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Using a model many-body wave function I analyze the standard criterion for Bose-Einstein condensation
and its relation to coherence properties of the system. I pay special attention to an attractive condensate under
such a condition that a characteristic length scale of the spatial extension of its center of mass differs signifi-
cantly from length scales of relative coordinates. I show that although no interference fringes are produced in
the two-slit Young interference experiment performed on this system, fringes of a high visibility can be
observed in a conditional simultaneous detection of two particles.
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Since the work of Bose and Einstein �1� a picture of the
macroscopic occupation of a single-particle state serves as
the paradigm of Bose-Einstein condensation. This picture,
however, cannot be automatically extended to a real—i.e.,
interacting—system. The criterion for Bose-Einstein conden-
sation requires a more detailed analysis. To a large extent this
goal was completed many years ago by Penrose and Onsager
�2,3� and Yang �4� who introduced the concept of off-
diagonal long-range order �ODLRO�. The existence of a
dominant eigenvalue of a one-particle density matrix implies
ODLRO. Thus, according to conventional wisdom, a system
shows simple Bose-Einstein condensation �BEC� if only one
eigenvalue is of the order of 1. In the case when many ei-
genvalues are large and of comparable size, then the system
is a fragmented condensate �5,6�.

This conventional definition caused a controversy in the
case of the subtle issue of attractive interactions �7,8� be-
tween bosonic particles. As shown in the paper of Wilkin et
al. �7� the lowest excitation of a condensate with attractive
forces is associated with the rotation of its center of mass
while all relative degrees of freedom remain in their ground
state. Analysis of the corresponding one-particle density ma-
trix proves that such a system has many eigenvalues of com-
parable size; therefore, it is a fragmented Bose-Einstein con-
densate. Pethick and Pitaevskii �8� pointed out that this
conclusion cannot be correct because an atomic cloud being
in its ground state but undergoing rigid-body motion as a
whole must be a genuine Bose-Einstein condensate. They
concluded, therefore, that the generally used criterion for
Bose-Einstein condensation can be misleading.

The mathematical criterion of a dominant eigenvalue has
well-defined physical meaning—at least in the case of opti-
cal lasers. The theory of coherence developed by Glauber �9�
allows one to identify these properties which are responsible
for the coherence of an electromagnetic field—i.e., for the
ability to produce interference fringes: the largest eigenvalue
of a two-point correlation function �equivalent to a one-
particle density matrix of atomic systems� is equal to a vis-
ibility of fringes in the standard two-slit Young experiment.
If this eigenvalue is equal to 1, the contrast of fringes equals
100% and the field is coherent at first order—the two-point
correlation function factorizes.

In analogy to optical lasers �10� this is evidently the co-
herence, preferably a higher-order coherence �11–13�, which
is irrefutable evidence of Bose-Einstein condensation. The
question I want to pose here is whether the rotating attractive
condensate considered in Ref. �8� can show a large-scale
coherence as a genuine condensate should do. If one assumes
that the Glauber theory of coherence applies also to atomic
condensates, as I shall assume in the following, then the
answer is negative: no interference fringes shall be produced
in the Young experiment performed on the system because
the corresponding one-particle density matrix has no domi-
nant eigenvalue. In turn, following the arguments of Pethick
and Pitaevskii �8� the system is a perfect condensate. These
two conclusions seem to contradict each other.

Getting ahead, I can say that a solution of this paradox is
based on the observation that the properties of a quantum
system depend on the measurements performed. Every mea-
surement can be related to an appropriate correlation func-
tion �14� depending on the particular method of detection. I
am not going to analyze the subtle details of any particular
detection scheme but simply assume that the observed signal
is proportional to an equal-time sth-order correlation func-
tion �15,16�, where s is the number of detected particles. I
shall consider two different detection techniques: one-
particle detection and two-particle conditional measurement.
I will show that they lead to different results when applied to
a trapped attractive condensate.

To illustrate my point I will give an example which
should shed more light on the intriguing issue of a criterion
for Bose-Einstein condensation. I consider a model system of
N interacting particles in a harmonic trap and described by
the following Hamiltonian:

H =
1

2�
i=1

N

�pi
2 + xi

2� +
��2 − 1�

2N
�
i�j

�xi − x j�2, �1�

where xi is the position and pi is the momentum of the ith
particle. I use oscillatory units—i.e., all frequencies are ex-
pressed in units of external trap frequency �0—and the unit
of length is �� / �m�0�, where m is the mass of a particle. The
energy of two-body interactions is proportional to the term
��2−1� /N.
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The form of the interaction is nonrealistic due to its infi-
nite range. Nevertheless, for the purposes of the problems
discussed in this paper, the model reveals generic features of
a BEC trapped in a harmonic potential—this issue will be
discussed in more detail later on. I shall use arguments based
on the characteristic length scales, and I believe that this line
of reasoning puts me on safe ground.

The Hamiltonian �1� can be easily brought to the diagonal
form

H =
1

2 �
i=1

N−1

�Pi
2 + �2qi

2� +
1

2
�PN

2 + qN
2 � �2�

by introducing the collective variables

qi = �
j

Qijx j �3�

and corresponding canonical momenta Pi=−i� /�qi. The ma-
trix Qij is orthogonal and QNj =1/�N. These two conditions
imply that � jQij =0 for all i�N. Only one of the collective
coordinates—namely, the center of mass—is uniquely de-
fined:

RN � qN =
1

�N
�

i

N

xi. �4�

The choice of the remaining coordinates �q1 , . . . ,qN−1	
= �q	N−1 is not unique; however, the physically important
quantity is the “length” of the relative coordinates rN in con-
figurational space which do not depend on a particular choice
of �q	N−1:

rN
2 � �

i=1

N−1

qi
2 = �

i=1

N

xi
2 − RN

2 . �5�

The ground-state wave function of the Hamiltonian de-
pends on the set of variables �x	N through RN and rN only
�17,18�:

�N��x	N� = N exp
− rN
2

2�2 �exp
−
RN

2

2
� , �6�

where N= ���2�−3�N−1�/4���−3/4 is the normalization constant
while �=1/�� defines a spreading of relative coordinates.
The center-of-mass extension is equal to one because of the
choice of units.

The wave function is the product of the center-of-mass
ground state of the harmonic trap and the term depending on
relative coordinates only. This form reveals general features
of all interacting systems in external harmonic potentials.
The wave function is symmetric with respect to the variables
�x	N. The relative term depends on 3�N−1� relative degrees
of freedom. All relative eigenmodes are described by the
same wave function. Its spatial extension is equal to �. Dif-
ferent relative eigenmodes might be characterized by differ-
ent length scales in realistic cases. Note that ��1 corre-
sponds to attractive while ��1 to repulsive forces. In the
case of a noninteracting system the center-of-mass and rela-

tive length scales are equal, �=1, and the N-particle wave
function becomes a simple N-fold product of one-particle
terms.

Even such a simple wave function shows a variety of
different features depending on the length scale �. For future
convenience I introduce the interaction strength parameter �
which is defined by the relation

� = N�. �7�

The main question I want to pose in the following is
whether the many-body system being in its ground state, Eq.
�6�, is Bose condensed. To this end I start with a discussion
of possible measurements which can be performed on a
many-body system. One can imagine two extreme situations:
�a� the detection of one particle �repeated many times in
order to collect statistically significant data� or �b� simulta-
neous detection of all particles. Obviously there are many
other possibilities. A measurement in which s out of N par-
ticles are simultaneously detected is related to the reduced
s-particle density matrix which can be obtained by integrat-
ing the N-particle matrix over all but s coordinates:

��s���x	s;�x�	s� =� d�y	N−s�N
* ��x	s,�y	N−s�

	 �N��x�	s,�y	N−s� , �8�

where �x	s and �y	N−s denote sets of s and N−s coordinates,
respectively. In the case studied this integration can be evalu-
ated explicitly and leads to the following result:

��s���x	s;�x	s�� = �c.m.�Rs,Rs��
0
�s−1�*�rs�
0

�s−1��rs�� , �9�

where Rs= �1/�s��i
sxi is the center of mass of an s-particle

subsystem and rs=��i
sxi

2−Rs
2 is the length of the relative

coordinate vector defined in �3�s−1��-dimensional space.
The wave function 
0

�s−1��rs� is a Gaussian function depend-
ing on s−1 independent variables through their length in
configurational space only:


0
�s−1��rs� = �

�
�3�s−1�/4

exp
−
rs

2

2�2� . �10�

Obviously, if s=1, then 
0
�s−1��rs�=1. The center-of-mass

term is

�c.m.�Rs,Rs�� = �s

�
�3/2

	exp�− 1
2��s + 1

2�s��Rs
2 + Rs�

2� + 1
2�sRs · Rs�� ,

�11�

where the frequencies �s and �s as well as the parameter �s
are

�s = 1 − �1 − ��
s

N
, �12�

�s =
�

�s
, �13�
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�s = �1 − ��2s�N − s�
N2�s

. �14�

The density matrix can be brought to diagonal form �note
that it has the form of the temperature density matrix of a
harmonic oscillator�

��s��x;x�� = �
n

n
�s��n

*�x��n�x�� . �15�

Spectral decomposition uniquely determines the set of eigen-
states �n�x� and eigenvalues n

�s� �17,18�. The eigenvectors
of the one-particle density matrix are

�n�x� = 
0
�s−1��rs��n���sRs� , �16�

where �n���sRs� are the eigenstates of the harmonic oscilla-
tor of frequency �s= ��s��s+�s��1/2 and n= �n1 ,n2 ,n3� repre-
sents a set of three oscillatory quantum numbers. The eigen-
values depend on the prinicpal quantum number n=n1+n2
+n3 only, n=n. They are equal to the relative populations
of one-particle states �n and are of the form

n
�s� =  2�s

�s + �s
�3�s − �s

�s + �s
�n

. �17�

I shall discuss the one-particle density matrix first. It is
directly related to a repeated single-particle detection. Its
largest eigenvalue is

0
�1� =  2

�� + 1 + 1
�3

, �18�

where �= �N�−1+N−�−1−2N−1�. In the limit of N�1, there
are two distinct situations.

If ����1, then �→0 and one-particle subsystem is in a
pure state—i.e., 0

�1��1 and ��1��x ;x��=�0
*�x��0�x��. The

two-point correlation function is separable; therefore, the in-
teracting system is indistinguishable �from the point of view
of one-particle measurements� from a system of independent
particles, all occupying the same state. The wave function of
this state—the order parameter—can be evaluated exactly
�18�:

�0�x� � �1

�
�3/4

exp�− �1x2/2� . �19�

In the limit of large-N frequencies �1 and � become equal,
�1��. Separability, in the language of coherence theory,
signifies the first-order coherence of a system—interference
fringes with 100% visibility shall be observed in a two-slit
Young interference experiment.

If ����1—i.e., interactions are strong—then �→� and
all eigenvalues are negligible �but �n

�1�=1�. The one-particle
subsystem is in a mixed state which resembles a temperature
state. No long-distance coherence shall be observed at all.
The two-point correlation function is not separable, and the
particle density has the form

��1��x;x� = �1

�
�3/2

e−�1x2/2. �20�

These conclusions are based on the conventional criterion

for Bose-Einstein condensation. However, the authors of
Ref. �8� introduced a modified criterion. They suggested that
the center-of-mass length scale has to be eliminated prior to
the determination of the one-particle correlation function. To
this end one can find a relative density matrix �rel

�N� by inte-
grating the N-particle density matrix, �N��xN	 ; �yN	�
=�N

* ��xN	��N��yN	�, over the center-of-mass variable. Fur-
ther integration over all but one internal variable leads in our
case to a fully separable �in the whole range of the interac-
tion strength� two-point correlation function. Therefore, ac-
cording to Ref. �8� the system described by Eq. �6� is a
perfect Bose-Einstein condensate. The same system, how-
ever, will not disclose the large-scale coherence in the two-
slit Young interference experiment. It is not clear, therefore,
what this particular feature, which can be related to the
physical properties conventionally attributed to a Bose-
Einstein condensate, is. The reason for this ambiguity is that
the relative density matrix introduced in Ref. �8� is useful
only in the case when one is interested in observables which
are independent of the center of mass, such as the relative
distance between two particles, for example. The relative
density matrix cannot be used for studying the global prop-
erties of a system such as the coherence. This criterion is not
related to any feature which is characteristic for a Bose-
Einstein condensate.

The key issue in solving the problem of the criterion for
Bose-Einstein condensation is to point to reasons of the dis-
appearance of the dominant eigenvalue. In our case, the dis-
appearance of the first-order coherence originates in the ex-
istence of two different length scales characterizing the
system. The amplitude of zero-point oscillations of the center
of mass, �c.m.=1, does not depend on the number of particles
and the interaction strength, but the spatial extension � of the
relative coordinates does. The amplitude of the relative os-
cillations becomes much larger than the center-of-mass
spreading, ���c.m., if repulsive forces are strong, ��−1. On
the contrary, in the case of strong attractive forces, ��1,
particles are aggregated over relatively small distances while
the center-of-mass position is a statistical variable having
huge quantum uncertainty, ���c.m.. The coherence length of
an N-particle system is reduced to the smaller of the two
scales. Such a situation is basically identical to the one stud-
ied in Refs. �7,8�.

It is reasonable to expect that the coherence length of a
genuine Bose-Einstein condensate is of the order of its size.
The size, however, might depend on the detection scheme.
The spatial extension observed in repeated single-particle
measurements is determined by extension of the one-particle
density matrix—i.e., the largest length scale of the problem.
On the other hand, if all particles are detected simulta-
neously, then the observed size of the cloud is determined by
extension of the relative coordinates. There is no information
about the uncertainty of the center-of-mass position in a
single realization of the system.

The last observation provides a hint on how to solve the
issue of the criterion for Bose-Einstein condensation. Let us
consider a conditional detection: the detection of one particle
provided that simultaneously another one—a reference
particle—is detected at a given position x0. The correspond-
ing conditional one-particle reduced density matrix reads
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�cond
�1�1��x;x��x0� =

��2��x,x0;x�,x0�
��1��x0;x0�

, �21�

where ��2� is a two-particle reduced density matrix. In an
example of the model studied here, the matrix �cond

�1�1��x ;x��
has the form

�cond
�1�1��x;x��x0� = �1

�
�3/2

exp�− 1
2��1 + 1

2�1�

	��x − y1�2 + �x� − y1�2�

+ 1
2�1�x − y1� · �x� − y1�� , �22�

where

�1 =
� + �2

2
, �23�

�1 =
�2

2
, �24�

y1 =
� − �2

� + �2
x0. �25�

The conditional single-particle density is equal to the di-
agonal elements of �cond

�1�1�:

�cond
�1�1��x;x�x0� = �1

�
�3/2

e−�1�x − y1�2
. �26�

It is a Gaussian function centered around y1. Its width is
equal to �1

cond=1/��1. This result should be compared with
the standard single-particle density obtained in repeated one-
particle measurements, Eq. �20�. It is easy to check that in
the case of weak interactions, ����1, as well as in the case of
very strong repulsion, ��−1, the parameters of Eq. �26� are
�1��1 and y1�0. Therefore the conditional single-particle
density matrix is equal to the standard one,

�cond
�1�1��x;x�x0� = �1

�
�3/2

e−�1x2/2, �27�

and obviously the conditional and direct measurements are
equivalent.

In the case of a very strong attraction ���1—i.e., �
=N��N� the parameters of Eq. �22� are

�1 �
�

2
, �28�

�1 �
�

2
, �29�

y1 � x0, �30�

and Eq. �26� simplifies to

�cond
�1�1��x;x�x0� =  �

2�
�3/2

e−��x − x0�2/2. �31�

Conditional and direct detection schemes lead to different
results. The spatial extension of the single-particle density

given by Eq. �9�, �1=1/��1, is much larger than the spatial
extension of the single-particle density obtained in the con-
ditional detection, �1

cond=1/��1: i.e.,

�1
cond

�1
= �2N�−1�1/2 � 1. �32�

Moreover, the single-particle density is centered at the mini-
mum of the external trap, x=0, while the conditional density
is concentrated around the position of the preselected refer-
ence point, x=x0. In order to determine experimentally the
conditional single-particle density one should perform a se-
ries of joint two-particle detections and collect only the data
where one particle is observed at the preselected position x0.
The conditional density is a function of the position of the
second particle.

The conditional density matrix can be diagonalized in the
case of the model studied here. It has the same structure as
the one studied above, Eq. �11�. If interactions are weak,
����1, all particles are independent and obviously condi-
tional and ordinary detections are equivalent—the one-
particle subsystem is in a pure state. In the case of strong
attractive interactions, ��1, the conditional density matrix
has a single dominant eigenvalue, which can be explicitly
calculated:

0
�1�1� =  2

�1 + �1/�1 + 1
�3

. �33�

In the large-N limit this eigenvalue is simply

0
�1�1� �  2

�2 + 1
�3

. �34�

Its value is large, but smaller than 1, because the uncertainty
of the center-of-mass position can be reduced, but not totally
eliminated, in the two-particle measurement.

The explanation of the existence of the dominant eigen-
value is rather simple. Particles in the strongly attractive sys-
tem are correlated. They are located close to each other;
therefore, detection of one of them gives a great deal of
information about the center-of-mass position—it ought to
be not too far away. In fact, the position of the center of mass
is a stochastic variable distributed according to �CM�RN ,RN�
which is widely spread over a large distance. Detection of
the first particle reduces the center-of-mass uncertainty to a
small distance of the order of relative coordinate spreading.
Simultaneous detection of a second particle is a practical
realization of the measurement performed in the center-of-
mass frame. Such a conditional measurement automatically
eliminates the center-of-mass length scale. The size of the
system is therefore reduced to the spatial extension of the
relative degrees of freedom which is equal to the coherence
length of the cloud. The conditional density matrix has only
one large eigenvalue.

In the opposite case of strong repulsive interactions,
��−1, the largest eigenvalue of the conditional density ma-
trix �cond

�1�1��x ;x�� is negligible. The system does not show any
coherence in the conditional detection, which proves that the
system is not in a Bose-condensed phase. Conditional detec-
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tion does not give any new information on the system as
compared to the simple one-particle measurement.

The scheme presented above of conditional measurements
can be easily generalized. One can use more reference par-
ticles to determine the center-of-mass position in a single
realization of the system. This can be done by a joint detec-
tion of s+1 particles—the obtained data are collected only in
such a situation when s particles are found at preselected
positions �x1 , . . . ,xs	= �x	s. The corresponding conditional
one-particle density matrix is

�cond
�1�s��x;x���x	s� =

��s+1��x,�x	s;x�,�x	s�
��s���x	s;�x	s�

. �35�

In the model studied, the conditional one-particle matrix cor-
responding to joint detection of s+1 paricles, Eq. �35�, has
the same form as �cond

�1�1��x ;x� �x0�, Eq. �22� but �1, �1, and y1

have to be substituted by

�s =
s� + �s+1

s + 1
, �36�

�s =
�s+1

s + 1
, �37�

ys =
�� − �s+1�
s� + �s+1

�
i=1

s

xi. �38�

Similarly, the dominant eigenvalue of the �cond
�1�s��x ;x� � �x	s�

has the form of Eq. �33� and approaches the value of 1 if s
�1:

0
�1�s� �  2

�1 + 1/s + 1
�3

. �39�

This result can be easily understood: the more particles used
to determine the center of mass of the N-particle system, the
stronger the reduction of the center-of-mass uncertainty and

the larger the first-order coherence of the system observed in
that kind of measurement.

It is worth adding that the model I used to illustrate the
main thesis is certainly artificial. However, this is done solely
for the sake of being able to do analytical calculations, start-
ing from a free Hamiltonian. However, the results obtained
here are quite general. They do not depend on the particular
form of interactions because the effect studied is not of dy-
namical origin. It is related to simple kinematics only. It
relies on the fact that in the harmonic trap the center of mass
decouples from the internal dynamics; therefore, the ampli-
tude of its oscillations is completely independent of the size
of the system as observed in a single shot of a camera. To
disclose the coherence of such a system one should perform
detection in the center-of-mass frame.

In conclusion I want to stress that the criterion for Bose-
Einstein condensation requires particular attention in the case
of attractive systems whose center-of-mass extension signifi-
cantly exceeds other relevant length scales. In such a case, as
suggested in Ref. �8�, the criterion of the dominant eigen-
value of the one-particle density matrix might lead to false
conclusions. In order to disclose the coherence of the system
one should perform a measurement in its center-of-mass
frame. This is, however, practically impossible if the center
of mass is a quantum variable with a large uncertainty. One
can overcome this problem by performing a conditional
detection—in the case of attractive systems, detection of one
particle quite precisely determines the position of the center
of mass. Therefore, in the conditional measurement one
might prove a long-range coherence of the system—
coherence of the extension of the relative degrees of free-
dom.
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