to realize the large optical power in-

cident on the suspended mirror,
�ii� substantial detuning �comparable to the cavity

linewidth� to create the optical spring,
�iii� a geometric design that mitigates the effects of

radiation-pressure-induced angular instability.
�d� An efficient readout chain to detect the squeezing.

The mechanical design of the mirror oscillator, also cru-
cial to the performance of the interferometer, is described in
Sec. III B.

A. Optical design

The optical configuration is shown in Fig. 1, and upper
section of Table I lists the optical parameters that we assume
in designing the experiment.

1. Detuned arm cavities

The optical spring is the predominant feature of the de-
tuned arm cavity—which has been analyzed in detail in Sec.
II. In particular, when a cavity is detuned, the optical spring
modifies the response function of the differential mode from
a free mass �here we ignore the pendulum frequency� to a
harmonic oscillator with resonant frequency � �see Eq.

�18��. Our frequency band of interest is ���, in which the
response of cavity lengths to external disturbances �e.g.,
driven by seismic and/or thermal forces� is suppressed by
�2 /�2, and the �ideal� output state is a frequency-
independent squeezed vacuum with squeeze factor as a func-
tion of 
̄�=
 /� �Eq. �29��. Based on this qualitative under-
standing, in order to obtain a substantial squeeze factor up to
around 1 kHz, we need to choose an optical configuration
such that � is at least several kHz, and 
 of the same order
of magnitude as �. This lead us to a high-power, low-mass,
substantially detuned arm cavity.

We have chosen to realize our optical-spring squeezer by
a Michelson interferometer with Fabry-Perot cavities formed
by a large, suspended mirror as the input mirror �IM�, and a
small, light, highly reflective mirror as the end mirror �EM�.
The EM is chosen to be 1 g, as light as we deem possible
with current experimental techniques. We note that the opti-
cal spring could also be created with a detuned signal recy-
cling mirror, as is done in Advanced LIGO, but that would
require an additional mirror and optical cavity, increasing the
complexity of the system. The suspensions are primarily nec-
essary to allow the mirrors to behave as free masses in the
experimental frequency band, but also have the added benefit
of isolation from seismic noise. To achieve these benefits, a
pendulum resonant frequency of 0.7 Hz is chosen. The arm
cavities must be placed in vacuum chambers due to the high
finesse and circulating power, and also to meet the length
stability requirements. The mechanical design of the suspen-
sion of the end mirror is discussed in the next section.

Next we discuss the optical parameters of system. We first
set an “ideal” target squeeze factor of 17 dB, i.e., the squeeze
factor of the system in absence of optical losses and technical
noises. This allows for the contribution of the vacuum fluc-
tuations from the anti-symmetric port to the total noise to be
small. This determines 
��0.31. As a next step, we fix the
finesse of the arm cavity, which should be high because we
would like to have to have the optical-spring resonance � as
high as possible, for a better noise suppression. Although this

2An alternative would be to use much lower input power and
much higher finesse cavities, which is generally not feasible.

TABLE I. Select interferometer parameters and the nominal values we assume for them.

Parameter Symbol Value Units Parameter Symbol Value Units

Light wavelength �0 1064 nm Input mirror transmission TI 8�10−4

Input mirror mass MI 0.25 kg End mirror mass ME 1 g

Arm cavity finesse F 8�103 Loss per bounce A /2 5�10−6

Input power I0 4 W Arm cavity detuning 
 1.8�104 rad/sec

Arm cavity circulating power W 9 kW Arm cavity length L 1 m

BS refl. imbalance �BS 0.01 Michelson phase imbalance ��M

Michelson loss imbalance ��M Input mirror mismatch �T 25�10−6

Detuning mismatch �
 10−6 �0 Arm cavity loss mismatch �� 5�10−6

Laser intensity noise 10−8 Hz−1/2 Laser phase noise 10−6

Suspension resonant frequency �0 0.7 Hz Suspension mechanical Q Q 105

Parallel coating loss angle �� 4�10−4 Perpendicular coating loss angle �� 4�10−4

Substrate Young’s modulus Y 7.3�1010 N m−2 Coating Young’s modulus Y� 1.1�1011 N m−2

Coating thickness d 10 �m Beam radius w 1 mm

Detection loss �det 0.1 Temperature T 293 K
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could be achieved by increasing input power alone, it is
much more efficient to increase the finesse, because �
�	I0 /T, see Eq. �18�, note that we need to maintain for a
fixed target squeeze factor; a higher input power is also un-
desirable because of the associated increase in amplitude and
phase noise. On the other hand, cavities with too high a
finesse will limit the output squeeze factor through increased
optical losses, and will also increase the instability from the
optical spring. In the end, we set the transmission of the
input mirror to be 800 ppm, which, if assumed to be the
dominant loss in the cavity, gives a finesse of 8�103. In this
system, for a 4 W input laser power, we have a circulating
power of roughly 9 kW, and ��2��5 kHz.

2. Angular instability

Our discussion of the optical properties of the cavities so
far has been restricted to the longitudinal resonances. In this
section we consider the geometrical properties of the cavity,
necessary to avoid angular instability due to radiation-
pressure-induced torque �27�. For a cavity with two spherical
mirrors, the equations of motion of the two mirrors are rather
straightforward, if the motion frequency is much lower than
the cavity bandwidth �which is trivially true in our case�.
Suppose �I,E are the tilt angles of two mirrors with radii of
curvature RI,E, separated by L, then the equations of motion
of �I,E are given by �here and henceforth we denote IM by I
and EM by E�

� �̈I

�̈E

� = M��I

�E
� , �35�

with

M =
1

1 − gIgE
�gE�I

2 − �I
2

− �E
2 gI�E

2 � − ��I
2 0

0 �E
2 � . �36�

Here �I,E are the resonant frequencies of the tilt degrees of
freedom of the mirrors in the absence of radiation pressure,3

and gI,E are the g-factors, defined by

gk = 1 −
L

Rk
, k = I,E . �37�

The angular frequencies when radiation pressure forces are
present, �I,E are given by

�k
2 �

2WL

cJk
, k = I,E , �38�

where Jk are the moments of inertia of each mirror along the
tilt axis under consideration. These frequencies set the time
scales of tilt-induced dynamics associated with each mirror.
In Table II, we list the relevant parameters for our IM and
EM, along with the resulting �k. Note that �E does seem to
be in a regime �a few Hz� where we must worry about tilt
instability. As pointed out by Sidles and Sigg �27�, in the
absence of external restoring forces �i.e., as �I,E→0�, we
have

det M = − �I
2�E

2/�1 − gIgE� � 0, �39�

which means M always has one positive eigenvalue �pure
instability� and one negative eigenvalue �stable resonant
mode�. On the other hand, the �I,E terms, if large enough,
will stabilize the system.

Let us first examine the case without external restoring
force. The resonant frequencies are in general given by

�±
2 =

1

2�1 − gIgE�
− �gE�I

2 + gI�E
2�

± 	�gE�I
2 + gI�E

2�2 + 4�1 − gIgE��I
2�E

2 . �40�

Noticing that we have �I
2 /�E

2 �8�10−5�1, we can ex-
pand the unstable resonant frequency up to the leading order
in �I

2 /�E
2 . We also must require that gE is not very close to 0

�
gE
��I
2 /�E

2�. Now if we pay attention only to �−
2, which is

the unstable resonant frequency, then we have

�−
2 = 
−

gI�E
2

1 − gIgE
, gI,gE � 0,

�I
2

gE
, gI,gE � 0.� �41�

This confirms, in our special case, that cavities with negative
g factors are less unstable, as argued by Sidles and Sigg �27�.
Moreover, each mirror itself, when the other mirror is held
fixed, is stable in the case of negative g factors �since diag-
onal elements in M are both negative�.

Now let us study the stability when external restoring
forces are available. In general the resonant frequencies �
are given by

3We consider two types of tilt angles, pitch and yaw, described in
Sec. III B for our mirrors. In the ideal situation, pitch and yaw are
orthogonal degrees of freedom and can be considered separately.
The resonant frequencies of the IMs and EMs when they are “free”
masses, �I,E, will, however, differ from each other, as will the pitch
and yaw mode frequencies for each optic.

TABLE II. Moments of inertia of the mirrors along their tilt axes. We model each mirror as a cylinder
with radius r and thickness T, and J=Mr2 /4+MT2 /12. Circulating powers of 9 kW are assumed.

k r �cm� T �cm� Mk �g� Jk �g cm2� �k / �2�� �Hz�

IM 4.25 2.00 250 1211 0.11

EM 0.60 0.30 1.00 0.098 12.4
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det�M + �2I� = 0. �42�

The stability condition can be stated more formally as having
M negative definite, which means requiring

�1 − gIgE��I
2 − gE�I

2 � 0, �43�

�1 − gIgE��E
2 − gI�E

2 � 0, �44�

det M � 0, �45�

with

det M � 0

⇔��I
2 −

gE�I
2

1 − gIgE
���E

2 −
gI�E

2

1 − gIgE
� �

�I
2�E

2

�1 − gIgE�2 .

�46�

For negative g-factor cavities, which start out to be less
unstable, the stabilization is easy: Eqs. �43� and �44� are
automatically satisfied �since the diagonal elements are al-
ready negative in absence of external restoring force�, while
Eq. �46� can be satisfied without requiring any EM external
stabilization, if

�I � �I /
gI
 �47�

Stabilization is less straightforward for positive g-factor
cavities: �I,E will have to be at least of the same order as
�I,E, unless we fine-tune gI,E. For example, Eqs. �43� and
�44� already impose

�I,E �	 g2,1

1 − g1gE
�I,E, �48�

which suggests that �E will have to be at least comparable to
�E, unless we make gI very small, which is undesirable due
to decreased stability of spatial optical modes. Defining

�I,E
2 = �1 + �I,E�

gE,I�I,E
2

1 − gIgE
, �gI,E � 0� , �49�

the stability condition can be written as

�I � 0, �E � 0, �I�E �
1

gIgE
. �50�

For stability reasons, we propose using negative g-factor
cavities. To minimize the angular instability and simulta-
neously maximize the beam spot size at the mirrors in order
to reduce the effects of the coating thermal noise, as dis-
cussed in Sec. IV B, we propose cavities of length L�1 m,
with the mirrors having a radius of curvature slightly greater
than 0.5 m, in order to have g�−0.8.

From Eq. �47�, we find a stabilizing IM frequency of
0.12 Hz, which is trivially satisfied, to be sufficient to stabi-
lize the system without an active control system.

3. Optical readout

Ideally, the squeezed field would be measured at the an-
tisymmetric port with a homodyne detector. In this setup, a

strong local oscillator �LO� field is mixed on a beamsplitter
with the squeezed field, and the two resulting fields are mea-
sured by photodiodes and the resulting photocurrents are
subtracted, eliminating the component of the signal due to
the LO alone. This scheme is advantageous because it allows
for an arbitrary quadrature of the squeezed field to be mea-
sured, simply by changing the phase of the LO. The disad-
vantage of this scheme, however, is that the LO field must be
much stronger than the carrier component of the squeezed
field. Due to mismatches in the system, a portion of the
carrier light will couple out the antisymmetric port. With the
parameters for contrast defect and other optical imperfection
listed in Table I, we expect the carrier light at the output to
be on the order of 1 mW. While a LO level that is an order
of magnitude larger is readily achievable, we begin to reach
the saturation limits of our photodetectors.

An alternative readout scheme is to simply measure the
squeezed field with a photodetector. In this scheme, only the
amplitude fluctuations of the light exiting the antisymmetric
port may be measured. However, our optimization scheme
for laser noise, as described in Sec. IV D, has the side effect
of aligning the squeezed quadrature with the amplitude
quadrature of the light exiting the antisymmetric port. While
this limits us to measuring only the amplitude fluctuations of
the light, this is precisely the quadrature in which the squeez-
ing occurs. The homodyne readout scheme is preferable, but
the direct readout is a viable alternative to avoid power con-
straints.

In practice, since we wish to control the interferometer
degrees of freedom, we use the detection scheme shown in
Fig. 4. A small fraction of the antisymmetric port light �R
�1 in power� is sampled to generate an error signal for the
control loop, while the majority is preserved for injection
into an interferometer or for detection of squeezing using
either the homodyne or direct detection methods described
above.

B. Mechanical design

Both the input and end mirrors of the cavities are sus-
pended from pendulums. The input mirrors have a mass of
250 g and a 75 mm diameter; they are identical to the sus-
pended optics used in the input modecleaner of the initial
LIGO detectors �28�. Greater care must be taken in the sus-
pension of the end mirrors of the cavities, however—due to
their small mass of 1 g, the EMs have greater susceptibility
to thermal noise. We use a monolithic fused silica suspen-
sion, in which thin fused silica fibers are welded to the side
of the mirror substrate using a CO2 laser. This technique has
been demonstrated to produce a pendulum mode Q of ap-
proximately 107 �29�. The suspension design consists of two
fibers, each approximately 10 �m in diameter, welded or
glued to the mirror, as shown in Fig. 2.

To maintain high circulating power in the arm cavities,
and minimize interference from higher-order spatial modes,
alignment of the mirror is critical. Controlling the pitch �ro-
tation about the horizontal diameter of the mirror� is a par-
ticularly important consideration, since we expect large pitch
angles due to static displacement of the EM with 9 kW of
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laser power impinging on it. The frequency of the pitch
mode is determined by the location of the attachment point
between the fiber and the mirror substrate, and the diameter
of the fiber �30�. For our regime of fiber lengths, typically
0.5 m, the frequency of the pitch mode frequency, is approxi-
mately

�pitch =	T�h + ��
Jpitch

, �51�

assuming �+h� l, where � is the characteristic length at
which the fiber bends above its attachment point, h is the
distance of the attachment point from the mirror center of
mass, l is the length of the suspension wire, T is the tension
in the fiber, and Jpitch is the moment of inertia for the pitch
degree of freedom �given in Table II�. A higher frequency,
�pitch, will require a larger force to control the pitch of the
mirror. Minimizing the necessary force, and hence �+h is
desirable to limit the actuator range. For fibers with a diam-
eter of 100 �m, ��8.5 mm, while for 10 �m, ��8.5
�10−2 mm. In the 100 �m case, it would be impossible to
make �+h smaller than a few millimeters, while for the
10 �m case, it can be made very small by choosing h appro-
priately. Consideration of the necessary torques that must be
supplied, and the torques that may be generated by actuators,
as well as the ability to create and work with thin fibers,
leads to a choice of fiber diameter of approximately 10 �m.
Taking �+h=100 �m, Jpitch=0.098 g cm2, T=98 dyne, we
get �pitch�2��0.50 Hz. The yaw frequency, again assum-
ing that �+h� l, is

�yaw =	2Tab

lJyaw
, �52�

where 2a is the separation between attachment points of the
fibers at the top end of the suspension, 2b is the distance
between the attachment points on either side of the mirror,

and Jyaw is the moment of inertia for the yaw degree of
freedom. For a=6 mm, b=3 mm, Jyaw=0.098 dyne, we get
�yaw�2��0.43 Hz.

Control of the longitudinal motion of the end mirror is a
difficult task. When the 9 kW of power in the cavity is inci-
dent on the end mirror, the mirror feels a constant force,
which must be balanced. We choose to balance the constant
�dc� radiation pressure force with gravity. When the mirror is
displaced by a few millimeters from its equilibrium �with no
laser light present�, for a given �fixed� pendulum length, the
gravitational restoring force will be equal to the constant
radiation pressure force. In order to lock the cavity at full
power, we propose the following scheme: First, we use an
electromagnetic actuator to offset the mirror the required dis-
tance from its equilibrium position. Next, we lock the cavi-
ties with very small circulating powers, such that the radia-
tion pressure forces are negligible. We slowly increase the
power in the system, which increases the radiation pressure
forces on the mirrors. Simultaneously, we reduce the pulling
force of the actuator, which will be counteracted by the in-
creasing radiation pressure force, keeping the mirror at a
fixed position. When the power reaches its design value, the
mirror is held in place by a balance of the radiation pressure,
gravitational restoring, and electromagnetic forces. This pro-
vides a way of controlling the longitudinal degree of freedom
of the mirror.

IV. NOISE COUPLINGS

In this section, we estimate the contribution of expected
noise sources to the total noise budget. These include thermal
noise from the suspended mirrors �including thermal noise
from the optical coatings on the substrates�, as well as laser
intensity and phase noise. In Fig. 3, we show the spectral
density of the dominant noise sources both in terms of noise
power relative to the vacuum level in a given quadrature, and
also in terms of �free mass� displacement, which does not
include the suppression from the optical spring. Furthermore,
we shall see that the coupling of laser noise has a very strong
dependence on the quadrature to be measured. Careful
choice of the measurement quadrature is critical to successful
extraction of the squeezing; this is analyzed in Sec. IV D.

A. Suspension thermal noise

Applying the fluctuation dissipation theorem �31� to an
object of mass M that is suspended from a pendulum with
mechanical quality factor Q and resonant frequency �R, we
get the free mass displacement noise spectrum �32�

Ssusp��� =
4kBT

M�Q

�R
2

��R
2 − �2�2 +

�R
4

Q2

, �53�

where T is the temperature and kB is the Boltzmann constant.
The monolithic fused silica suspension, described in Sec.
III B, is used primarily to reduce �. Metal wires and alter-
native methods of attachment have higher losses, which
would make the suspension thermal noise more severe. As
shown in the curve labeled “suspension thermal” in Fig. 3,

FIG. 2. �Color online� Front and side view of the end mirror
suspension. The dot represents the center of mass of the mirror. The
fibers are attached to a point a distance h, which could be negative,
above the mirror center of mass. The distance between the attach-
ment points at the mirror is 2b, and at the top of the suspension is
2a. Not drawn to scale.
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the monolithic fused silica suspension will place the suspen-
sion thermal noise at a level where it does not have any
measurable effect on the experiment.

B. Internal and coating thermal noise

The free mass displacement noise spectrum due to inter-
nal and coating thermal noise has been approximated as �33�

SICTN�f� =
2kBT

�3/2f

1

wY��substrate +
d

w	�
�Y�

Y
�� +

Y

Y�
���� .

�54�

We assume that

�substrate �
d

w	�
�Y�

Y
�� +

Y

Y�
��� ,

so that the dominant thermal noise is due to the optical coat-
ing. Using the parameters listed in Table I, we calculate the
coating thermal noise shown in Fig. 3. We note that the coat-
ing thermal noise is potentially a limiting noise source near
1 kHz.

C. Control system noise

As discussed in Sec. II D, the optomechanical resonance
is unstable, i.e., it grows in time, with typical time scale for
instability given by Eq. �32�. This instability must be con-
trolled by use of a feedback loop that stabilizes the unstable
resonance by a damping-like control force.

Defining s= j�, the transfer function P�s� of the pendu-
lum, including the optical spring effect, is given by

P�s� = �s2 +
�2�2

�� + s�2 + 
2�−1

. �55�

This transfer function is straightforward to interpret; it is
the transfer function of an ideal spring, with a spring con-
stant that is filtered by the cavity pole. In the limiting case
that ��s and ��
, the transfer function of an ideal pendu-
lum is obtained. This transfer is unstable because it has poles
in the right half plane �the real part of the pole is greater than
0�.

To stabilize this resonance, we apply a velocity damping
force via a feedback control system; a schematic for the con-
trol system is shown in Fig. 4. Ordinarily, we are interested
in the �squeezed� output field b that exits the ponderomotive

FIG. 3. �Color online� Left panel, the different noise sources relative to the vacuum level, as a function of frequency. The dominant noise
below 1 kHz is optical losses, which are primarily comprised of detection losses �10%� and the optimization losses �13% in one arm�. Right
panel, the same noise sources in terms of equivalent displacement of a free mass �the displacement noise that each noise source would exhibit
if the optical spring were not present�. We estimate that a sensitivity of 5�10−16 m Hz−1/2 is necessary to measure squeezing at 100 Hz, and
the required sensitivity drops as frequency to the second power at higher frequencies.

FIG. 4. �Color online� Block diagram for the feedback loop. a
and b are the input and output quadrature fields; ni are vacuum
noise fields entering the different port of the beamsplitter �BS� that
has power reflectivity R and transmission T. A small fraction of the
output �squeezed� field u=	Rb is used to generate a shot-noise-
limited error signal for a feedback loop to control the position of the
differential mode of the ponderomotive interferometer �IFO�, while
the remainder y=	Tb is used to make sub-quantum-noise-limited
measurements. The sample beam u is filtered by F�s�, a transfer
function that converts quadrature fields into force, and Q�s� con-
verts force back into quadrature fields. f are spurious forces that act
on the interferometer mirrors.
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interferometer �IFO�, but we need to detect a small fraction
of b to generate a control signal for damping the unstable
resonance. We, therefore, insert a beamsplitter �BS� at the
IFO output and use the field u=	Rb �R�1� in a feedback
loop. The quadrature field u is converted into a force by the
transfer function F�s� and Q�s� converts force to quadrature
fields. The velocity damping term is included in F�s�. Q�s�
contains the force-to-displacement transfer function P�s� �see
Eq. �55��, as well as the input-output relation that converts
displacement to quadrature field �see, e.g., Eqs. �63� and �64�
of Ref. �19��. The majority of the squeezed field, y=	Tb, is
preserved as a squeeze source. Vacuum noise fields n0, nc1,
and nc2 enter the open ports of the beamsplitter, and must be
accounted for in the total noise budget.

Defining the open-loop gain of the feedback system as

G�s� = − 	RF�s�Q
�s� , �56�

the squeezed output field y is given by

y
 =
	TM
 · a

1 + G�s�
+

Q

	T

1 + G�s�
f +

TG�s�
1 + G�s�

1
	R

�nc1�
 − 	R�nc1�
,

�57�

where M is a matrix operator that converts the input field a
to the output b, Q converts forces into quadrature fields, and
the subscript 
 denotes the projection on the quadrature to be
measured. Equation �57� warrants some discussion. The first
term contains the squeezed output due to the input field a. In
order to realize the squeezing without the influence of the
control system, it is necessary to make G�s� as small as pos-
sible in the band where squeezing is to be measured. Simi-
larly, when G�s��1, the last term dominates and R should be
kept small to couple as little of the vacuum noise �nc1�
 to the
output y
.

4 Finally, to stabilize the optomechanical reso-
nance, we need to introduce a damping term to P�s� �implic-
itly included in G�s��. We propose a filter transfer function
that is equivalent to applying a velocity damping,

F =
− s�d

	R
, �58�

where �d is a damping constant chosen to stabilize the sys-
tem. The open loop gain then becomes

G�s� = s�d�s2 +
�2�2

�� + s�2 + 
2�−1

. �59�

In addition to stabilizing the optomechanical resonance,
we must minimize the additional noise due to vacuum fluc-
tuations that are introduced by the new beamsplitter. We con-
sider only the newly introduced vacuum noise that is de-
tected by the feedback detector, which is then fed back onto
the position of the pendulum and thereby enters the signal
detected by the squeeze detector. We neglect the correlations

between these vacuum fluctuations that enter directly at the
beamsplitter with those that enter through the feedback loop.
This is a valid assumption for frequencies at which 
G�s�

�1, which is the case in our measurement band. Assuming
that the feedback detection is shot-noise limited, then the
power spectral density of the additional noise, relative to
shot noise, is

Sn �	� G�s�
1 + G�s�

� 1
	R

+ 	R �60�

�see the last two terms in Eq. �57�, with R�1 so that
	1−R�1�. Choice of 3% to 10% for the nominal value of R
gives acceptable levels of loss for the squeezed output beam,
while allowing for feedback. We note that for the case

G�s�
�1, that these expressions are not valid, and a detailed
calculation of the correlations must be done. The correlation
between the last two terms in Eq. �57� depends on the
quadrature being measured to do the feedback; we assume
the worst case scenario for the noise, namely that the two
terms add in amplitude.

In order to keep the coupling of vacuum noise nc1 into y


at a minimum, we must make the loop gain G�s� as small as
possible at frequencies within the squeezing measurement
band �about 100 Hz to 1 kHz�, while still having sufficient
gain at the optomechanical spring resonance frequency �typi-
cally 5 kHz�. We achieve this by including a sharp high-pass
filter in F�s�, typically an elliptic filter with high-pass corner
frequency at a several 100 Hz to preserve phase margin at
the optical spring resonance. The resulting contribution to
the overall noise budget is shown as the curve labeled “con-
trol noise” in Fig. 3, where we set �d=7�104 s−1, R=3%,
and a fourth-order elliptic high-pass filter with cutoff fre-
quency at 800 Hz. A detailed analysis of the control system
can be found in Ref. �34�.

D. Laser noise

Laser intensity and frequency noise couple to the output
port of the interferometer through imperfections and mis-
match in the optical parameters of the interferometer. Ana-
lytic calculation of such noise couplings were carried out in
Ref. �19�. The calculations lead to complex formulas that, in
our opinion, do not provide much insight into the couplings,
except the following qualitative features. For frequencies
much below � and �, and up to leading order of �L /c,
�L /c, and 
L /c, phase and amplitude noises both emerge in
single quadratures �as a result, there exist a phase-noise-free
quadrature, and an amplitude-noise-free quadrature�. The
phase noise does not drive mirror motion, and emerges at the
output at an orthogonal quadrature to the carrier leaking out
from that port �i.e., the carrier coincides with the phase-
noise-free quadrature�. The amplitude noise, on the other
hand, drives mirror motion, and emerges in a quadrature nei-
ther along nor orthogonal to the carrier. Different types of
mismatches direct laser amplitude and phase noises into dif-
ferent output quadratures. Up to linear order in mismatch, the
output phase �amplitude� noise can be expressed in the
quadrature representation as a sum of quadrature vectors,
each arising from one type of mismatch.

4We do not combine the last two terms containing �nc1�
 because
we will assume that those two terms are uncorrelated. This is not
true, but will at worst give an underestimation by a factor of 2 of
the noise, and for the cases when 
G
�1, the error is much smaller.

SQUEEZED-STATE SOURCE USING RADIATION-… PHYSICAL REVIEW A 73, 023801 �2006�

023801-11



In full numerical results, we did not observe phase-noise-
free and amplitude-noise-free quadratures, but instead found
output quadratures in which contributions from one of the
two laser noises has a rather deep minimum. The minimum-
phase-noise and minimum-amplitude-noise quadratures do
not generically agree with each other, nor do they generically
agree with the minimum-quantum-noise quadrature. How-
ever, we have discovered that it is possible, by intentionally
introducing controlled mismatches, to modify the quadrature
dependence of both of the output laser noises in such a way
that both the minimum-phase-noise and minimum-
amplitude-noise quadratures align with the minimum-
quantum-noise quadrature. Such a procedure greatly reduces
the importance of the laser noise, as far as the noise in the
minimum noise quadrature is concerned. This is shown in
Figs. 5 and 6, using our fiducial parameters in Table III.

Let us describe the optimization procedure in more detail.
Through the numerical simulation �19�, we determine that
the noise quadratures may be optimized through two steps,

as shown in Fig. 6. The first step is to detune the Michelson
from the dark fringe. The optimal position for the Michelson
detuning is that which aligns the minimum-amplitude-noise
quadrature to the minimum-quantum-noise quadrature. The
second step is to introduce an intentional loss into one arm of
the Michelson, placed artificially between the beamsplitter
and one of the arm-cavity mirrors, such that both minimum-
amplitude-noise and minimum-phase-noise quadratures
would align with the minimum-quantum-noise quadrature.
Interestingly, since the minimum-phase-noise quadrature co-
incides with the carrier quadrature leaking out from the out-
put port, the resulting squeezed output light is amplitude
squeezed.

As it turns out, the required artificial loss can be quite
large; for our fiducial parameters in Table I, the optimal loss
is approximately 10%. Such a large loss will noticeably limit
the amount of squeezing that may be detected, but the reduc-
tion in the laser noise is necessary to measure any squeezing
at all. As shown in Figs. 5 and 6, the laser amplitude noise
�as measured in the squeezed quadrature� is reduced by more
than 40 dB and the laser frequency noise by more than
60 dB in this process—both of them now are far below the
quantum noise level.

It is difficult to predict exactly the mismatches that will be
present in the physical experiment. Rather than making a
priori predictions for the intentional mismatch needed to op-
timize the noise couplings, we plan to perform this optimi-
zation empirically. We estimate that the ability to control the
loss at the level of 0.1% and the detuning at the level of
10−4
� is sufficient for the optimization.

Although we have greatly reduced the laser noise in the
ideal quadrature, we have not reduced its overall magnitude.
This presents a limitation because we must control the
quadrature measurement angle to be precisely at the ideal
quadrature. Small fluctuations in this measurement angle will
couple noise in from the orthogonal quadrature, where the
noise is much larger. This is evident from the sharp features
in Fig. 6, which shows that the margin for error in the mea-

FIG. 5. �Color online� The coupling of laser noise to the anti-
symmetric port is shown for the unoptimized and optimized cases.
The optimized case includes a Michelson detuning and intentional
loss in one of the arms.

FIG. 6. �Color online� The coupling of laser and antisymmetric port noise to the output as a function of the homodyne measurement
quadrature for the unoptimized case. The solid �red� curves represent the quantum optical noise, the dashed �blue� curves represent laser
intensity noise, the dotted �green� curves represent laser phase noise and the dash-dotted �cyan� curves represent the total noise. In �a�, the
minimal noise quadratures for the different noise sources are not the same. In �b�, the minimal noise quadratures for the laser intensity noise
and the vacuum fluctuations are now the same. For this case, only a Michelson detuning has been added. In �c�, the minimal noise
quadratures for the laser intensity noise, laser frequency noise and the vacuum fluctuations are now the same. For this case, a Michelson
detuning and a controlled loss in one arm �between the beamsplitter and the input mirror� were used.
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surement quadrature is quite narrow due to the laser fre-
quency noise.

E. Quantum noise and losses

The quantum noise, due to output port vacuum fluctua-
tions and optical losses, are also calculated using the noise
simulation code �19�. Considering only the noise that enters
through the output port, and neglecting other noise sources,
including optical losses, the vacuum field is squeezed by
17 dB inside the interferometer.

Next, we include optical losses at the levels given in Table
I. In particular, our simulation code has automatically taken
into account intracavity losses, losses due to transmission
through the IMs, losses of the beamsplitter, losses into the
common mode due to mismatches, and artificial losses intro-
duced to mitigate laser noise in the detected quadrature.
These together lead to a noise spectrum at the level of
�7 dB below shot noise �see Fig. 3�. We expect this to be
the limit to measurable squeezing in most of our frequency
band.

F. Summary of design considerations

Considerations of the detailed parameters of the experi-
ment is a sequence of trade-offs between achieving high lev-
els of squeezing and keeping the noise couplings to a mini-
mum. In Table III we summarize the highly intertwined and
often conflicting considerations that informed the design in
the preceding sections.

V. SUMMARY AND CONCLUSIONS

We have presented a design for an interferometer with
movable light mirror oscillators, such that the light �and
vacuum� fields circulating in the interferometer are squeezed
due to the coupling of radiation pressure and motion of the
mirrors. We show that even in the presence of reasonable,
experimentally realizable optical losses �at the level of 10−5

per bounce per optic�, thermal noise �associated with oscil-
lators with intrinsic loss factors of order 10−7�, and classical
laser noise �relative intensity noise at the level of 10−8 and
frequency noise 10−4 Hz/	Hz�, significant levels of squeez-
ing can be extracted from such a device. Specifically, we find
that as much as 7 dB of squeezing at 100 Hz is possible,
provided great care is exerted to measure the quadrature
where the laser noise coupling to the output is minimized, as
shown in Fig. 3. We note that the squeezed state produced by
this device will be far from a minimum uncertainty state �the
noise in the anti-squeezed quadrature relative to the squeezed
quadrature is much greater than required by the Heisenberg
uncertainty principle�. This will place requirements on the
stability requirements for any device to which the state is
applied.

Two aspects of the design require great care: the optical
performance of the high finesse, detuned arm cavities �de-
scribed in Sec. III A�; and the mechanical design of the sus-
pended 1 gram mirror oscillators, where thermal noise must
be kept at low, and pitch, yaw and longitudinal degrees of
freedom must be controllable by application of external
forces outside the measurement band �described in Sec.
III B�.

This is, to our knowledge, the first viable design for ex-
tracting the squeezing generated by radiation-pressure-

TABLE III. Design considerations for select interferometer parameters. Here we tabulate some of the competing effects that led us to the
choice of parameters listed in Table I and discussed in Secs. III and IV.

Parameter Advantages of large value Advantages of small value

EM mass Ease of construction Large optical spring frequency

Ability to sense and actuate motion

IM transmission Large optical spring frequency Reduce optical spring instability

�Cavity finesse� Reduce effective intracavity losses

Higher circulating power could damage mirrors

IM mass Ease of construction Increase optical spring frequencya

Work with existing sizes and solutions

Input power Large optical spring frequency Use available lasers

Stay below damage threshold of cavity mirrors

Detuning or 
� Optimize 
�=1/	3 for largest
squeezing bandwidth

Use smaller 
� to increase squeezing level

Spot size on EM Reduce coating thermal noise Reduce angular instability of cavity

Cavity length For fixed beam size on mirror surfaces,
longer length increases suppression of
higher order spatial modes
Larger mirror radii of curvature easier
to manufacture

Reduce instability of optomechanical resonance

aMaking the IM mass the same as that of the EM, for example, would increase the optical spring resonance frequency by 	2.
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induced rigidity in an interferometer, and construction of this
experiment is underway at our laboratory.
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