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In this paper we show that a normal total number-of-particle fluctuation can be obtained consistently from
the static thermodynamic relation and dynamic compressibility sum rule. In models using the broken U�1�
gauge symmetry, in order to keep the consistency between statics and dynamics, it is important to identify the
equilibrium state of the system with which the density response function is calculated, so that the condensate

particle number N0, the number of thermal depletion particles Ñ, and the number of noncondensate particles
NNC can be unambiguously defined. We also show that the chemical potential determined from the Hugenholtz-
Pines theorem should be consistent with that determined from the equilibrium equation of state. The N4/3

anomalous fluctuation of the number of noncondensate particles is an intrinsic feature of the broken U�1� gauge
symmetry. However, this anomalous fluctuation does not imply the instability of the system. Using the random
phase approximation, which preserves the U�1� gauge symmetry, such an anomalous fluctuation of the number
of noncondensate particles is completely absent.
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I. INTRODUCTION

The number-of-particle fluctuation ��N2� in an equilib-
rium system is a fundamental statistic problem since its scal-
ing with the number of particles ��N2��N� relates to the
stability of the system. The fluctuation is called normal if
�=1 and anomalous if ��1. In the latter case, it implies the
system is unstable, since the isothermal compressibility �T
→� in the thermodynamic limit �see Eq. �1� below�. For
example, for a noninteracting uniform Bose system below
the critical temperature, the fluctuation of the number of con-

densate particles ��N̂0
2��N2, and that of the number of non-

condensate particles ��N̂NC
2 ��N4/3 in the grand canonical en-

semble, while ��N̂0
2�= ��N̂NC

2 ��N4/3 in the canonical
ensemble �1�; all are anomalous since ��1. However, for a
trapped ideal Bose gas, the fluctuation of the number par-
ticles is normal, since the confinement effectively suppresses
the thermal fluctuation �2�.

Recently the number-of-particle fluctuation of interacting
Bose-Einstein-condensed systems has attracted much theo-
retical attention, but whether or not it is anomalous still has
not been resolved, since different methods predict different
values of � �3–12�. Particularly, even for the Bogoliubov
approximation, both �=4/3 �3,5,7,8,11� and �=1 �9,12�
scaling laws have been obtained.

In order to see how these controversies arise, it is useful
to examine the bases of these model calculations. References
�4,6� use an energy functional of the total number of particles
N, the number of thermal excited particles Nex, and the
single-particle spectrum �k�. Using this energy functional, the
fluctuations of the number of condensate and noncondensate
particles can be calculated using the partition function in
either the grand canonical ensemble, canonical ensemble, or
microcanonical ensemble, and a �=1 scaling law was ob-
tained for both the condensate and noncondensate number-
of-particles fluctuations. One important observation, which is
essential to obtain the �=1 scaling law in this approach, is

that phonon excitations have been excluded from the single-
particle spectrum. The �=1 scaling law for the condensate
fluctuation is also obtained in Ref. �10�, in which a single-
condensate-mode Hamiltonian is used. In Refs. �3,7,8,11�,
the spectrum obtained by the Bogoliubov approximation was
used and a �=4/3 scaling law was obtained for the noncon-
densate number-of-particle fluctuation. However, using the
compressibility sum rule �see Eq. �2��, a �=1 scaling law
was obtained in Refs. �9,12� for the total number-of-particle
fluctuation in the same Bogoliubov approximation. From this
brief literature survey, it is understood that the number-of-
particle fluctuation in an interacting Bose-Einstein-
condensate system is highly model dependent, since the
definition of the condensate fraction, the number of noncon-
densate particles, and the energy spectrum are highly model
dependent. But the contradictory results in Refs. �3,7,8,11�
with that in Refs. �9,12� within the same Bogoliubov ap-
proximation deserve further investigation.

As can be shown that in the grand canonical ensemble,
the total number-of-particle fluctuations of any equilibrium
system is related to the isothermal compressibility through
the static thermodynamic relation

��N̂2�
N

=
�N̂2� − �N̂�2

N
=

kBT

N
� �N

��
�

T	

= 
kBT�T, �1�

where N̂ is the particle number operator with expectation
value N, kBT is the temperature, � is chemical potential, 	 is
the volume of the system, and 
=N /	 is the number density.
On the other hand, the total number-of-particle fluctuation
can be also determined by the following dynamic compress-
ibility sum rule:

��N̂2�
N

= −
kBT



lim
q�→0

�nn�q� ;� = 0� , �2�

where �nn�q� ;�� is the density response function. The
number-of-particle fluctuations calculated from these two re-
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lations must be consistent in any approximation. However,
we have seen that the static result �=4/3 obtained in Refs.
�3,7,8,10� is not consistent with the dynamic result �=1 ob-
tained in Refs. �9,12�. This leads to a contradictory conclu-
sion about the stability of the system since, as argued by
Yukalov �12�, an anomalous fluctuation of the number of
noncondensate particles would inevitably lead the system to
be unstable when grand canonical ensemble is used, while an
interacting Bose-Einstein-condensed system is stable.

One might conclude that the stability problem only arises
when grand canonical ensemble is used since in both micro-
canonical and canonical ensembles, the number-of-particle
fluctuation is identically zero. However, stability is an intrin-
sic property of the system itself, independent of the statistic
ensemble. For example, for an ideal homogenous Bose-
condensate system, it can be shown that the isothermal com-
pressibility �T is scaled as V1/3 in microcanonical and ca-
nonical ensembles and as V in grand canonical ensemble,
which implies that the system is unstable in all ensembles.
For a trapped ideal Bose gas, as we have mentioned, the
confinement potential stabilizes the system. However, there
is no link between the compressibility and number-of-
particle fluctuations in canonical and microcanonical en-
sembles, and therefore, those fluctuations cannot tell the sta-
bility of the system.

We have seen that the above inconsistency of the statics
with the dynamics in the Bogoliubov approximation is re-
lated to the separation of the condensate and noncondensate
components when the broken Bose U�1� gauge symmetry is

used. In this case, the Bose field operator ̂ is split as

̂�r�� = ��r�� + �̂�r�� , �3�

where ��r���0 is the Bogoliubov order parameter and

�̂�r��, usually called the noncondensate field operator, rep-
resents both the dynamic excitation and thermal depletion

out of the condensate. This subtlety in �̂ shows that the
condensate and noncondensate components are strongly cor-
related, and the condensate component cannot be treated just
as a static reservoir. Instead, the dynamics aspect of � must
be taken into account in calculation of the number of con-
densate and noncondensate particles for the purpose of cal-
culating the number-of-particle fluctuation from Eq. �1�. To
resolve the inconsistency of statics with dynamics and to
treat � as a dynamic quantity, it is crucial to identify the
equilibrium state with which the density response function
�nn is determined. Using this equilibrium state as a reference,
the number of condensation particles N0, the number of non-
condensate particles NNC, and the number of thermally de-

pleting particle Ñ can be unambiguously defined.
We will also show that the anomalous fluctuation of the

number of noncondensate particles is an intrinsic feature of
the broken U�1� gauge symmetry. It is well known that a
direct consequence of the above broken U�1� gauge symme-
try is that the poles of the single-particle Green function

defined with �̂ and the total density response function are
identical. Therefore, the fluctuation of the number of noncon-
densate particles inevitably follows the N4/3 anomalous law,

since the momentum distribution of this noncondensate par-
ticle always has a 1/k2 singularity in the long-wavelength
limit, regardless of at what level the interacting Bose Hamil-
tonian is truncated. However, we shall show that this anoma-
lous fluctuation does not imply the instability of the interact-
ing Bose system. This is because, as we shall show, the
condensate and noncondensate components cannot be treated
as linearly independent terms so that an anomalous fluctua-
tion of the number of noncondensate particles does not nec-
essarily indicate that the system is unstable.

One way to avoid such an anomalous fluctuation of the
number of noncondensate particles is to work with an en-
semble in which the gauge symmetry is not broken �13�, so
that we can avoid the entangling of particle-conserving col-
lective excitations and single-particle excited state in the
pole of the noncondensate single-particle Green function. In-
deed, using the random phase approximation with inclusion
of exchange �RPAE� developed by Minguzzi and Tosi �14�,
which keeps the U�1� gauge symmetry, we are able to show
that while the total number-of-particle fluctuation is normal
and consistently determined from statics and dynamics, the
anomalous fluctuation of the number of noncondensate par-
ticles is completely absent.

This paper is organized as follows. In Sec. II, we briefly
summarize the rules to build the noncondensate single-
particle Green function and the density response function
with the broken U�1� gauge symmetry. In Sec. III, we exam-
ine how the consistency between Eqs. �1� and �2� can be
obtained in calculating the number-of-particle fluctuation,
and interpret the physical meaning of the anomalous fluctua-
tion of the number of noncondensate particles in the Bogo-
liubov approximation. In Sec. IV, we carry out a calculation
in the random phase approximation with inclusion exchange
and in the dielectric formalism to support our interpretations
presented in Sec. III. The discussions and conclusion are
presented in the last section.

II. SINGLE-PARTICLE GREEN FUNCTION AND DENSITY
RESPONSE FUNCTION WITH BROKEN U(1) GAUGE

SYMMETRY

In this section, we briefly summarize the rules to construct
the single-particle Green function and density response func-
tion with broken U�1� gauge symmetry. The details can be
found in Refs. �15–17�.

We start from the Hamiltonian for a homogenous interact-
ing Bose system in the second-quantized form

Ĥ = �
k�

Ek�ak�
†ak� +

g

2	
�

q�k�1k�2

ak�1+q�
† ak�2−q�

† ak�2
ak�1

, �4�

where a contact two-body potential with strength g is used,
Ek� =�2k�2 /2m−�=�k� −� is the noninteracting single-particle
energy with respect to the chemical potential, and ak�

† and ak�

are creation and annihilation operators for the interacting
Bose particles.

Now using Eq. �3� in its momentum space form, i.e., re-
placing a0

† and a0 with 	N0, where N0 is the number of par-
ticles condensed onto the ground state k� =0, one obtains the
approximated Hamiltonian �17�
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Ĥ 

gN0

2

2	
− �N0 + �

k��0

Ek�ak�
†ak� +

g
0

2 �
q��0

Âq�Â−q�

+
g	N0

2	
�Âq� 
̂̃−q� + 
̂̃q�Â−q�� +

g

2	
�
q��0


̂̃q� 
̂̃−q� , �5�

where 
=N0 /	 is the condensate density, Âq� =aq�
†+aq� and


̂̃q� = �
k��0,−q�

ak�
†ak�+q� �6�

is the density operator for the noncondensate particles. The
total density operator is


̂q� = 	N0Âq� + 
̂̃q� . �7�

Equation �5� provides the starting point for many approxima-
tions in which the broken U�1� gauge symmetry is used.

The single-particle Green function matrix defined with �̂
is �15,17�

G���q� � 0,�� = − �T�aq�����aq��
† � , �8�

where

aq�� = �aq� � = + ,

a−q�
†

� = − .
�9�

Solving the Dyson equation involving a 2�2 matrix self-
energy ���, the single-particle Green function G�� has the
general form �15,16�

G���k� =
��i�n + Ek����� + ���−�−��k�

D�k�
, �10�

where

D�k� = �i�n − Ek� − �++�k���i�n + Ek� + �−−�k��

+ �+−�k��−+�k� . �11�

Here notation k= �k� ; i�n� is used. Various truncations of the
Hamiltonian �5� correspond to select certain types of self-
energy diagrams in such a way that the Hugenholtz-Pines
theorem �18�

� = �++�0� − �+−�0� �12�

is satisfied, so that the pole determined by D�k�=0 is gapless
in the long-wavelength limit.

The density response function defined as

�nn�q� ;�� = − �T�
̂q����
̂−q��0�� �13�

can be written as �17�

�nn�q� = �
��

���q�G���q����q� + �nn
R �q� , �14�

where �� is the vertex function describing process of
�de� excitations �in� out of the condensate and �nn

R is the
regular part response function. It is not obvious in this ap-
proach to identify the equilibrium state with which the den-
sity response function �nn is determined. We shall show in

the next two sections that the identification of such an equi-
librium state is important to unambiguously define the equi-
librium condensate particle number N0, thermal depletion

particle number Ñ, and the corresponding thermal depletion
single-particle Green function, which are used to build ��,
���, G��, and �R, and to calculate the noncondensate particle
number NNC, so that the consistency between statics and dy-
namics in calculating the number-of-particle fluctuation can
be obtained.

III. NUMBER-OF-PARTICLE FLUCTUATION
IN BOGOLIUBOV APPROXIMATION

We now reexamine the number-of-particle fluctuation
problem in the Bogoliubov approximation at finite tempera-
ture. A comment is deserved: even though we work at finite
temperature, there are no thermal depletion particles.

The vertex function is ��=	
0, and the self-energies are

�++�q� ;i�n� = �−−�q� ;i�n� = 2g
0, �15�

�+−�q� ;i�n� = �−+�q� ;i�n� = g
0, �16�

and the chemical potential determined by Hugenholtz-Pines
theorem is

� = �++�0;0� − �+−�0;0� = g
0. �17�

Substituting the above ���, ��, and � into Eq. �10�, one gets
the corresponding single-particle Green functions for the
noncondensate particles �16,17�

G++
BA�k� ;i�n� =

uk�
2

i�n − �k�
−

vk�
2

i�n + �k�
,

G+−
BA�k� ;i�n� = − uk�vk�� 1

i�n − �k�
−

1

i�n + �k�
 , �18�

where

�k�
2 = ��k� − ����k� + 2g
0 − �� �19�

and

uk�
2 =

�k� − � + g
0 + �k�

2�k�
, �20�

vk�
2 =

�k� − � + g
0 − �k�

2�k�
. �21�

Here �=�−g
0 has been introduced for future convenience,
and �=0 for temperatures below Tc.

Substituting the vertex functions and the Green function
into Eq. �14�, one gets the density response function
�nn

BA�q� , i�n� for the interacting Bose gas

�nn
BA�q� ,i�n� =


0�q�

�q�
� 1

i�n − �q�
−

1

i�n + �q�
 . �22�

We first calculate the number-of-particle fluctuation from
dynamics. Substituting Eq. �22� into Eq. �2�, one gets
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��N̂2�BA

N
=

kBT

mcB
2 , �23�

where cB=	g
0 /m is the Bogoliubov phonon velocity.
Therefore, we get a normal number-of-particle fluctuation
from the dynamics.

Now let us use Eq. �1� to calculate the number-of-particle
fluctuation. The total number of particles is given as

N = N0 + NNC, �24�

where NNC is calculated as

NNC = −
1

�
�
n,k�

G++
BA�k� ;i�n� = �

k��0

��uk�
2 + vk�

2�nk� + vk�
2� , �25�

where nk� = �e��k� −1�−1. Direct calculation shows that

kBT

N
� �NNC

��
�

�=g
0

=
kBT

N
� �NNC

��
�

�=0

=
1

N
�
k��0

��uk�
2 + vk�

2�2nk��nk� + 1�

+ 4uk�
2vk�

2kBT

�k�
�nk� +

1

2
� . �26�

The anomalous N4/3 behavior of this equation can be seen,
since in the long-wavelength limit uk�

2�vk�
2� 1 � k and nk�

� 1 � k , so the integrand has a 1/k4 singularity.
On the other hand, using the chemical potential �=g
0,

one gets

kBT

N
� �N0

��
�

�=g
0

=
kBT

N
� �N0

��
�

�=0
=

kBT

mcB
2 . �27�

The number-of-particle fluctuation is the sum of Eqs. �26�
and �27�, which is clearly not consistent with Eq. �23�. This
is the inconsistency of the result in Refs. �3,7,8,11� with that
in Refs. �9,12�. We should remind ourselves that Eq. �1� is a
thermodynamic relation for an equilibrium system which is
described by a set of equations of state. Also, according to
finite-temperature linear-response theory, the density re-
sponse function is calculated from an equilibrium state. Of
course the equilibrium states that are used in Eqs. �1� and �2�
should be the same. So what is the equilibrium state for the
Bogoliubov approximation at finite temperature? To find the
answer, we notice that Eq. �27� is identical to Eq. �23� and
we get it from relation �=g
0. Therefore, the equilibrium
state in the Bogoliubov approximation is identified to be a
state that all particles occupy in the k� =0 level and its equa-
tion of state is given by �=g
0=g
. This identification is
sound since the relation �=g
0 is exactly the time-
independent Gross-Pitaevskii equation for a uniform system
without thermal depletion particles. Indeed, as proved by
Leggett �19�, the Bogoliubov Hamiltonian can be obtained
from the Hamiltonian �4� by keeping the terms that have
nonzero expectation values in a subclass of states built from
Gross-Pitaevskii ground state. If we adopt this identification
we find the following.

�i� The number-of-particle fluctuation from statics is given
by Eq. �27�, which is now completely consistent with Eq.
�23�. Both are normal, and therefore the system is proved to
be stable, as it should be.

�ii� NNC is the number of particles excited out of the con-
densate due to its oscillation, i.e., it is the depletion of the
Gross-Pitaevskii equilibrium state �19�. N0 in Eq. �24� should
be replaced by N0�,

N0� = N0 − NNC, �28�

the number of particles remaining in the condensate after
NNC particles are dynamically excited out of the condensate.
The single-particle Green function G�� describes the dy-
namic process of the oscillation of the condensate. With the
broken U�1� gauge symmetry, the oscillation of the conden-
sate is interpreted as ejecting particles, which become the
noncondensate particles. This interpretation of the single-
particle Green’s function gives a reasonable explanation of
the density response function given by Eq. �22�. It also ex-
plains the physical meaning of the result given by Eq. �26�.
We argue that, the NNC dynamically excited particles form a
noninteracting system with chemical potential given by �
=0. Equation �26� then represents the number-of-particle
fluctuation of this noninteracting system. In order to see this,
we calculate the density response function of this noninter-
acting system �17�

�nn,NC
BA �q� ;i�n� = −

1

	�
�

mk��0

�G++
BA�k� ;i�m�G++

BA�k� + q� ;i�m

+ i�n� + G−+
BA�k� ;i�m�G−+

BA�k� + q� ;i�m + i�n�� .

�29�

A similar result with Eq. �29� is obtained by Meier and Zw-
erger �5� by calculating the phase fluctuation of the order
parameter ��r�� of Eq. �3�. It is important to point out the
difference of the physical meanings between Eqs. �22� and
�29�. According to Eq. �2�, the number-of-particle fluctuation
of the noninteracting system is

��N̂NC
2 �

N
= −

kBT



lim
q�→0

�nn,NC
BA �q� ;0�

=
1

N
�
k��0

���uk�
2 + vk�

2�2 + 4uk�
2vk�

2�nk��nk� + 1� + uk�
2vk�

2� .

�30�

This is exactly the same as Eq. �7� in Ref. �3� obtained by
Giorgini et al. for the fluctuation of noncondensate particles
��NNC

2 � /N. We notice that the leading order terms of this
result is identical to those of Eq. �26� in k� �0 region, where
the anomalous behavior arises, since kBT /�k� 
nk�. Therefore,
for this noninteracting system, the number-of-particle fluc-
tuations obtained from statics and dynamics are also consis-
tent, even though they are anomalous. However, this anoma-
lous fluctuation is not an implication of instability of the
interacting Bose gas, since we have proved from both statics
and dynamics that the total number-of-particle fluctuation is
normal. This can also be seen by substituting Eq. �24� into
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Eq. �1� but replacing N0 with N0�; the anomalous fluctuation
due to the fact that NNC is completely canceled out. This
calculation clearly shows the importance of the dynamic as-
pect of the condensate reservoir.

�iii� There is a new consistency. The chemical potential as
a functional of the total number of particles N and the equi-
librium number of particles N0 in condensate can be deter-
mined both dynamically from the Hugenholtz-Pines theorem
�17� and statically from the equilibrium equation of state.
These two must be consistent with each other. However,
there is a deeper physical meaning of this consistency. The
equilibrium state described by the equation of state has a
definite number of particles �here this is N0�. Therefore, this
new consistency shows that the Hugenholtz-Pines theorem is
to restore the conservation of the number of particles. In-
deed, it is well known that the Hugenhotz-Pines theorem is
required by the continuity equation �20,21�.

In the next section, we shall show that these interpreta-
tions about the number-of-particle fluctuation, N0�, NNC, and
the single-particle Green function G��, as well as the
Hugenholtz-Pines theorem in the Bogoliubov approximation
remain valid at the level of approximation in which all the
terms in Eq. �5� are kept. As examples, we consider the
random-phase approximation with inclusion of exchange
�RPAE� developed by Minguzzi and Tosi �14� and the dielec-
tric formalism by Fliesser et al. �22�. We shall not give the
detailed derivations, since they are available in the literature.
The steps presented here highlight the physics at hand.

IV. RANDOM-PHASE APPROXIMATION AND
DIELECTRIC APPROACH WITH INCLUSION EXCHANGE

In the RPAE, the equilibrium equations of state of the
Bose-Einstein-condensed system are the time-independent
finite-temperature Gross-Pitaevskii equation for the conden-
sate and static Hartree-Fock equation for the thermal deple-
tion particles. For a homogenous system, they are

� = g
0 + 2g
̃ , �31�

hHFk��r�� = �k�
HF

k��r��, k� � 0, �32�

where

hHF = −
�2

2m
+ 2g
 − � , �33�

�k�
HF = �k� + 2g
 − � , �34�

are the static Hartree-Fock Hamiltonian and single-particle
energy with respect to the chemical potential for the thermal

depletion particles. Here 
0=N0 /	, 
̃= Ñ /	, and 
=N /	
are the equilibrium condensate, thermal depletion, and total

densities with N0, Ñ and N the corresponding equilibrium
condensate, thermal depletion, and total number of particles.
We emphasize again that the number of particles in this equi-
librium system is conserved. By neglecting the thermal

depletion Ñ, we arrive at the equilibrium equation of state for

the Bogoliubov approximation. We notice that single-particle
orbits for the condensate and thermal depletion particles are
governed by two different Hamiltonians, and therefore, they
are not generally orthogonal. However, for a uniform system,
these single-particle orbits are simple orthogonal plane
waves. We also notice that there is a gap in the single-
particle spectrum

lim
k�→0

�k�
HF = g
0. �35�

This gap has important effects on many properties of a Bose-
Einstein-condensed system �23�. We will come back this is-
sue in the last section.

We define a thermal depletion single-particle Green func-
tion for the static hHF

G̃HF�k� ;i�n� =
1

i�n − �k�
HF . �36�

The number of thermal depletion particles is found to be

Ñ = −
1

�
�

n,k��0

G̃HF�k� ;i�n� =
	

�T
3 g3/2�z� , �37�

where �T=	2� /mkBT and z=e���−2g
�=e−�g
0 and g��z� is
the Bose function. Equation �37� is the equation of state
equivalent to Eq. �32� for the thermal depletion particles. The

self-consistent relations among N, N0, Ñ, and � are given by
Eq. �31� and

N��� = N0��� + Ñ��� = N0��� +
	

�T
3 g3/2�z���� . �38�

The number-of-particle fluctuation can be calculated by
substituting Eq. �38� into Eq. �1�. Using the equations of
states �31� and �37�, we find

�N0

��
= −

	

g
+ 2

�N

��
,

�Ñ

��
=

�

�T
3 g1/2�z��	 − 2g

�N

��
 , �39�

and as a consequence

��N̂2�
N

= kBT� �N

��
�

T

=

0




kBT

mcB
2

1 + gP̃0

1 + 2gP̃0

, �40�

where P̃0 is defined as

P̃0 = −
�

�T
3 g1/2�e−�g
0� . �41�

Equation �40� reduces to Eq. �27�, obtained in Bogolibov

approximation when one sets P̃0=0 and 
0=
.
We must also point out that kBT��N0 /���� ��N0

2�,
kBT��Ñ /���� ��Ñ2�. Because of the ensemble used in the

RPAE �24�, ��N0
2� and ��Ñ2� are actually

��N0
2� � 0, �42�
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��Ñ2� = �
k�

ñk��ñk� + 1� = z
�Ñ

�z
=

	

�T
3 g1/2�z� . �43�

These two results are clearly not the same those given by Eq.
�39�. Therefore,

��N2� � ��N0
2� + ��Ñ2� . �44�

This shows that, even in the mean-field level approximation,
the condensate and the thermal depletion components are
strongly correlated. This is not surprising, since below the
critical temperature, the presence of the condensate pins
down the chemical potential to be �=2g
̃+g
0 and Eq. �38�
is a self-consistent relation between N and �. Even in the
Bogoliubov approximation, it is this self-consistent relation
that predicts a number-of-particle fluctuation given by Eq.
�27� consistent with Eq. �23� while the fluctuation of the
condensate itself is identically zero. Similar calculations for

the RPA without the exchange show that ��Ñ2� follows the
N4/3 anomalous scaling law, but the total number-of-particle
fluctuation is

��N̂2�
N

= kBT� �N

��
�

T

=
kBT

mcB
2 , �45�

which is normal.
We now calculate the density response function around

the above equilibrium state and calculate the number-of-
particle fluctuation from dynamics. The linearized equations
for the density fluctuation have the matrix form �14�

��
0

�
̃
 = ��cc �cñ

�ñc �ññ
��Uc

�Uñ  , �46�

where �Uc and �Uñ are the spatially and time-varying exter-
nal potentials for the condensate and thermal depletion com-
ponents. We emphasize here that the matrix form �46� of the
density response function is simply a result by splitting the
system into a condensate and a thermal depletion component,
in which the number of particles is conserved, instead of a

result of using the broken U�1� gauge symmetry �3� as
claimed by Minguzzi and Tosi �14�. The total density re-
sponse function is then given by

�nn = �cc + �cñ + �ñc + �ññ. �47�

On the other hand, according to the linear response theory,

�
0 = �c
0�UHF

c = �c
0��Uc + g�
0 + 2g�
̃�,

�
̃ = �ñ
0UHF

ñ = �ñ
0��Uñ + 2g�
0 + 2g�
̃� , �48�

where �c
0 and �ñ

0 are the density response functions of the
condensate and the thermal depletion around the equilibrium
state, respectively. From the above two equations, the four
components are found

�cc = �1 − 2g�ñ
0�D−1�c

0, �ññ = �1 − g�c
0�D−1�ñ

0,

�cñ = 2g�c
0D−1�ñ

0, �ñc = 2g�ñ
0D−1�c

0, �49�

where

D = �1 − g�c
0��1 − 2g�ñ

0� − 4g2�c
0�ñ

0. �50�

For homogenous systems, the density response functions
of the condensate and of the thermal depletion component
can be obtained by linearizing the time-dependent Gross-
Pitaevskii equation for the condensate around Eq. �31�, and
the time-dependent Hartree-Fock equation for the noncon-
densate around Eq. �32�, respectively. They are given by

�c
0�q� ;i�n� =

2
0�q�

�i�n�2 − �q�
2 , �51�

�ñ
0�q� ;i�n� =

1

	
�

k��0,−q�

ñq�+k� − ñk�

i�n + �q�+k�
HF − �k�

HF �52�

where ñk� = �z−1e��k�
HF

−1�−1 is the occupation number of the
static Hartree-Fock single-particle level of the thermal deple-
tion particles. Therefore, the total density response function
for the homogenous Bose-condensed system is

�nn�q� ;i�n� =
��i�n�2 − �q�

2��ñ
0�q� ;i�n� + 2
�q��1 + g�ñ

0�q� ;i�n��

��i�n�2 − �q�
2��1 − 2g�ñ

0�q� ;i�n�� − 2
�q��1 + 2g�ñ
0�q� ;i�n��

. �53�

Now substituting Eq. �53� into Eq. �2�, one gets the total
number-of-particle fluctuation from dynamics

��N̂2�
N

=

0




kBT

mcB
2

1 + gP̃0

1 + 2gP̃0

. �54�

Here we have made use of the fact that lim�q� �→0 �ñ
0�q� ,0�

=−�� /�T
3�g1/2�e−�g
0�= P̃0 as given by Eq. �41�. One can see

that Eq. �54� is exactly the same as Eq. �40�.
We have shown the total number-of-particle fluctuation is

normal and consistent between statics and dynamics in the
RPAE, and therefore, the interacting Bose system is proved
to be stable. In the above derivations, the number of particles
is conserved and there is not any anomalous number-of-
particle fluctuation. This is because in this RPAE, the num-
bers of particles in the condensate and thermal depletion
component are not time dependent �19� and do not change
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with the external potential because of entropy conservation
�25�. Therefore, they always take the equilibrium values. The
above results can be derived in a more general time-
dependent Hartree-Fock scheme which preserves the U�1�
gauge symmetry �23�.

Now in order to see how the anomalous fluctuation arises
when the broken U�1� gauge symmetry is used, we can fol-
low the steps in Ref. �22� to build the vertex function ��,

self-energy ���, and the single-particle Green function G��

by using Eqs. �31� and �32� as the reference. This means that

the equilibrium condensate N0, thermal depletion Ñ, and Eq.
�36� should be used to build up ��, ���, and regular �R, not
the as yet to be determined N0�, G��, and NNC. Here we skip
those steps and just cite the final results for the single-
particle Green function matrix below

G++�q� ;i�n� = G−−�q� ;− i�n� =
�i�n − �q���1 − 2g�ñ

0�q� ;i�n�� + g
0�1 + g�ñ
0�q� ;i�n��

��i�n�2 − �q�
2��1 − 2g�ñ

0�q� ;i�n�� − 2
0�q��1 + 2g�ñ
0�q� ;i�n��

,

G+−�q� ;i�n� = G−+�q� ;i�n� = −
g
0�1 + g�ñ

0�q� ;i�n��

��i�n�2 − �q�
2��1 − 2g�ñ

0�q� ;i�n�� − 2
0�q��1 + 2g�ñ
0�q� ;i�n��

. �55�

and the density response function �nn�q� ; i�n�, which is same
as Eq. �53�. Since both the equilibrium state and the density
response function are the same as in RPAE, therefore, one
gets the same consistent normal number-of-particle fluctua-
tions from statics and dynamics in this dielectric formalism
as those in the RPAE �22�. The chemical potential from the
Hugenholtz-Pines theorem in this approximation turns out to
be

�HP = �++�0;0� − �+−�0;0� = g
0 + 2g
̃ , �56�

which is the exactly the same as Eq. �31�.
Using G++�q� ; i�n�, the number noncondensate particles

NNC and its fluctuation ��NNC
2 � are found to be the same as

Eqs. �25�, �29�, and �30�. For a dilute gas 
a3�1, where a
=gm /4�, �ñ

0 is usually very small because of the single-
particle gap �23�. It is thus straightforward to show that the
single-particle Green function G�� given by Eq. �55� has the
similar form as that in Bogoliubov approximation for small
k�. For example, the pole is given by �k� 
cBk�1+2g�ñ

0�k� ,�
=cBk��. Therefore, following the steps as in the Bogoliubov
approximation, one can show that ��NNC� follows the �
=4/3 scaling law.

Since Ñ from Eq. �37� is the number of thermal depletion
particles, the difference

�N0 = NNC − Ñ �57�

can be interpreted as the number of particles excited out of
the condensate by the oscillation of the whole system in-
duced by the external time-dependent potential. Indeed, in
the Bogoliubov approximation �N0=NNC since the depletion
of the condensate is completely caused by the dynamic col-
lective excitation. Therefore, the single-particle Green func-
tions �55� can be interpreted as dynamic ones comparing to

the thermal depletion G̃HF defined by Eq. �36�. As in Bogo-
liubov approximation, this interpretation is allowed only be-

cause of the broken U�1� gauge symmetry. The total number
of particles is expressed as

N = N0� + NNC, �58�

where N0�=N0−�N0. When substituting Eq. �58� into Eq. �1�
to calculate the number-of-particle fluctuation, the anoma-
lous fluctuation due to NNC is exactly canceled out by the one
from N0�, so that the total number-of-particle fluctuation is
normal, which is given by Eq. �40�.

We can see that the anomalous fluctuation of the number
of noncondensate particles ��NNC

2 � is solely due to the single-
particle Green functions defined by Eq. �10� whose poles
entangle the single-particle and particle-conserving collec-
tive excitations, a directly consequence of the U�1� symme-
try breaking rather than an implication of the instability of
the Bose system since the total number-of-particle fluctua-
tion is normal and consistent from statics and dynamics.
More than thirty years ago, Straley advised caution �26� in
using such a single-particle Green function to describe the
zero-sound characteristic spectrum of the superfluid 4He.
Leggett also argued �19� that there are no circumstances in
which Eq. �3� is physically correct.

V. DISCUSSIONS AND CONCLUSION

We have shown that the anomalous fluctuation of the
number of noncondensate particles is an intrinsic feature of
the broken U�1� gauge symmetry and is completely absent in
the RPAE in which the U�1� gauge symmetry is preserved.
This may be just related to the different interpretations of the
dynamic process of the condensate of these models, as we
point out in previous sections. But since this anomalous fluc-
tuation of the number of noncondensate particles has not any
physical significance, we can safely say that it is just a by-
product of using the broken U�1� gauge symmetry.

Our calculation can be applied to trapped or closed Bose
systems. The procedure is still to identify the equilibrium
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state with definite number of particles. Using the spectrum of
such a state, one can calculate the canonical partition func-
tion, from which fluctuations of the number of condensate
and noncondensate particles can be obtained. The calcula-
tions following this line, which is appropriate for trapped
systems, show that both fluctuations of the number of con-
densate and noncondensate particles are normal �4,6�. Using
the Bogoliubov spectrum, one again obtains an anomalous
fluctuations of the number of noncondensate particles
�3,7,8,11�. However, it is not appropriate to conclude that the
fluctuation of the number of condensate particles is also
anomalous since one can not use canonical ensemble in Bo-
goliubov approximation.

By using the broken U�1� gauge symmetry, the boundary
of the single-particle spectrum and the collective mode are
entangled together if the poles of G�� are interpreted as the
single-particle excitations. But as far as the dielectric formal-
ism in Ref. �22� concerned, there is a gapped single-particle
spectrum as same as that in the RPAE for the equilibrium
reference. In this sense, a gapped single-particle spectrum
and a gapless collective mode do coexist even in the dielec-
tric formalism. This is another point to identify the equilib-
rium state with which the density response function is calcu-
lated.

As pointed out by Meier and Zwerger �5�, the anomalous
fluctuation of the noncondensate particles is related to the
gapless mode in the superfluid Bose system. Our analysis

shows this is the case if one uses the broken Bose U�1� gauge
symmetry. In the RPAE, which preserves this gauge symme-
try, there is no such an anomalous number-of-particle fluc-
tuation related to the gapless superfluid mode.

In conclusion, we have shown that in models using the
broken U�1� gauge symmetry, the number-of-particle fluctua-
tion is normal and can be calculated consistently from the
static thermodynamic relation and dynamic compressibility
sum rule if the equilibrium states are identified. We also
show that the chemical potential determined from the
Hugenholtz-Pines theorem should also be consistent with
that determined from the equilibrium equation of state. The
N4/3 anomalous fluctuation of the number of noncondensate
particles is an intrinsic feature of the broken U�1� gauge
symmetry. However, this anomalous fluctuation does not im-
ply the instability of the system. Using the RPAE, which
preserves the U�1� gauge symmetry, such an anomalous fluc-
tuation of the number of noncondensate particles is com-
pletely absent.
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