
Low-frequency–high-intensity limit of the Keldysh-Faisal-Reiss theory

Jarosław Bauer*
1Katedra Fizyki Teoretycznej Uniwersytetu Łódzkiego, Ul. Pomorska 149/153, 90-236 Łódź, Poland

�Received 26 October 2005; published 23 February 2006�

When a frequency of the circularly polarized laser field approaches zero the above threshold ionization rate
should approach the well-known static-field limit of tunneling ionization. In the high-intensity limit of the laser
field the Keldysh-Faisal-Reiss �KFR� theory is expected to be valid. For the ground state of a hydrogen atom
we study various forms of the KFR theory when both conditions: ��1 a .u. and ��1 �� is the frequency and
� the Keldysh parameter� are satisfied. For the circularly polarized laser field ionization rate in the Keldysh

theory �which utilizes the length gauge �d� ·E� � form of the matrix element� is calculated analytically. We show
numerically that if the WKB Coulomb correction in the final state of the ionized electron is included, the
Keldysh theory gives the correct result in the tunneling domain. In the barrier-suppression regime the Keldysh
theory without this correction gives ionization rates close to the exact static-field results. The Reiss theory

�which utilizes the velocity gauge �p� ·A� � form of the matrix element� leads to too small ionization rates in the
limit �→0, �→0.
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I. INTRODUCTION

For many years nonresonant multiphoton processes such
as above-threshold detachment �ATD� of ions and above-
threshold ionization �ATI� of atoms �see Refs. �1,2� for the
earliest experiments, and for reviews see, for example, Refs.
�3–5�� in an intense electromagnetic �laser� field have been
described with the help of the Keldysh-Faisal-Reiss �KFR�
theories �6–8�. Initially they were applied to weakly bound
systems—for example, to the outer electron of a negative
hydrogen ion �8�—but later also to different atoms. In the
latter case �photoionization� the description is more difficult
due to the long-range Coulomb potential effect on the final
state of the ionized outgoing electron. From the physical
point of view using linear polarization of the laser field is
more interesting, because one can experimentally observe
such phenomena like rescattering �9� effects in the energy
spectra of outgoing electrons and nonsequential double �10�
or multiple ionization. In the above-mentioned pioneering
KFR papers �6–8� these phenomena were not treated, be-
cause only the so-called direct electrons were considered.
The direct electron, initially in the bound state of an atom or
an ion, makes only a single transition to its final free state.
We believe that this simple picture of ATD and ATI is
enough to correctly predict rates of single detachment or ion-
ization for any polarization of incident laser field. In this
paper we limit ourselves to photoionization of the ground
state of a hydrogen atom �or a hydrogenic positive ion�, but
it is quite likely that our conclusions hold also for the excited
states of many-electron atoms and maybe even for nonse-
quential double ionization.

The KFR theories utilize the S-matrix theory, which is in
principle exact. However, since there is no general analytical
solution to the Schrödinger equation for a charged particle
interacting with both the field of an attractive Coulomb cen-

ter and an electromagnetic plane-wave field, one has to use
analytical approximations to evaluate the S-matrix element
for bound-free transitions. Therefore various approximate
theories may lead to different expressions for the ionization
rate. All three versions of the KFR theory describe the same
physical problem, and the main difference between them is
in the form of the laser-atom interaction. Whereas the d� ·E�

form �sometimes called the length gauge� was used by
Keldysh �6�, the p� ·A� form �sometimes called the velocity
gauge� was used by Reiss �8�. Both theories start from the
time-reversed S-matrix element. The Faisal theory �7� starts
from the direct-time S-matrix element in velocity gauge, but
after some further approximations it ends up with an ioniza-
tion rate formula identical with that of Reiss, at least for the
1s hydrogen atom �7,11�. The Reiss version of the KFR
theory is also known as the strong-field approximation
�SFA�. In the KFR theory one assumes that the laser field is
strong enough that one can neglect the influence of the Cou-
lomb potential on the final state of the outgoing electron.
This is quite a good approximation for photodetachment of a
negative hydrogen ion, because the total electric charge of
the remaining atom is zero. Otherwise, in the atom photoion-
ization process �for example, hydrogen or alkaline-earth at-
oms�, the escaping electron interacts with the long-range
Coulomb potential of the remaining positively charged ion.
Therefore one has to include somehow Coulomb corrections
in the final state of the ionized electron �see, e.g., Ref. �12�
for references therein�. The KFR theory for atoms works
better for circularly polarized radiation because due to selec-
tion rules, the average kinetic energy of an outgoing electron
�equivalently the average number of photons absorbed� is
much larger than in the case of linear polarization for the
same radiation intensity �3�.

Our paper is organized as follows. In Sec. II we review
expressions for static-field ionization rates. In Sec. III we
review the basis of the KFR theory and we define parameters
important in strong-field ionization, etc. �This section may be
omitted by the readers familiar with the KFR theory.� The*Electronic address: bauer@uni.lodz.pl
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ionization rate formula in the Keldysh theory for the circu-
larly polarized laser field is derived in Sec. IV. The WKB
Coulomb corrections in the final state of ionized electron are
discussed in Sec. V. The numerical results and conclusions
are given in Sec. VI, where we compare various KFR ion-
ization rates for ��1 a .u. and ��1 with the static-field
ionization rates. The comparison has been made also with the
exact static field ionization rates of Scrinzi et al. �13� up to
F=1 a.u. �F is the electric field�. There is also an appendix
containing details of some analytical calculations. In what
follows we consistently use atomic units �=e=me=1, sub-
stituting explicitly −1 for the electronic charge. We keep any
nuclear charge Z in all the equations given below, but finally,
in the numerical calculations, we put Z=1 for a hydrogen
atom.

II. STATIC-FIELD IONIZATION RATES

The following formula �14–16� describes the ionization
rate for the hydrogen 1s atom in an external static electric
field F, provided that F�1 a .u.:

�stat =
4Z5

F
exp�−

2Z3

3F
� . �1�

This expression is approximately valid also for the circularly
polarized laser field when ��1 a .u. and ��1. If we assume
that the field changes periodically in time, F�t�=Fsin��t
+�0�, we can average �stat over the field period T=2� /� and
obtain the formula, which is approximately valid for the lin-
early polarized laser field �if ��1 a .u. and ��1�,

�stat
av =

8Z5

�F
K0�2Z3

3F
� � 4�3Z7

�F
exp�−

2Z3

3F
� , �2�

where we have used the following integral representation of
the modified Bessel function K0�x�:

K0�x� = 	
0

�

dy exp�− x cosh y� ,

and its asymptotic form for x→�, K0�x���� /2x�1/2e−x.
Note that the result in Eq. �2� does not depend on the fre-
quency of the laser field. The expressions from Eqs. �1� and
�2� are special cases of the well-known Ammosov-Delone-
Krainov �ADK� �17,16� tunneling ionization rates, which
were confirmed experimentally very well �see, for example,
Refs. �18,19��. Other more accurate theoretical calculations
�20,21,13� confirmed validity of Eq. �1� in the asymptotic
limit F /Fcr→0. Fcr�0.15 a .u. is the critical-field strength
for the ground-state hydrogen atom �22�. The static-field
limit in multiphoton ionization of this atom was investigated
with the help of the Floquet method �22�. For the circularly
polarized laser field the Floquet ionization rates approach Eq.
�1� smoothly with decreasing frequency. For the linearly po-
larized laser field the Floquet ionization rates show interme-
diate resonances, which are absent in Eq. �2�. However, it
was stated quite generally, for the Floquet method, that for
arbitrary polarization ionization rates approach the cycle-
averaged static-field ionization rates as the frequency de-
creases.

III. BASIS OF THE KFR THEORY

The probability amplitude that a one-electron state 	i
�+�,

which has evolved under the combined effects of the Cou-
lomb and the laser field from an initial undisturbed bound
state 
i into some other laser-field-free final state 
 f, is
given by the overlap

Sfi = lim
t→�

�
 f,	i
�+�� = lim

t→−�
�	 f

�−�,
i� , �3�

where 	 f
�−� is the final one-electron out-state containing the

complete effects of laser and Coulomb potentials. There are
two equivalent forms, the direct time and the reversed time
ones, of the exact S-matrix in Eq. �3�. There are advantages
of the latter form �8,11�, which are utilized in the Keldysh
and Reiss theories. The following time-dependent
Schrödinger equations are satisfied:

i
�

�t

 = H0
, i

�

�t
	 = H	 , �4�

where H0= p�2 /2−Z /r is the atomic Hamiltonian �p�̂ =−i�� �,
H=H0+HI, and

HI =
1

c
A� �t� · p� +

1

2c2A� �t�2 �5�

is the Hamiltonian describing the interaction with the laser
field in velocity gauge. The latter Hamiltonian is given here
in the dipole approximation, which is roughly valid, if the
wavelength of the incident radiation is much larger than the
atomic size. In the present paper we disregard the effect of
magnetic field component �23� of the laser field and relativ-
istic effects. Thus the laser field inside the atom is a function

of time only. A� �t� is the vector potential for the circularly or
linearly polarized electromagnetic plane-wave field of fre-
quency � in radiation gauge, with the boundary condition

limt→±�A� �t�=0� . The vector potential of the laser field is
given by

A� �t� =
a
�2

�êxcos��t + �0� ± êysin��t + �0��,

for circular polarization, �6a�

and

A� �t� = aêzcos��t + �0�, for linear polarization, �6b�

where the upper and lower signs refer to the right and left
circular polarization, respectively, êx, êy, and êz, are real unit
vectors, and �0 is an arbitrary initial phase. In the case of
circular polarization the electromagnetic plane wave propa-
gates along the z axis and in the case of linear polarization
along the x axis. This choice gives the greatest simplicity of
analytical calculations. Equations �6� correspond to the same
radiation intensity for both polarizations �for the same a,
which is constant in time�. Following Reiss �8�, let us intro-
duce the intensity parameter z such that
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UP = z� =
A� �t�2

2c2 � =
a2

4c2 =
I

4�2 , �7�

where UP stands for the ponderomotive potential �the time-
averaged kinetic energy �Ek�t� of a classical free charge os-
cillating in an electromagnetic plane-wave field� and I stands
for the radiation intensity in atomic units �1 a .u . �3.51
�1016 W/cm2; for circular polarization I=2F2 and for linear
polarization I=F2, where F is the electric-field vector ampli-
tude�. The second expression from Eq. �3�, Eqs. �4�, and the
boundary condition limt→�	 f

�−�=
 f lead to the exact time-
reversed S-matrix element �8,11,24�

�S − 1� fi = − i	
−�

�

dt�	 f
�−�,HI
i� . �8�

The initial state 
i is the initial state of an atom or an ion.
The KFR theory is based on replacing the exact wave func-
tion 	 f

�−� by the Volkov �or Gordon-Volkov� state �25� de-
scribing the electron freely oscillating in the electromagnetic
plane-wave field. Thus the influence of the remaining atom
or ion on the final state of the escaping electron is entirely
neglected in the KFR theory �6–8�. The Volkov state and the
equation it obeys are given as

	V�r�,t� =
1

�2��3/2 exp�ip� · r� −
i

2
	

−�

t �p� +
1

c
A� ���2

d� ,

�9a�

i
�

�t
	�r�,t� =

1

2
�− i�� +

1

c
A� �t��2

	�r�,t� . �9b�

This approximation is supposed to be valid for a very intense
field, when the oscillation energy of the detached electron in
the laser field dominates the atomic binding energy. When
Eqs. �5� and �9a� are employed in Eq. �8� one obtains the
Reiss theory, which improves as the laser field becomes
stronger. Two conditions usually determine the lower and
upper applicability limits of the KFR theory:

z1 �
2UP

EB
=

I

2�2EB
� 1, zf �

2UP

c2 =
I

2�2c2 � 1.

�10�

Equations �10� say that the ponderomotive potential of the
outgoing electron should be much larger than the electron
binding energy EB=Z2 /2 �in the atom or in the ion� and
much less than the electron rest energy. The latter condition
is due to nonrelativistic description of the process. The
Keldysh parameter � is connected with the Reiss parameter
z1 : z1=1/�2 for linear polarization and z1=2/�2 for circu-
lar polarization. In the length gauge the laser-atom interac-
tion Hamiltonian is

HI
dE = r� · F� �t�, with F� �t� = −

1

c

�A�

�t
�11�

being the electric field vector, and the Volkov state in this
gauge is

	V,dE�r�,t� =
1

�2��3/2 exp�i�p� +
1

c
A� �t�� · r�

−
i

2
	

−�

t �p� +
1

c
A� ���2

d� . �12�

The time-dependent Schrödinger equation for the atom in
velocity gauge, in the dipole approximation �the second
equation of Eqs. �4� with Eq. �5�� can be transformed by
applying the unitary operator �with � being arbitrary num-
ber�

Û��� = exp�i
�

c
A� �t� · r�� . �13�

The wave function and operators change in accordance with

the rules 	�= Û	, and Ô�= ÛÔÛ−1. We note that for �=0
this transformation becomes an identity. With the help of the
Baker-Cambell-Hausdorff formula one easily finds that the
transformed operators are

� �

�t
��

=
�

�t
− i

�

c
r� ·

�A� �t�
�t

, �p�̂�� = p�̂ −
�

c
A� �t�, �r��� = r� ,

�14�

and using Eq. �11� one obtains the transformed time-
dependent Schrödinger equation

i
�

�t
	��r�,t� = �1

2
�p�̂ −

�

c
A� �t� +

1

c
A� �t��2

+ �r� · F� �t� −
Z

r
�	��r�,t� . �15�

In this equation both scalar and vector potentials describe the
interaction of the atom with the laser field. For �=0, Eq. �15�
is in velocity gauge, and for �=1, it is in length gauge, but
for any other � it is in some “intermediate” gauge. In each

case both potentials describe the same magnetic B� and elec-

tric E� fields of the plane wave in the dipole approximation:

B� = �� � �1 − ��A� �t� = 0� ,

E� = −
1

c

�

�t
�1 − ��A� �t� − �� „�r� · F� �t�… = F� �t� . �16�

We will return to the problem of choice of � in Sec. VI.

IV. KELDYSH THEORY

If we put �=1 and utilize Eqs. �11� and �12� in the matrix
element �8�, we will obtain the Keldysh probability ampli-
tude of ionization:

�S − 1� fi
Keldysh = − i	

−�

�

dt	 d3r 	V,dE�r�,t�*r� · F� �t�
i�r�,t� ,

�17�

where the initial, ground state of a hydrogen atom �EB

=Z2 /2� is described by the wave function
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i�r�,t� � 
i�r��exp�iEBt� =�Z3

�
exp�− Zr�exp�iEBt�

�18�

in position space or by its Fourier transform


̃i�p�� =	 d3r

�2��3/2 exp�− ip� · r��
i�r�� =
�8Z5

�

1

�Z2 + p2�2

�19�

in momentum space. In both spaces their absolute values
squared are normalized to unity. Starting from Eq. �17�,
Keldysh �Eq. �20� of Ref. �6�� derived the following ioniza-
tion rate formula for the linearly polarized laser field:

�lin
Keldysh =

�3�ZF

27/4 exp�−
2Z3

3F
�1 −

1

10
��Z

F
�2�� , �20�

where F is the electric-field amplitude. In obtaining his result
Keldysh utilized the saddle-point method and the condition
that the number of photons absorbed be much larger than
unity. One can avoid this condition at the cost of an addi-
tional summation in the ionization rate formula.

To the best of our knowledge, for the circularly polarized
laser field, the formula analogical to Eq. �20� has not been
known so far. Our derivation will be similar to that of Reiss
�8�. A pretty much simplification comes from the fact that

�

�t
exp�−

i

c
A� �t� · r�� = ir� · F� �t�exp�−

i

c
A� �t� · r�� , �21�

where Eq. �11� has been used. After this substitution the
integration by parts upon time can be done and interchanging
the order of integrations we obtain

�S − 1� fi
Keldysh = i	

−�

�

dt
̃i�p� +
1

c
A� �t���1

2
�p� +

1

c
A� �t��2

+ EB�
�exp� i

2
	

−�

t �p� +
1

c
A� ���2

d + iEBt� . �22�

This expression is quite general and describes the Keldysh
probability amplitude of ionization �or detachment� for any
initial state described by 
i�r� , t� in the laser field �of any

polarization, but in the dipole approximation� given by A� �t�.
For the 1s hydrogen atom the denominator in 
̃i�p�
+ �1/c�A� �t�� is proportional to the square of the second factor
in Eq. �22�. Therefore the product of the first two factors in
Eq. �22� is proportional to

�1

2
�p� +

1

c
A� �t��2

+ EB�−1

= �
k=−�

�

Ak�p��eik��t+�0��� �23�

and can be expanded in the above Fourier series. The coef-
ficients Ak are calculated in the Appendix. We use a spherical
system of coordinates in which the z axis is parallel to the
propagation direction of the incoming electromagnetic plane
wave. Thus �� ,�� are polar and azimuthal angles of the ca-
nonical momentum p� of the outgoing electron. Next we pro-
ceed in the standard way �7,8� using the Fourier-Bessel ex-

pansion for the exponential factor in Eq. �22�:

eix sin � = �
n=−�

�

Jn�x�ein�. �24�

From Eqs. �22�, �23� and �24� we get the following expres-
sion for the Keldysh probability amplitude of ionization:

�S − 1� fi
Keldysh = i�2Z5ei��2z/��p sin � sin��0���

� �
n=−�

�

�
k=−�

�

Jn��2z

�
p sin ��Ak�p��ei�n+k���0���

��� p2

2
+ EB + z� + �n + k��� . �25�

The differential ionization rate ��p��, which is the transi-
tion probability per unit time and unit volume in the canoni-
cal momentum �p�� space, can be found from

��p�� = lim
t→�

��S − 1� fi�2

t
. �26�

To obtain the total ionization probability per unit time, �,
one has to integrate the differential ionization rate over all
the possible final momenta of the outgoing electron. The
Dirac � function reflects the conservation of the total energy
after ionization and leads to the summation over N=n+k in
the final expression:

�cir
Keldysh =	 d3p��p��

= 2Z5 �
N=N0

�

�2EN	
0

�

d� sin �� �
k=−�

�

�Ak�EN,���

�JN+k�2�zEN

�
sin ���2

, �27�

where the minimal number of photons absorbed is N0= �z
+EB /��+1 and the kinetic energy of the ionized outgoing
electron is EN= pN

2 /2=N�−z�−EB. �The symbol �¯� de-
notes the integer part of the �positive� number inside.� In
deriving Eq. �27� we have used the following property of the
Bessel functions: J−n�x�= �−1�nJn�x� and we have also used
the relation Ak�p��= �−1�k �Ak�p��� �see the Appendix�. The ex-
pression analogical to Eq. �27� in the Reiss theory is very
well known �8� and in our notation is given as

�cir
Reiss = 2Z5 �

N=N0

� �2EN

�EN + EB�2

�	
0

�

d��sin ��JN
2�2�zEN

�
sin �� , �28�

with the same meaning of N0 and EN.

V. KELDYSH THEORY WITH THE WKB COULOMB
CORRECTION

During the photoionization of neutral atom one should
take into account the long-range Coulomb potential effect on
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the final state of the outgoing electron. In the tunneling do-
main, when ��1 a .u. and ��1, the quasiclassical �WKB�
approximation may be applied. Krainov and Shokri �26,27�
have shown that for the ground state of a hydrogen atom the
Volkov wave function should be multiplied by the factor of
2Z2 /Fr. Their expression V�r� , t�= p� ·A� /c+A� 2 /2c2 �see, for
example, Eq. �8� of Ref. �27�� suggests that calculations have
been done utilizing the p� ·A� form of the S-matrix element.

However, one must remember that p� in HI=A� �t� · p� /c

+A� �t�2 /2c2 and in this matrix element is the operator −i��

�see, for example, Eq. �6� of Ref. �8��. Therefore the Volkov
wave function times const/r is not an eigenfunction of HI
and one cannot proceed in further calculations following Re-
iss �8�. Only if one neglects an additional term in the

S-matrix element, connected with acting p� =−i�� on the factor
of const/r, one can include this factor in the initial-state
wave function. In this way the factor of const/r changes the
ground state of a hydrogen atom into the wave function of an
electron in a potential of zero radius. The probability ampli-
tude of ionization in the Reiss theory �the expression ana-
logical to Eq. �22�� is the following:

�S − 1� fi
Reiss = i	

−�

�

dt
̃i�p��� p2

2
+ EB�

�exp� i

2
	

−�

t �p� +
1

c
A� ���2

d + iEBt� .

�29�

Comparing Eqs. �22� and �29� we see that when the product
of the first two factors in each of these equations is a con-
stant, both equations become identical. This is the case of the
initial-state wave function �in the zero-radius potential� pro-
portional to e−Zr /r. Then the Keldysh and Reiss ionization
rates are equal. This explains why our length gauge calcula-
tions given below in this section lead to a result similar to the
result of Krainov. In fact, we find that Eq. �7� of Ref. �27�
integrated over spherical angles gives our result, Eq. �32a�,
times e2 /2��1.18. �It is connected with different normal-
ization constant of the initial-state wave function, which is
given in more general and large-r asymptotic form in Ref.
�27�.�

Let us now calculate ionization rate in the Keldysh theory
�when both conditions ��1 a .u. and ��1 are satisfied�
with the WKB Coulomb correction in the final state of the
ionized electron. We start from Eq. �17�, where we substitute
Eqs. �18� and �11�, but instead of Eq. �12� we substitute the
Volkov wave function �Eq. �12�� times the factor of 2Z2 /Fr.
Since the laser-atom Hamiltonian is a number now, we can
include the factor of const/r into the initial-state wave func-
tion. We proceed further likewise in Sec. IV, utilizing Eqs.
�21� and �22�. When the position-space wave function �nor-
malized to unity� is given by


�r�� =� Z

2�

e−Zr

r
, �30�

its momentum-space counterpart �also normalized to unity�
is given by


̃�p�� =	 d3r

�2��3/2 exp�− ip� · r��
�r�� =
�Z

�

1

p2 + Z2 . �31�

Using also the equality EB=Z2 /2, we see that 
̃�p���p2 /2
+EB� is a constant indeed. We finally find ionization rates for
circular and linear polarization of incident radiation, respec-
tively:

�cir
Keldysh,WKB =

8Z7

F2 �
N=N0

�

�2EN

�	
0

�

d� sin �JN
2�2�zEN

�
sin �� ,

�32a�

�lin
Keldysh,WKB =

8Z7

F2 �
N=N0

�

�2EN

�	
0

�

dv sin �JN
2��8zEN

�
cos �,−

z

2
� ,

�32b�

with the same meaning of N0 and EN as before. There are
generalized Bessel functions in Eq. �32b� �see, for example,
Ref. �8� for their definition�.

VI. NUMERICAL RESULTS AND CONCLUSIONS

In this section we numerically look for a version of the
KFR theory, which leads to proper ionization rate in the limit
�→0, �→0. Small Keldysh parameters ��→0� are equiva-
lent to large Reiss parameters �z1→ � �. On the ground of the
well-known results from Sec. II we expect that for the circu-
larly polarized laser field the proper KFR ionization rate
should approach Eq. �1� and for the linearly polarized laser
field Eq. �2�. Among various versions of the KFR theory we
have chosen these with no Coulomb corrections in the final
state of the outgoing electron �6,8� and those of recent inter-
est with the WKB Coulomb correction. For completeness we
quote here, in our notation, the Reiss result �8� for the ground
state of a hydrogen atom in the linearly polarized laser field:

�lin
Reiss = 2Z5 �

N=N0

� �2EN

�EN + EB�2	
0

�

d��sin ��

�JN
2��8zEN

�
cos �,−

z

2
� , �33�

with the same meaning of N0 and EN as before. Recently A.
Becker et al. �28� extensively investigated for hydrogen, but
also for other atoms like He, Ne, Ar, Kr, and Xe, the Reiss
ionization rate formula �the “plane-wave KFR rate” �28��
with the Coulomb correction factor, the so-called C2 correc-
tion factor �29�. This result is approximate �a “WKB esti-
mate” �28��, and it is based on a simplification of the result
obtained earlier by Krainov and Shokri �26,27�. In our case,
for the 1s hydrogen atom, the C2 correction factor is equal to
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Z6 /F2 for both polarizations. �F is the electric field ampli-
tude.� Hence for circular and linear polarization we obtain,
respectively,

�cir
A. Becker et al. =

Z6

F2�cir
Reiss =

2Z6

I
�cir

Reiss =
Z6

2z�3�cir
Reiss,

�34a�

�lin
A. Becker et al. =

Z6

F2�lin
Reiss =

Z6

I
�lin

Reiss =
Z6

4z�3�lin
Reiss,

�34b�

where the Reiss ionization rates are given by Eqs. �28� and
�33�.

We investigate the two-parameter limit ��→0, z1→��,
for which an additional condition �F�1 a .u . �, connected
with the applicability of Eqs. �1� and �2�, should be satisfied.
Therefore it is reasonable to keep one of the parameters fixed
and change the other one, and then reversely. In numerical

calculations of different ionization rates we have decided to
fix either the Reiss parameter at z1=100 or the laser fre-
quency at �=0.01 a .u. Thereby our parameters are well in
the range described by two conditions ��1 a .u. and z1
�1. With the change of these parameters ionization rates
change very rapidly, over several orders of magnitude.
Therefore in Figs. 1–4 we do not show ionization rates them-
selves. Instead we show the ratios of the ionization rates of
interest to the static field ionization rates �Eq. �1� or �2�� for
the same electric-field amplitude. These ratios change rather
slowly. There are four ratios that we plot in each of Figs. 1–4
as a function of � or z1. The dotted lines concern the Reiss
ionization rates �Eq. �28� or �33��. The ionization rates of A.
Becker et al. �Eq. �34a� or �34b�� correspond to dot-dashed
lines. The dashed lines concern the Keldysh theory �Eq. �20�
or �27��. The Keldysh theory with the WKB Coulomb cor-
rection �Eq. �32a� or �32b�� is displayed with solid lines.
Figures 1 and 2 relate to circular polarization of the incident
laser field. Figure 1 shows the above-mentioned ratios of
ionization rates for z1=100 as a function of the laser fre-
quency. Figure 2 shows the same, but for �=0.01 a .u. as a
function of the Reiss intensity parameter z1. Figures 3 and 4

FIG. 1. Plot of the ratios of four different KFR ionization rates
�for the circularly polarized laser field� to static-field �the same
electric field� ionization rate against the laser frequency �see text for
details�. The Reiss intensity parameter is constant here: z1=100.

FIG. 2. Same as Fig. 1 �circular polarization�, but against the
Reiss intensity parameter z1. The laser frequency is constant here:
�=0.01 a .u.

FIG. 3. Same as Fig. 1, but for the linearly polarized laser field
�see text for details�. The Reiss intensity parameter is constant here:
z1=100.

FIG. 4. Same as Fig. 2, but for the linearly polarized laser field.
The laser frequency is constant here: �=0.01 a .u.
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are counterparts of Figs. 1 and 2 for linear polarization of the
laser field.

The main conclusion one can draw from Figs. 1–4 is that
only the Keldysh theory with the WKB Coulomb correction
�solid lines� has the correct ratio—very close to unity—of
the ionization rate to its respective static-field result. Of
course, one could also arrive at the conclusion that this ratio
is equal to unity in the limit �→0, z1→� with the help of
analytical methods, using asymptotic forms of the ordinary
and the generalized Bessel functions �see, for example, Refs.
�8,26��. In fact, practically this is also the only way of mak-
ing numerical calculations on PC for very large photon or-
ders �30�, which must exist if ��1 a .u. and z1�1. The
course of solid lines in Figs. 1–4 is very flat around the pair
of parameters: z1=100 and �=0.01 a .u. for both polariza-
tions, what confirms our conclusion. The other three lines in
Figs. 1–4 lie at least one order of magnitude below unity �at
z1=100, �=0.01 a .u.�, so it is hard to imagine how could
they approach 1 for z1�100 and ��0.01 a .u. The ioniza-
tion rate formulas of Keldysh and of A. Becker et al. can
compete with each other, the former being better especially
for larger z1 parameters and circular polarization and the lat-
ter for smaller z1 parameters and linear polarization. This is
in agreement with the applicability limits of both formulas.
The result of A. Becker et al. is valid roughly for I
�1 a .u. �28,29�. In contrast, the Keldysh formula usually
has a greater high-intensity limit �Eq. �10��, but it depends on
the laser frequency. The Reiss ionization rates are at least a
few orders of magnitude too small in the neighborhood of
the point: z1=100, �=0.01 a .u. There have been attempts to
include Coulomb corrections, connected with the parameter
�0=F /�2 �called the quiver radius or classical displacement
of the ionized electron�, in the Reiss formula for both circu-
lar �31,32� and linear polarization �33�. Mishima et al. have
investigated the similar Coulomb �0 corrections in the
Keldysh formula for linear polarization �34�. These correc-
tions always increase ionization rate, but this growth ap-
proaches zero in the limit �0→�. We have checked that, in
Figs. 1–4 �0�1 always and the Reiss ionization rates with
and without these corrections are nearly identical.

Let us note that our statements about the formula of A.
Becker et al. for a hydrogen atom do not contradict the re-
sults shown in Figs. 1–4 of Ref. �28�. While in our paper we
concentrate on parameters of the laser field rather far from
typical experiment, A. Becker et al. investigate lower inten-
sities and higher frequencies. Moreover, the logarithmic
scales applied in Figs. 1–4 of Ref. �28� would not allow
distinguishing between the ionization rate of A. Becker et al.
and that of Keldysh theory with the WKB Coulomb correc-
tion.

In Fig. 5 we release the condition F�1 a .u. and show
various ionization rates for the circularly polarized laser field
of the frequency �=0.01 a .u. as a function of the field am-
plitude up to F=1 a.u. These four ionization rates are shown
with the same kind of lines as before. In Fig. 5 there are also
two static-field ionization rates: the analytical result of Lan-
dau �Eq. �1�, double-dot–dashed line� and the exact static-
field numerical result of Scrinzi et al. �13� �solid circles�
obtained from solving the Schrödinger equation using the
complex scaling method. Of course, the Landau ionization

rate becomes exact in the limit F→0. Looking at Fig. 5 one
can again convince oneself that only the Keldysh theory with
the WKB Coulomb correction �solid line� has the correct
behavior in the limit F→0. Some small discrepancies with
the Landau ionization rate below F=0.03 a .u. are due to too
small a z1, parameter here �z1�10�. Let us note that for
theories with the WKB Coulomb corrections the Keldysh
theory is always much closer to the Landau result than the
Reiss theory. Since the WKB Coulomb corrections are valid
for F�1 a .u., one should not expect from the KFR ioniza-
tion rates �which include these corrections� too much accu-
racy for F�0.1 a .u. But even in this case the Keldysh
theory seems to be much better �see the solid and dot-dashed
lines in Fig. 5�. One can say the same comparing the Keldysh
and Reiss theories without Coulomb corrections. With in-
creasing the field amplitude the dashed line in Fig. 5 comes
along very close the exact results of Scrinzi et al. Let us
recall that the S-matrix theories have another limitation con-
nected with their formalism: namely, with a large-time lim-
iting procedure �see the paragraph containing Eq. �49� in
Ref. �8��, which leads to the condition: �2� /��1. We as-
cribe the discrepancy between the exact results of Scrinzi et
al. and the Keldysh theory, which appears on the right-hand
side of Fig. 5 to not fulfilling this condition. Also the fact
that �=0.01 a .u. is finite and not equal to zero may be of
some importance.

In Sec. III we have shown that one can consider a gener-
alization of the KFR theory in the dipole approximation as a
gauge-dependent theory, which is described by the parameter
�. It was very well known a long time ago that the Keldysh
��=1� and the Reiss ��=0� theories give different results
�see, for example, Refs. �35–41,11��. It is possible to repeat
all the analytical calculations and to derive the ionization rate
formulas for both polarizations for any �. Before starting our
numerical calculations we have expected to find � �not nec-
essary equal to 0 or 1�, which leads to correct ionization rates
in the limit �→0, z1→�. This paper strongly supports the
conclusion that the correct value of � is 1. Therefore the

length gauge �d� ·E� � form of the matrix element should be
used in Eq. �8�. Similar statements about the superiority of

FIG. 5. Plot of various ionization rates for the circularly polar-
ized laser field �for �=0.01 a .u.� or static-field ionization rates
against the electric field �see text for details�.
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this matrix element over the velocity gauge �p� ·A� � form of
this matrix element have recently appeared in the literature.
Gribakin and Kuchiev �42� have shown that the length gauge
KFR theory has the correct limit �→0 for short-range bind-
ing potentials and linear polarization. They stress the impor-
tance of an accurate description of the wave function in the
asymptotic region, because the length gauge interaction em-
phasizes large distances from the ionic core. Kjeldsen and
Madsen �43,44� have compared the predictions of the length
and velocity gauge versions of the molecular strong-field ap-
proximation �MO-SFA�. They have found different behavior
in the ionization rates of the N2 molecule in both gauges for
different orientations between the polarization axis and the
internuclear axis. Kjeldsen and Madsen have shown that in
general the length gauge MO-SFA is in better agreement
with experiments than the velocity gauge MO-SFA. Beiser et
al. �45� have found a substantial discrepancy in both gauges
in the kinetic energy distribution of electrons from photode-
tachment in a strong circularly polarized laser field. They
have also shown that only the length gauge predictions are
consistent with the Wigner threshold law at low energies.
Chirilǎ and Potvliege �12� have investigated an He+ ion irra-
diated by a 400-nm linearly polarized laser pulse of
1016 W/cm2 peak intensity. They have shown that many of
the features of the ab initio photoelectron spectra �i.e., com-
ing from the solution of the time-dependent Schrödinger
equation� can be understood within the length gauge formu-
lation of the KFR theory. Finally, for the ionization of nega-
tive ions with a ground state of odd parity in the linearly
polarized laser field, D. Bauer et al. �46� have found quali-
tative differences in the predictions of the two gauges. They
have shown that the length gauge KFR theory matches the
exact numerical solution of the time-dependent Schrodinger
equation. Our present paper provides us with a partial answer
to the question formulated by D. Bauer et al.: which gauge is
better suited for above-threshold ionization of atoms and
molecules as well as nonsequential double ionization? A
more general answer to this question can also be given �47�.

In conclusion, we have shown that for the ground state of
a hydrogen atom only the length gauge form of the KFR
theory may be consistent with the static field results in the
limit �→0, z1→�. In the tunneling regime �F�1 a .u . � it
is necessary to include the WKB Coulomb correction in the
final state of the ionized electron to obtain correct ionization
rate. In the barrier-suppression regime this correction should
not be applied, and without it one obtains ionization rates
close to the exact results of Scrinzi et al. It appears, contrary
to the supposition formulated in Ref. �38�, that the KFR
theory does not have to fail for strong fields. One of the main
results of this paper is also Eq. �27�, the length gauge KFR

formula for the ionization rate for the ground state of a hy-
drogen atom in the circularly polarized laser field.
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APPENDIX: FOURIER COEFFICIENTS Ak„p�…

Let us consider the Fourier expansion of the expression

��p� +A� �t� /c�2 /2+EB�−1 as a function of time for circular po-
larization. Multiplying both sides of Eq. �23� by
exp�−in��t+�0���� and integrating this equation from 0 to
T=2� /�, we obtain

An�p�� =
�

2�
	

0

T

dt
exp�− in��t + �0 � ���

1

2
�p� +

1

c
A� �t��2

+ EB

, �A1�

where the upper and lower signs refer to the right and left
circular polarization, respectively. In further calculations we
introduce the new parameters

a =
p2

2
+

Z2

2
+ z� � 0, �A2�

b = �2z�p sin � � 0, �A3�

where a from Eq. �A2� should not be confused with a from
Eqs. �6� and �7�. One can show that b�a always and Eq.
�A1� gives

An�p�� =
1

2�
	

�0��

2�+�0��

dx
exp�− inx�
a + b cos x

=
�− b�n

�a2 − b2��a2 − b2 + a�n
. �A4�

In the above expression we have used a mathematical theo-
rem about parameter-dependent integrals �which allows us to
put �0��=−�� and Eq. �22�, p. 414, from Ref. �48�. An�p��
are real and do not depend on the initial phase �0. Equation
�A4� is valid for n�0. For n�0 we have An�p��=A�n��p��.
Equation �A4� also shows that An�p��= �−1�n �An�p���.
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