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The role of anyonic excitations in fast rotating harmonically trapped Bose gases in a fractional quantum Hall
state is examined. Standard Chern-Simons anyons as well as “nonstandard” anyons obtained from a statistical
interaction having Maxwell-Chern-Simons dynamics and suitable nonminimal coupling to matter are consid-
ered. Their respective ability to stabilize attractive Bose gases under fast rotation in the thermodynamical limit
is studied. Stability can be obtained for standard anyons while for nonstandard anyons, stability requires that
the range of the corresponding statistical interaction does not exceed the typical wavelength of the atoms.
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The experimental realization of Bose-Einstein condensa-
tion �BEC� of atomic gases �1� has given rise to a rich variety
of phenomena and motivated numerous investigations fo-
cused on ultracold atomic Bose gases in rotating harmonic
traps. BEC confined to two dimensions have been created �2�
and their response under rotation has been studied. Basically,
the rotation of a BEC produces vortices in the condensate
�3,4�. When the rotation frequency increases, the BEC state
is destroyed and for sufficiently high frequency, a state cor-
responding to fractional quantum Hall effect �FQHE� �5� is
expected to possibly occur �6�. In particular, when the rota-
tion frequency is tuned to the characteristic frequency of the
harmonic confining potential in the radial plane, FQHE states
have been predicted to become possible ground states for the
system �7�. This observation has been followed by studies
focused on the FQHE for bosons with short range interac-
tions �8,9�. FQHE states involve anyonic excitations �10�.
Starting from the standard Chern-Simons �CS� realization for
anyons �10�, it has been shown in �11� that in the thermody-
namical limit, a two-dimensional �2D� harmonically trapped
rotating Bose gas with attractive interactions can be stabi-
lized �in a FQHE state� thanks to its anyonic �quasiparticle�
excitations �12�.

The above mentioned description of anyons is not unique.
Another realization has been investigated in �13� where the
minimal coupling of the statistical gauge potential to matter,
which is constrained to have Maxwell-Chern-Simons �MCS�
dynamics, is supplemented by a Pauli-type coupling, as re-
called below. Differences do exist between CS and MCS
anyons. The latter stem from a statistical interaction having
finite range �whereas CS interaction has zero range� and have
an additional attractive mutual interaction �absent for CS
anyons�. These differences cannot be observed in electronic
quantum Hall systems �5� but may show up in fast rotating
attractive Bose gases. We point out that the existence of this
attractive mutual interaction may have an impact on the abil-
ity of MCS anyonic excitations to stabilize an attractive Bose
gas in a FQHE state. We find that stability requires that the
range of the MCS statistical interaction does not exceed the
typical wavelength for the atoms. The description of
Quantum Hall Fluids within the MCS Landau-Ginzburg
theory stemming from the MCS description of anyons is also
discussed.

Consider an interacting Bose gas at zero temperature in a
rotating harmonic trap with strong confinement in the direc-
tion of the rotation axis so that the system is actually two
dimensional. The Hamiltonian in the rotating frame �14� and
the corresponding action quoted here for further convenience
are �15�

H = �
A=1

N
1

2m
�pA − A�xA��2 + W + V + ¯ , �1�

S0 = �
t
��

A=1

N
m

2
ẋA

2 − W − V� + �
x

A�x� · J�x,t� + ¯ , �2�

where J�x , t�=�AẋA�t���x−xA�t��, the external gauge poten-
tial Ai�xA�=m��ijxA

j yields the Coriolis force, W
=�A=1

N �m /2���T
2 −�2�	xA	2 (�� /2�� �resp ��T /2��� is the ro-

tation �resp trapping� frequency), V=�A�BV�xAB� ,V�xAB� is
the two-body potential felt by the bosons in the plane. It can
be well approximated by V�xAB�=g2��xAB� since the scatter-
ing between ultracold bosons is dominated by the s wave
�14�. Here, g2 can be viewed as an effective coupling con-
stant encoding basically the effects of the harmonic axial
confinement �with trapping frequency �z /2� and localiza-
tion length lz=
1/m�z� along the rotation axis on the initial
three dimensional �3D� scattering properties of the atoms
�16�. This will be discussed later on. In �1� and �2�, the
ellipses denote possible multibody interaction terms. We now
consider the “limit” ���T for which the trapping and cen-
trifugal potential �nearly� balance each other.

The standard CS description of anyons �10� obtained from
�1� and �2� is achieved by minimally coupling to S0 a statis-
tical CS gauge potential a� :S0→S1=S0+�x�� /4���	
a�f	


+a�J� where the CS parameter � is dimensionless, J�

= �
 ;J� with 
=
�x , t�=�A��x−xA�t�� and J as given above
�f�
 1

2��	
f	
 , f�	=��a	−�	a� , f0 �resp f i� is the statistical
magnetic �resp electric� field�. The equations of motion for
a� take the field-current identity form f�=−�1/��J� �i�, en-
suring that particle-statistical magnetic flux composite
anyonic objects are formed �10�. Particle-flux coupling leads
to Aharonov-Bohm type interactions. The anyonic character
of the wave functions for the quasiparticles is determined by
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the Aharonov-Bohm phase �10� exp�i�Ca ·dx�=exp�i /�� �C
is some closed curve� that is induced when one quasiparticle
moves adiabatically around another one, equivalent to a
double interchange of identical quasiparticles in the wave
function. Then, their statistics are controlled by �: they
have Fermi �Bose� statistics when �=1/ ��2k
+1�2��(�1/ �2k�2��) , k�Z. The statistics are anyonic other-
wise. This leads to the CSLG action �17� underlying the
analysis presented in �11�. Since the statistical interaction is
mediated by a CS gauge potential, its range is zero.

Another realization for anyons has been proposed and dis-
cussed in �13�. It is obtained by coupling a MCS statistical
gauge potential a� to S0 through minimal and nonminimal
�Pauli-type� coupling term, the strength of this latter being
fixed to a specific value �13�, namely: S0→S2=S0+�x
− �1/4e2�f�	f�	+ �� /4���	
a�f	
+a�J�− �1/�e2�f�J� �e2

has mass dimension 1�, where the coupling constant of the
Pauli term �last term in S2� has been already fixed to the
specific value. Then, the equations of motion for a� can be
written as −�1/e2����
�

��f
+ �1/��J
�+��f�+ �1/��J��=0
which is solved by �i�. This latter observation has been used
as a starting point to construct an effective theory reproduc-
ing the usual anyonic behavior �13�. The Aharonov-Bohm
phase defining the statistics of the resulting quasiparticles
still verifies exp�i�Ca ·dx�=exp�i /�� so that � again controls
the statistics. However, the resulting MCS anyons have an
additional attractive contact mutual interaction �13�. Com-
bining S2 with the second quantization machinery, one ob-
tains the corresponding MCSLG action

S = �
x

i�†D0� −
1

2m
	Di�	2 − g2��†��2 − U���

−
1

4e2 f�	f�	 +
�

4
��	
a�f	
, �3�

D0 = �0 − ia0 +
if0

�e2 , �4a�

Di = �i − i�ai + Ai� +
if i

�e2 . �4b�

In �3�, � �=��x , t�� is the order parameter, �†�=
 ,U��� de-
notes the Landau-Ginzburg �LG� potential for multibody in-
teractions, U���=g3	�	6+¯ �g3
0 as in �11��. The non-
minimal coupling terms have been included in �4�. The
statistical MCS gauge potential has a finite mass �18� M
= 	�	e2, so that the statistical interaction has a finite range
�st=1/M. The Chern-Simons Landau Ginzburg �CSLG� ac-
tion �17� is obtained from �3� and �4� by taking the limit e2

→�. While CSLG action is believed to encode the low en-
ergy physics of QHF, it appears that MCSLG action also
reaches this goal. This is discussed later on. For the moment,
we assume that the system is in a FQHE state ���0� de-
scribed by �3� and �4�. The equations of motion derived from
�3� are

iD0� +
1

2m
DiDi� − 2g2��†��� =

�U���
��† , �5a�

−
1

e2���
�
�� f
 +

1

�
J
� + � f� +

1

�
J�� = 0, �5b�

where J0=
 , Ji= �i /2m���†Di�− �Di��†�� and D� is de-
fined in �4� while anyonic configurations are obtained from
�5b� when f�=−�1/��J� �19�. From the field’s conjugate
momenta ��† =�a0

=0 ,��= i�† ,�ai
= �1/e2�f0i− �� /2��ija

j

+ �1/�e2��ijJ j, one obtains the Hamiltonian

H = �
x

1

2e2� f0 +
1

�

�2

+
1

2e2�f i
2 +

1

2m
	Di�	2

+ �g2 −
1

2�2e2�
2 + U��� , �6�

where Di=�i− i�ai+Ai� and �=1− �
 /m�2e2�. The positivity
of the model requires 
�m�2e2 �20�. Restoring � and c, this
translates into 
�
lim , 
lim= 	�	�� /�st�1/�2 where �
=� /mc is a typical �deBroglie� wavelength for the atoms and
�st= �� / 	�	�̃c��e2= �̃c2�. This condition should be fulfilled
by current experimental values, provided �st�O���, that
we now assume �21�. For 7Li, 23Na, 87Rb, one obtains, re-
spectively, 
lim�	�	�� /�st�1029,1030,1031 cm−2, which, for
possibly reachable current quantum Hall states, should be
larger by several orders of magnitude than the experimental
values reached by the matter density so that 
 /m�2e2�1.

Compared to the CSLG Hamiltonian �11�, H involves ad-
ditional terms from the Maxwell part of �3� and the nonmini-
mal coupling in �4�. The interaction energy g2
2 receives
contributions from �1/2e2�f0

2 and the Pauli coupling in �4a�:
both combine to yield the first term in �6� together with the
additional attractive �magnetic� contribution −
2 /2�2e2 to
g2
2. This, depending on the relative magnitude of � and
�st, may somehow alter the conclusion obtained in �11�. We
set �=�ei�


ei� , âi=�i�− �ai+Ai� ,�
0. For N atoms in
the trap, one has �x�†�=N. Using f�=−�1/��J�, assuming
that fields vanish at infinity, the static energy stemming from
�6� is

H = �N + �
x

1

2m
��i� − �ij

âj�


�
�2

+ �g2 − g0�
2

+ �
x

m�2e2�
k=3

�

��e2Ck−1 + 2�Ck�� 


m�2e2�k

+ U��� .

�7�

In �7�, �
0, the positive constants Ck’s are given by
�1−
 /m�2e2�1/2=1−�k=1

� Ck�
 /m�2e2�k �Ck=��k− 1
2

� /2k !
�
where � is the Euler function� and we have defined

g0 = −
�2

2m�
�1 −

�st

�
�1 −

��

2mc2�� � −
�2

2m�
�1 −

�st

�
�

�8�

�� and c reinstalled�, where the rightmost relation stems from
���mc2 which holds for current experimental values for �
�taking � /2��O�10�–O�103� Hz as a benchmark�. In the
same way, the term ��Ck in �7� can also been neglected
�since �����̃c2 in view of �st�O����.
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The quartic interaction terms in �7� can be eliminated pro-
vided g2 is chosen to be

g2 = g0. �9�

Then, neglecting for the moment in �7� the small terms
�O��6� as in �11�, the ground state of �7� is obtained for
those configurations satisfying ��i�−�ij�âj� /�1/2��=0,
i=1,2. This, combined with �5a�, �8�, and �9�, further ex-
panding the various contributions depending on � in powers
of 
 /m�2e2 and using the fact that 
 /m�2e2�1 yields �i

2�
− ��i��2 /�=−���2 /��1+� /�e2�+2m�� where, in the RHS,
� /�e2�1 still holds so that this latter equation can be accu-
rately approximated by

�i
2� −

��i��2

�
= − ���2

�
+ 2m�� . �10�

When � goes to zero, the solutions of �10� reduces smoothly
�22� to the solutions of the Liouville equation

� ln 
 = −
2

�

 . �11�

These latter can be parametrized as 
�z�=4�	h��z�	2�1
+ 	h�z�	2�−2�z=x1+ ix2� for any holomorphic function h�z�.
The particular choice h�z�= �z0 /z�n�z=rei�� , n�N, gives rise
to radially symmetric vortex-type solutions 
�r�
=4�n2 /r2��r0 /r�n+ �r /r0�n�−2 where r0 is some arbitrary
length scale and �=

ein�.

From �7�–�9�, one realizes that the initial two-body cou-
pling term �g2 can be compensated by the statistical inter-
action. In view of �7�, for fixed �
0, the particular value g0
�8� represents the limiting value for g2 below which the Bose
gas cannot be stabilized by the statistical interaction. In the
CS case, �st=0 and g0 is negative. Then, when g2=g0, cor-
responding to an initial attractive Bose gas, the system be-
haves as a free anyon gas whose ground state �neglecting the
small 	�	6 terms� is exactly described by �10� giving rise to
nonsingular finite energy matter distribution �22�. Then, one
would conclude as in �11� that an attractive Bose gas may be
stabilized against collapse in the thermodynamical limit by
anyonic excitations stemming from a CS �zero range� statis-
tical interaction. This conclusion is somehow altered for
“nonstandard” MCS anyons. In this case, g0 receives an ad-
ditional positive contribution from the �statistical� magnetic
energy and the magnetic coupling in �4a� and the sign of g0
depends now on the relative magnitude of � and �st �see
�8��. When g2=g0, the system behaves again as a free MCS
anyon gas whose ground state �neglecting again small �6

terms� is now accurately described by �10�. However, this
situation can be reached by an initial attractive Bose gas only
if �st�� corresponding to negative values for g0. A MCS
statistical interaction with range exceeding the typical wave-
length � for the atoms could not protect an attractive Bose
gas from collapse.

Now, let us assume that �st�� and discuss �9� from a
physical viewpoint. In �most of� current experiments, 2D
atomic systems are obtained by tightening the axial confine-
ment applied to the initial �harmonically trapped� 3D system,
which restricts the dynamics of the atoms along the axial

direction to zero point oscillations �16�. Kinematically, the
system becomes 2D while the effective coupling constant g2
for the interparticle interaction depends closely on the mo-
tion of the atoms in the axial direction �16�. As shown in
�16�,

g2 =
4��2

m
�
2�� lz

as
� + ln�B

�

��z

�
��−1

�B�0.915,� is the typical energy for the relative motion of
the atoms and as is the �3D� s-wave scattering length� where
����z must hold. This regime �called quasi-2D regime in
�16��, relevant here, seems to be accessible to experiments
�2,16�. Then, �9� holds provided as is tuned to the negative
value

as = − 
2�lz� 8��

1 −
�st

�

+ ln�B

�

��z

�
��−1

.

Typical values obtained for ��z /��O�102−103� are 	as	 / lz

�O�10−1� �resp 	as	 / lz�O�10−1−10−2�� for a CS �resp
MCS� statistical interaction �assuming possibly reachable
current quantum Hall states and �st�

1
2��. Let us discuss the

possible effect of the inclusion of the next to leading order
interaction terms �	�	6 on the stability of the system �23�,
assuming that �9� holds. In the CS case, stability requires
g3
0, as indicated in �11�. In the MCS case, the 	�	6 term in
U��� receives an additional positive �repulsive� contribution
coming from the infinite sum in �7�. Then, stability in the
MCS case is obtained provided g3+1/8m2�3e2
0. The ac-
tual computation of g3, which here must correspond to the
quasi-2D regime, is still lacking and would need to extend
the analysis reported in �16� to the case of higher order in-
teractions within the quasi-2D regime.

QHF, usually described in the low energy regime by a
CSLG theory �17�, can also be described by a MCSLG
theory as defined in �3� and �4�. To compare to the CS case
�17�, it is convenient to add a chemical potential term to �3�,
S�=S+�x��†���
0� and set U���=0 in all. Equation �5a�
becomes iD0�+ �1/2m�DiDi�−2g2��†���=�� while the
relevant anyonic configurations are still obtained when f�

=−�1/��J� solving �5b�. The equations of motion admit the
uniform �constant� density solution minimizing the energy
H�=H−�x�
, given by

� = 
n0, �12a�

a + A = 0, �12b�

a0 = 0, �12c�

n0 =
�

2ĝ2

, �12d�

where ĝ2=g2−1/2�2e2, similar to the usual uniform density
solution supported by the CSLG action for QHF �17�. Equa-
tion �12b� implies that the external magnetic field is screened
by the statistical magnetic field. This combined with f0
=−�1/��
, yields 	=2�� where 	 is the filling factor. When
statistical transmutation occurs as expected in Hall systems,
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	=1/2k+1, k�0. Introducing polar coordinates �r ,�� and
setting �=

ein� , a=e����r� /r� , a0=a0�r� �e�= �sin � ,
−cos �� , n�Z is the winding number�, one finds that H�
admits static finite energy vortex solutions satisfying the
boundary conditions 
�n0 , ��r��m�r2 for r→� , 

→0, ��r�→−n for r→0. The vortex effective magnetic flux
�
�x�f0+F0� is then �=−2�n�F0=�ij�

iAj�. Using n0

=�F0 , f0=−
 /� ,� is related formally to the “vortex charge”
Q=�x�
−n0� through Q=−��=2��n. When statistical
transmutation �10� occurs, Q=n /2k+1 so that the vortices
can be interpreted as �the analog of� the fractionally charged
Laughlin quasiparticles, as it is the case in the CS description
of QHF �17�. By expanding S� around �12� up to the qua-
dratic order in the fields fluctuations, fixing the gauge free-
dom, integrating out the fluctuations of a�, one obtains the
low energy effective action for the matter. It yields the fol-
lowing dispersion relation with a gap

�0
2�p� = � p4

4m2 + p2 �

m
+

n0
2

m2�2��1 − 2�0
2� + p2��0 + 2�0

2� ,

�13�

�0=n0 /m�2e2 ��0
2�p��p4 /4m2+p2�� /m�+n0

2 /m2�2 since
�0�1�, so that S� describes an incompressible fluid.

Although CS and MCS frameworks both permit one to
describe the expected low energy properties of QHF, MCS
anyons must be considered as anyonic objects distinct from
the standard CS anyons, since in particular the former feel an
additional contact attraction. This can be understood from
the mechanism �13� responsible for the formation of each
type of these particle-flux anyonic quasiparticles. This re-
flects itself in each case into the origin of the field-current

identity �i�, which must hold in order to generate composites
with anyonic statistics. Recall that �i� expresses the fact that,
for a distribution of point-like particles, only localized �sta-
tistical� fields can appear. This is automatically fulfilled in
the CS case �see S1� since the CS statistical interaction has
zero range. In the MCS case for which the interaction has
finite range, �i� results from an exact cancellation between
electric and Pauli-type coupling effects �13�, which amounts
to fix the Pauli coupling constant to a specific value �see
�24��. This leads to the appearance of an additional attractive
contact interaction among the resulting MCS anyons which,
apart from this, behave essentially as CS anyons. The ques-
tion is to examine if some effects specific to the MCS frame-
work, in particular those related to the above contact attrac-
tion, may be experimentally observed. Clearly, the
“electronic” quantum Hall systems are excluded: the fact that
the repulsive Coulomb interaction among electrons cannot be
manipulated combined with the specific features of the ex-
perimentally accessible observables make these systems only
sensitive to the properties both shared by CS and MCS
anyons in the long wavelength limit. In fast rotating Bose
gases, the interaction among atoms can be manipulated, of-
fering a way to study the possible stabilization of initially
attractive Bose gases in a FQHE state through their anyonic
excitations. As we have shown, stability may be somehow
conditioned by the actual nature of the statistical interaction.
Basically, anyons of MCS origin loose their ability to stabi-
lize the system as the range of the MCS interaction grows.
An interesting proposal to measure the statistical phase of
anyons has been presented in �25�. This, combined with an
experimental implementation of the analysis presented here
may provide a deeper insight into the physical features of the
anyonic composite quasiparticles.
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