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We study the static and dynamic responses of an F=1 dipolar spinor condensate with magnetic dipole
moment under external magnetic fields, focusing on the effects induced by the magnetic dipolar interactions
between atoms. A rich set of phenomena are investigated such as the ground state quantum phases, the
magnetization steps, spin squeezing, and macroscopic entanglement generation.
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I. INTRODUCTION

Since the experimental realizations of spinor condensates
in 23Na and 87Rb atoms �1–3�, their magnetic properties have
been under intense experimental �2� and theoretical �4� stud-
ies. The short-range spin-exchange interaction, responsible
for the formation of various magnetic phases �5,6�, domain
structure �2�, and spin mixing dynamics �7,8�, has been the
focus of these studies. The long-range magnetic dipole-
dipole interaction in alkali condensates, by contrast, has not
received much attention. This stems from the fact that for
ground state alkali atoms, the dipolar interaction strength is
three orders of magnitude smaller than the s-wave collisional
interaction strength. We, however, want to point out that the
dipolar interaction may have a rather significant effect on
alkali spinor condensates. This is due to the fact that, for
both 23Na and 87Rb, the singlet and triplet s-wave scattering
lengths �denoted by a0 and a2, respectively� are nearly equal.
The short-range spin-exchange interaction depends on the
difference of a0 and a2 �5,6�, and hence has a strength much
smaller than that of the total collisional interaction. A simple
calculation shows that the magnitude of the dipolar interac-
tion can be as large as 10% of the spin-exchange interaction
for 87Rb atoms �9�, and the dipolar effects can be dramati-
cally enhanced due to its long-range and anisotropic nature.

The dipolar effects in scalar condensates, where all dipole
moments are polarized by an external field, have been stud-
ied extensively �10�. However, the magnetic properties asso-
ciated with the spin degrees of freedom become manifest
only when the magnetic dipole moments are unlocked, as in
spinor condensates. In a series of work by Pu and co-workers
�11�, effects of dipolar interaction on spinor condensates con-
fined in multi-well potentials are investigated. In those stud-
ies, only the dipolar coupling between atoms at different
wells is taken into account, based on the assumption that the
spin-exchange interaction dominates the intra-well interac-
tion. The dipolar effects in a singly trapped spinor conden-
sate in a magnetic field-free environment is investigated in
Ref. �9�.

In the present work, we consider a system of a singly
trapped dipolar spin-1 condensate in weak magnetic fields,
we shall focus on its static and dynamic magnetic responses,
the ground state spin squeezing, and macroscopic entangle-
ment generating. These studies show that dipolar spinor con-

densates exhibit a particularly rich spectrum of quantum
magnetic behavior and thus represent a quantum magnetic
system.

We remark that recent realization of the 52Cr condensate
�12� has attracted much attention on dipolar quantum gases
as the 52Cr atom boasts a much stronger dipolar interaction
compared to its alkaline counterparts. However, due to the
complexity of its ground state structure �the 52Cr atom has
total spin S=3 whose collisional interactions are character-
ized by four parameters, which are not all well known �13��,
we shall consider the spin-1 system of 23Na and 87Rb con-
densates whose relative simplicity allows us to bring out the
dipolar effects more clearly.

II. MODEL

We consider N condensed spin F=1 atoms trapped in an
axially symmetric potential, Vext�r�, with the symmetry axis
chosen to be the quantization axis, ẑ. The atoms interact with
each other via both short-range collisions and long-range
magnetic dipolar interaction. Under a uniform magnetic field
B, the second quantized Hamiltonian of the system reads

H = H0 + Hdd

where H0 and Hdd represent the nondipolar and dipolar part
of the Hamiltonian, respectively, and are given by

H0 =� dr�̂�
†�r���−

�2�2

2M
+ Vext�r�����

− gF�BB · F��	�̂��r� +
c0

2
� dr�̂�

†�r��̂�
†�r��̂��r��̂��r�

+
c2

2
� dr�̂�

†�r��̂��
† �r�F�� · F�����̂��r��̂���r� , �1�

Hdd =
cd

2
� � drdr�


r − r�
3
��̂�

†�r��̂��
† �r��F�� · F�����̂��r��̂���r��

− 3�̂�
†�r��̂��

† �r��F�� · eF���� · e�̂��r��̂���r��� , �2�

where e= �r−r�� / 
r−r�
 is a unit vector, M the mass of the

atoms, and �̂��r� the field operator for spin component �
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=1,0 ,−1. The collisional interaction parameters are �5,6�

c0 =
4��2�a0 + 2a2�

3M
, c2 =

4��2�a2 − a0�
3M

.

The dipolar interaction parameter is

cd =
�0gF

2�B
2

4�
,

with �0 being the vacuum magnetic permeability, gF the
Landé g-factor and �B the Bohr magneton. Finally, it is as-
sumed in Eqs. �1� and �2� that the repeated indices are
summed over.

For both the 87Rb and 23Na atoms, the interaction param-
eters are such that 
c2
	c0 and cd
0.1
c2
. Under these con-
ditions, the single mode approximation �SMA� is expected to
be valid, which allows us to decompose the field operator as
�7,9,14�

�̂��r� � ��r�â�, �3�

with ��r� being a spin-independent axially symmetric mode
function and â� the annihilation operator of spin component
�. Under the SMA, the Hamiltonian �with constant terms
dropped� can be remarkably simplified as �9�

H = �c2� − cd��L̂
2 + 3cd��L̂z

2 + n̂0� − gF�BB · L̂ , �4�

where n̂0= â0
†â0, L̂=���â�

†F��â� is the total angular momen-

tum operator and L̂z is its z-component. The detailed deriva-
tion of the Hamiltonian �4� is provided in the Appendix. The
rescaled collisional and dipolar interaction strengths are

c2� =
c2

2
� dr
��r�
4, �5�

cd� =
cd

4
� dr� dr�
��r���r��
2

1 − 3 cos2 �e


r − r�
3
, �6�

with �e being the polar angle of the vector �r−r��. While the
sign of c2� is determined by the type of atoms: c2�
0 ��0� for
23Na �87Rb�, the sign and the magnitude of cd� can be easily
tuned by changing the trapping geometry: cd�
0 ��0� for a
pancake-shaped �cigar-shaped� condensate �9�.

It is convenient to rescale Eq. �4� using 
c2�
 the units for
energy �the corresponding units for time is then � / 
c2�
�,
which yields the dimensionless Hamiltonian

H = �±1 − c�L̂2 + 3c�L̂z
2 + n̂0� − H · L̂ , �7�

where c
cd� / 
c2�
, H=gF�BB / 
c2�
, and the sign “�” �“�”�
corresponds to c2
0 ��0�.

III. GROUND STATE STRUCTURE

Equation �7� is reminiscent of the Hamiltonian describing
an anisotropic quantum magnet. As shown in Fig. 1, the
c2�−cd� parameter plane is divided into three regions �A, B,
and C� based on the ground state wave function �9�. Regions
A and B represent ferromagnetic phases with easy-plane and

easy-axis anisotropy, respectively. In these two regions, the
n̂0-term in Hamiltonian �7� can be neglected for N�1, and
the ground state stays in the l=N angular momentum mani-
fold. Region C represents roughly an anti-ferromagnetic
phase. Here the n̂0-term cannot be neglected in general and
will couple different angular momentum manifolds.

First we consider the case that a field is applied longitu-
dinally along the positive z-axis. In region A, the ground
state takes the form 
N ,m� with m= ��H /6c�+ �1/2�� ��x� de-
notes the largest integer less than or equal to x�, where we
have introduced the standard angular momentum basis state


l ,m� that are common eigenstates of L̂2 and L̂z. The atomic
spins are fully polarized by the field �i.e., m=N� for H

6c�N−1/2�. In real units, this field strength is on the order
of 0.1 mG �1 mG� for typical Rb �Cr� condensate param-
eters. In the absence of the external field, the ground state in
region B exhibits spontaneous magnetization with a twofold
degeneracy 
N , ±N� �9�. This degeneracy is lifted by the lon-
gitudinal field and the state 
N ,N� is now the sole ground
state. The ground state in region C has a general form of
�l�m0

gl
l ,m0�, where m0 increases with the magnetic field
and gl has to be found numerically. In this region, the mag-
netization saturates at a field H= �4N−5�c+2N−1.

Next we apply the field transversely along the x-axis.
Since xy-plane is the easy-plane for region A, the magneti-
zation saturates under a transverse field of arbitrary strength.
The ground state of region B can be understood classically.

After dropping the unimportant n̂0-term and the constant L̂2

�as l=N� terms, the classical version of the Hamiltonian �7�
becomes

E��� = 3cN2 cos2 � − HN sin � , �8�

where � is the polar angle of L. The ground state �0 is
obtained by minimizing the energy. For H�−6cN, E��� has
two degenerate minima at

�0
�±� =

�

2
± ��

2
+ sin−1 H

6cN
� .

The degeneracy is removed when H�−6cN, for which the
system is completely polarized by the external magnetic

FIG. 1. Magnetic phases of dipolar spin-1 condensate. Region A
and B corresponds to the ferromagnetic phases with, respectively,
the in-plane and the uniaxial anisotropy. Region C represents
roughly an anti-ferromagnetic phase.
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field. Hence Hsat=−6cN is the classical saturation field.
Quantum mechanically, the degeneracy is lifted before the
magnetic field reaches Hsat due to magnetization tunneling, a
phenomenon studied extensively in the field of quantum
magnetism �15�. The dipolar spinor condensate provides an-
other system that exhibits such macroscopic quantum coher-
ent behavior.

Finally, for region C, the ground state can only be ob-
tained numerically as a superposition of different angular
momentum states as in the previous case. The saturation
field, however, has an analytic form 2�1−c�N.

IV. SPIN SQUEEZING

A collective spin system is regarded as squeezed if the
variance of one spin component normal to the mean spin
vector is lower than the Heisenberg limited value. The spin
squeezed state has important applications in ultra-precision
measurement �16–19�. Mathematically, the criteria for spin
squeezing is �17�

� 
 �L�/�
�L̂�/2
 � 1,

with �L� being the minimum fluctuation of a spin compo-

nent perpendicular to the mean spin vector �L̂�.
It can be easily shown that the ground state of Hamil-

tonian �7� with the magnetic field applied longitudinally does
not exhibit spin squeezing. Spin squeezing can only be in-
duced by the presence of a transverse field. In Fig. 2 we plot
the numerically calculated ground state squeezing parameter
� as functions of the normalized transverse field strength
Hx /N and the dipolar interaction strength c for c2
0. The
squeezing parameter shows plenty of features and squeezing
occurs over a large parameter space explored. First one can
notice that �=1 when c=0. Thus the ground state of a non-
dipolar spinor condensate is not spin squeezed. Focusing on
the region near Hx=0, we can easily identify two extrema of

� at c=1 and c=−0.5. These two points correspond exactly
to the boundaries between different quantum phases
�see Fig. 1�. The saturation fields in regions B and C can also
be identified as they correspond to the local minima of �
�dashed and solid lines in Fig. 2�. The fact that the quantum
phase boundaries are correlated with the extremum values of
� is not a coincidence. Recent studies have shown that the
bipartite concurrence �a measure of entanglement that is
closely related to spin squeezing� also reaches extremum at
the critical points of quantum phase transitions in many spin
systems �20�. However, a full understanding of spin squeez-
ing and entanglement in critical quantum systems is still
lacking. With its rich quantum phases and the tunability of
dipolar interaction strength, the dipolar spinor condensate
appears to be an ideal system to address this problem.

V. DYNAMICAL MAGNETIZATION

The dynamic response of quantum spin systems to a time-
dependent field represents another important magnetic prop-
erty �21–23�. Here we will focus on the condensate in region
B. Suppose the system is initially prepared under a weak
transverse field Hx and a sufficiently strong longitudinal field
Hz along the negative z-axis which polarizes the system into
the state 
N ,−N�. We then sweep the Hz from negative to
positive value with a constant rate v=dHz /dt. The typical
energy spectrum is presented in the inset of Fig. 3. Without
transverse field, the level 
N ,−N� �the ground state for Hz
�0� crosses sequentially with 
N ,N−k� �k=0,1 ,2 , . . . � at

Hz
�k� = − 3ck .

The presence of Hx, however, changes the level-crossing at
Hz

�k� into anti-crossing by introducing a coupling between

FIG. 2. �Color online� The squeezing parameter � as a function
of transverse field Hx and c for c2
0 and N=40. The dashed and
solid lines on the contour plot represent the saturation field, which
corresponds to the local minimum of �, in regions B and C,
respectively.

FIG. 3. �Color online� The dynamic response of the magnetiza-
tion to a magnetic field sweep. The parameters we used here are
N=5, c=−0.33, Hx=3, and v=10−3, which represents a condensate
in region B. The arrows denote the positions of the magnetization
jumps. After the third jump, the amplitude of level 
N ,−N� in the
condensate wave function is essentially zero, therefore, no more
jumps are observed at higher field. The inset shows the energy
spectrum as a function of applied longitudinal field Hz, the arrows
in the inset mark the first three anti-crossings which match with the
arrows in the main figure.
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levels 
N ,−N� and 
N ,N−k�. The anti-crossings are charac-
terized by the energy gaps ��k which can be found numeri-
cally. ��k increases with the transverse field Hx and the in-
dex k. According to the Landau-Zener formula �21,24�,
during the sweep of the longitudinal field, when the anti-
crossing at Hz

�k� is encountered, the system, initially on level

N ,−N�, has a probability of

pk = exp�−
����k�2

2�2N − k�v� ,

to stay on level 
N ,−N� and a probability of 1− pk to jump to
the state 
N ,N−k�. The Landau-Zener transition, therefore,

manifests in a series of jumps in the magnetization �L̂z� as
shown in Fig. 3 where the results are obtained by numeri-
cally evolving the initial state under the Hamiltonian �7�. As
the field sweeps over the anti-crossings, the condensate wave
function bifurcates into the states forming the anti-crossing
and thus becomes a coherent superposition of states with
different magnetization. This coherent superposition is the
cause for the fast oscillations in the magnetization curve
shown in Fig. 3. The size of the jumps matches well with
those calculated from the transition probability using the
Landau-Zener formula using the numerically obtained values
of ��k. A measurement of the position and the size of the
jumps can thus be used to calibrate the field strengths along
both the longitudinal and the transverse directions; or con-
versely, if the field strengths are known, one can obtain the
value of c from such a measurement.

VI. MACROSCOPIC SPIN ENTANGLEMENT

Finally, we propose a scheme to create maximally en-
tangled spin states using condensate in region B. Entangle-
ment is an important feature of composite quantum systems,
having application in quantum information and computation
besides its importance for the foundations of quantum me-
chanics. There exist several proposals for creating entangled
atomic state using spinor condensates �25�. Our scheme is
illustrated in Fig. 4�a�. First we prepare the condensate under
a large transverse field Hx
Hsat such that the initial state is
fully polarized along x-axis. The corresponding energy curve
E��� � Eq. �8�� has a single minimum at �=� /2. We then
slowly reduce Hx, for Hx�Hsat, the single minimum splits
into two degenerate ones symmetrically situated about �
=� /2, and the state of the system becomes the symmetric
quantum superposition of the two corresponding minimal en-
ergy states. When the field strength is further reduced to
zero, the two minimal energy states become 
N , ±N� and the
corresponding state of the system is the maximally spin en-
tangled generalized N-body GHZ state


GHZ� =
1
�2

�
N,N� + 
N,− N�� .

A direct numerical integration with the full Hamiltonian con-
firms this situation as demonstrated by Fig. 4�b� where the
overlap between the generated state and the maximally en-
tangled state 
GHZ� is plotted as a function of Hx. Compared
to other entanglement generating schemes, ours possesses

several distinct advantages: �1� The system remains in the
minimal energy state throughout the whole process, making
it immune from the spontaneous emission induced decoher-
ence suffered by the electronically excited states; �2� this
scheme does not rely on a precise knowledge of system pa-
rameters such as particle numbers, interaction strengths, and
time; and �3� our scheme is rather robust, in the sense that
when adiabaticity is not strictly obeyed, the final state may
have slightly different weights on 
N ,N� and 
N ,−N�, but
remain significantly entangled. In addition, the adiabaticity
requires a slow sweep only near the immediate vicinity at
H=Hsat. Away from this regime, a faster sweep can be
adopted in order to decrease the total time duration. We note
that our scheme also applies to other uniaxial magnetic ma-
terials.

VII. CONCLUSION

In conclusion, we have investigated the magnetic re-
sponse of a dipolar spin-1 condensate. Specifically, we have
studied the ground state phase structure and its relation to
spin squeezing, the magnetization curves as well as the en-
tanglement generation under a sweeping field. These studies
give a taste of rich variety of static and dynamic phenomena
displayed by dipolar spinor condensates. Our results show
that the high tunability of this system makes it ideally suit-
able for studying quantum magnetism, quantum phase tran-
sition and other related phenomena.

ACKNOWLEDGMENT

This work is supported by the Oak Ridge Associated Uni-
versities and Rice University.

FIG. 4. The scheme for creating entangled atomic state. �a�
Field strength Hx as a function of time. �b� The field dependence of
the overlap of the condensate wave function with the maximally
entangled state 
GHZ� for N=20 and a linear field sweeping rate
dHx /dt=−0.06.
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APPENDIX: DERIVATION OF THE HAMILTONIAN
UNDER THE SMA

In this Appendix, we will show how the Hamitonian �4� is
derived under the SMA. In the absence of dipolar interaction,
the Hamiltonian of a spin-1 condensate under the SMA was
derived by Law et al. �7� as

H0 = c2��L̂
2 − 2N̂� , �A1�

where N̂ is the total atom number operator. Here we outline
the derivation of the dipole-dipole interaction Hamiltonian
under the SMA. Putting the decomposition �3� into the dipo-
lar Hamiltonian �2�, we have

Hdd =
cd

2
� dr� dr�


��r�
2
��r��
2


r − r�
3
��L̂2 − 3�L̂ · e�2� − �2N̂ − 3â�

†F�� · eF��� · eâ����

=
cd

2
� dr� dr�


��r�
2
��r��
2


r − r�
3 �L̂z
2�1 − 3 cos2 �e� −

1

4
�L̂+L̂− + L̂−L̂+��1 − 3 cos2 �e� −

3

2
�L̂+L̂z cos �e sin �ee

−i�e + H.c.�

−
3

2
�L̂−L̂z cos �e sin �ee

i�e + H.c.� −
3

4
�L̂+

2 sin2 �ee
−2i�e + H.c.� + â0

†â0�1 − 3 cos2 �e� −
1

2
�â1

†â1 + â−1
† â−1��1 − 3 cos2 �e�

+
3
�2

�cos �e sin �ee
i�eâ0

†â1 + H.c.� −
3
�2

�cos �e sin �ee
−i�eâ0

†â−1 + H.c.� +
3

2
�sin2 �ee

2i�eâ−1
† â1 + H.c.�	 , �A2�

where L̂±
 L̂x± iL̂y, �e and �e are the polar and azimuthal
angles of �r−r��, respectively. For an axially symmetric
mode function ��r�, all terms involving e±im�e vanish after
integrating over �e. Hdd thus simplifies to

Hdd = cd��− L̂2 + 3L̂z
2 + 3n̂0 − N̂� , �A3�

with cd� defined as in Eq. �6�. One can then easily obtain the
Hamiltonian �4� as the sum of H0 and Hdd, after dropping

the terms dependent only on N̂ which is a constant of motion.
The presence of the n̂0 in the dipolar Hamiltonian �A3�
breaks the conservation of total angular momentum L̂2, but

the projection along the z-axis, L̂z, is still conserved.
If the trapping potential and hence the mode function ��r�

do not possess the axial symmetry, then we must retain all
the terms in Eq. �A2�. When this is the case, the magnetiza-

tion L̂z is no longer a constant of motion. In addition, if the
single mode approximation is not valid, then the terms ne-
glected in arriving at Eq. �A3� may have to be kept even
when the trapping potential is axisymmetric. This occurs, for
example, when different spin components possess different
orbital angular momenta. The case beyond the SMA will be
published elsewhere.
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