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Using techniques of complex analysis in an algebraic approach, we solve the wave equation for a two-level
atom interacting with a monochromatic light field exactly. A closed-form expression for the quasienergies is
obtained, which shows that the Bloch-Siegert shift is always finite, regardless of whether the original or the
shifted level spacing is an integral multiple of the driving frequency �. We also find that the wave functions,
though finite when the original level spacing is an integral multiple of �, become divergent when the intensity-
dependent shifted energy spacing is an integral multiple of the photon energy. This result provides an ab initio
theoretical explanation for the occurrence of the Freeman resonances observed in above-threshold ionization
experiments.

DOI: 10.1103/PhysRevA.73.023419 PACS number�s�: 32.80.Rm

I. INTRODUCTION

The interaction between light and matter is a fundamental
problem in physics, whose study led to the birth of quantum
theory about a century ago. The two-level atom model was
originally proposed by Einstein �1� to study the transitions
between two energy levels of an atom interacting with light
�later especially with laser light�. However, despite many
great efforts and significant progress since then, an exact
solution remains elusive even for the simplest problem of a
two-level atom �2� interacting with a classical or quantum-
mechanical light field. Pursuing higher accuracy in describ-
ing a physical system is always an ultimate goal for physi-
cists.

Exact and analytic expressions also provide new starting
points for further developments of the theories in physics.
The exact quasienergy levels and the wave functions ob-
tained by solving the two-level atom model can be used in
the calculation of many important physical quantities, such
as the Rabi flopping frequency and the inversion rate. Math-
ematically, an approach that exactly solves this model may
provide a starting point for solving more complicated cases,
such as a driven N-level atom, as well as an atom in a mul-
timode laser field.

Since the pioneering work of Bloch and Siegert �BS� �3�,
there have been many different approximate methods devel-
oped to solve a two-level system driven by an external field.
The rotating-wave approximation �RWA� is a widely used
method. As is well known, this approximation is good only
when the frequency of the light field is “near resonance” but
also not too close to the resonance. The word “near” means
that the frequency of the light field is near the original energy
spacing of the two-level atom. Many works have been de-
voted to going beyond the RWA method. For example, Shir-
ley �4� applied Floquet’s theorem and perturbation method to
solve the time-dependent Schrödinger equation for a two-

level system. And Cohen-Tannoudji et al. �5� used perturba-
tion methods to solve a quantum-field two-level system. Pi-
azza et al. �6� have recently derived the wave functions and
quasienergies for a two-level atom driven by a low-
frequency strong laser pulse and applied their result to emis-
sion spectra and high harmonic generation �HHG�. The low-
frequency approximation adopted by Piazza et al. skips all
higher resonances and can be thought of as a limiting case
opposite to the near-resonance approximation. The continued
fraction �CF� method, giving recurrence relations for the
Fourier coefficients of the wave function, is also a commonly
adopted method going beyond the RWA. Swain �7�, Yeh and
Stehle �8�, Becker �9�, and recently Feng et al. �10� applied
the CF method to obtain approximate solutions. In continued
fractions expressing the wave function, an unknown quasien-
ergy is involved. Approximations, used in evaluating the
quasienergy, make the corresponding wave functions inaccu-
rate. Due to the infinite order of the algebraic equations sat-
isfied by the quasienergy, the exact value of the quasienergy
in a closed form has never been derived.

In 1987, Freeman et al. found experimentally �11� that the
above-threshold ionization �ATI� peaks broke up into many
small peaks when the laser pulses were short. The appear-
ance of the small peaks was interpreted as multiphoton reso-
nances between the ground state—say, 5P3/2 for the outer-
most shell electrons of xenon atoms—and Rydberg states
with a shifted energy level. In the literature these resonances
are now called Freeman resonances and their appearance can
be phenomenologically explained by ac Stark-shifted multi-
photon resonances.

Such multiphoton resonances have been observed for
years and modeled theoretically using Floquet and numerical
approaches �12�. Due to interactions with the radiation field,
the energy-level spacing of a two-level atom acquires an
intensity-dependent shift. In the theoretical literature, the
term “near resonance” refers to the condition where the pho-
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ton energy is near the original energy spacing �prereso-
nances, in the absence of radiation�. However, the fine struc-
ture of ATI peaks observed by Freeman et al. �11� can be
well interpreted as Rydberg-state resonances occurring only
when the shifted energy spacing is equal to an integral mul-
tiple of the photon energy, the Freeman resonances, in the
presence of strong radiation fields. It is this intensity-
dependent shift in the resonance frequency that calls for a
fundamental explanation in the theory for a driven atom.
Moreover, one is certainly tempted to know what happens
when the light field is neither very near nor very far away
from any resonance. Even in the so-called near-resonance
case, calculations and analysis with higher accuracy are al-
ways desired. All of these require a solution to the two-level
atom problem that is as exact as possible.

In this paper, we attack the two-level atom problem in an
algebraic approach. We start with a proof of the equivalence
between a classical-field description and a corresponding
quantum-field description for a two-level system in a driving
field. Then, we recast the classical-field differential equations
of motion into an infinite system of linear equations, with the
energy determinant of infinite rank in the form of a continu-
ant �13�—i.e., having nonzero elements only on three major
diagonals. We then directly evaluate the energy determinant,
using techniques in complex analysis and the trick that
breaks the relevant continuants into subcontinuants of a half-
infinite rank, which are further expressed as infinite series. In
this way, a closed-form expression for the quasienergies is
obtained.

Our solutions exhibit several interesting features: �i� A
simple cosine energy shift formula is derived, which natu-
rally exhibits the Floquet quasienergy feature. �ii� It incorpo-
rates multiphoton effects, in particular all multiphoton reso-
nances if there are any. �iii� For the preresonance cases, when
the original energy spacing is an integral multiple of the
photon energy of the radiation field, both the shifted quasien-
ergies and the corresponding wave functions are finite.
Therefore no singularity �or resonance� really appears at the
preresonances. �iv� It shows theoretically the existence of
Freeman resonances; namely, the wave function has a singu-
larity when the intensity-dependent energy spacing shifts to
an integral multiple of the external photon energy.

Comparisons made between our result and earlier results
indeed show agreement at the leading order. The higher-
order correctness of our results can be guaranteed and
checked by the mathematical derivation process and also by
a comparison with experimental findings.

II. EQUATIONS OF MOTION

The goal of this paper is to solve the following equations
of motion which describe a two-level atom driven by a ra-
diation field:

� d

d�
− iD cos ��x + i��z + iEI�Y = 0. �1�

In this equation, we have chosen c= � =1 and set the field
frequency �=1. Here 2� stands for the energy spacing in

units of � in the absence of the radiation field; we have
introduced a dimensionless dipole moment D for the interac-
tion strength, with D2 proportional to the laser beam inten-
sity. The notation E stands for the quasienergy, in units of �,
of the two-level atom in the classical radiation field. It can
also be directly called the energy level, if one treats the ra-
diation as a quantum field. Y= �Y1 ,Y2�t, and �x and �z are
Pauli matrices; I is the 2�2 unit matrix.

This equation is usually derived from the quantum-
mechanical equations of motion for a two-level atom inter-
acting with a classical, single-frequency mode in the dipole
approximation. Below we will show that it can also be de-
rived from the quantum-field approach in the large-photon-
number �LPN� limit without any other approximation. For
this reason, we regard the equations of motion �1� as an exact
description of a driven two-level system when the driving
field is a classical field.

Let us start from the equation of motion for a two-level
atom interacting with a single-mode quantum field:

���z + �N + �e�g�x�a + a†����� = − E��� , �2�

which is equivalent to the one in Cohen-Tannoudji et al. �5�,
if we set 2�=�0, 1 � 2�=J, g=	 /4 �e�, and E=−E�.

Now, we introduce a new basis 	y � 
�nyn	n� with 	n� be-
ing Fock states:

��� → ��y� 
 �
n

yn	n��� . �3�

Then, in the LPN limit, the equation of motion �2� becomes

�
n

���zy
n + nyn� + �e�
�x�yn−1 + yn+1���n = − E�

n

yn�n,

�4�

where

�n 
 	n���, 
 
 g�n . �5�

We further rewrite the above equation as

��z + �y
d

dy
+ �e�
�x�y−1 + y����y� = − E��y� . �6�

Letting

2�e�
 
 D�, y 
 − ei��, � = 1, �7�

we obtain Eq. �1�. Starting with Eq. �1� and going backward
through the proof, with mapping yn to Fock state �n� and
resuming the commutation relation between y and y−1, we
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can recover Eq. �2�. To recover �, one should just take �
→� /� and E→E /�, with D remaining dimensionless.

III. SOLVING THE ALGEBRAIC EQUATIONS
OF MOTION

Write the solutions in the case of ��0 in the form

Y = C1���Ȳ�1� + C2���Ȳ�2�, �8�

where Ȳ�1� and Ȳ�2� are two linearly independent solutions of
Eq. �1� with �=0=E:

Ȳ�1���� = e−iD sin � 1
�2

�1,− 1�t, Ȳ�2���� = eiD sin � 1
�2

�1,1�t.

�9�

Here the superscript t means transposition. These solutions

are orthonormal Ȳ�i�†Ȳ�j�=�ij, and satisfy

Ȳ�1�†�zȲ
�1� = Ȳ�2�†�zȲ

�2� = 0,

Ȳ�1�†�zȲ
�2� = �Ȳ�2�†�zȲ

�1��* = ei2D sin �.

The resulting differential equations are

i
d

d�
C1��� − �C2���ei2D sin � − EC1��� = 0,

i
d

d�
C2��� − �C1���e−i2D sin � − EC2��� = 0. �10�

Using the expansions

C1��� = �
s

C1se
−is�, C2��� = �

s

C2se
−is�, �11�

Eqs. �10� can be transformed into a set of linear equations:

sC1s − ��
t

C2tJt−s�2D� − EC1s = 0,

sC2s − ��
t

C1tJt−s�− 2D� − EC2s = 0, �12�

where Jn�x� are ordinary Bessel functions and s and t are
integers running from −� to �. However, each of the equa-
tions involves an infinite sum of terms, so they are still com-
plicated. To simplify them, we use the Bessel functions to
construct a transformation:

Aq 
 �
s

C1sJs−q�− 2D� . �13�

The inverse transformation is

C1s = �
q

AqJq−s�2D� . �14�

Using the inverse transformation to express Eq. �12� and the
recurrence relations for the Bessel functions, nJn�2D�
=D�Jn−1�2D�+Jn+1�2D��, we obtain

�C2s = − D�As+1 + As−1� + �s − E�As,

C2s =
�

s − E
As. �15�

So finally the new variables As satisfy a set of simple
linear equations

D�E − s�
�E − s�2 − �2 �As+1 + As−1� + As = 0, �16�

with s= . . . ,−2 ,−1 ,0 ,1 ,2 , . . .. Each equation now involves
only three terms. This success of simplification is crucial to
our subsequent treatments.

IV. INFINITE DETERMINANT AND QUASIENERGIES

For a nontrivial solution to Eqs. �16� to exist, the quasien-
ergy E has to be such that the following infinite determinant
vanishes:

det�E� =�
¯ ¯ ¯ ¯ ¯ ¯ ¯

¯ −2 �−2�E� 0 0 0 ¯

¯ �−1�E� −1 �−1�E� 0 0 ¯

¯ 0 �0�E� 0 �0�E� 0 ¯

¯ 0 0 �1�E� 1 �1�E� ¯

¯ 0 0 0 �2�E� 2 ¯

¯ ¯ ¯ ¯ ¯ ¯ ¯

� , �17�
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with

s = 1, �s�E� = �s�E� =
D�E − s�

�E − s�2 − �2 . �18�

A determinant of this type is called tridiagonal, or it is called
a continuant �13�.

In the previous literature, this kind of infinite determi-
nants was evaluated by using various approximations—e.g.,
the power series expansion in D �10�. Here we will evaluate
this infinite determinant exactly, using techniques in complex
analysis. The key observation is that the tridiagonal infinite
determinant in Eq. �17� is absolutely convergent, since the
infinite sum �s�s�s+1 is absolutely convergent. �See, for ex-
ample, the classical treatise in �15�.�

Therefore, if we regard the energy E as a complex vari-
able, then the infinite determinant �17� defines an analytic
function on the complex-E plane. Actually it is a meromor-
phic function of E which has two groups of poles at E
= ± ��+s�, �s=0±1, ±2, . . . �.

When 2�=n for integer n�1, we call the case prereso-
nance. In the nonpreresonant case where 2��n, the poles of
det�E� are all simple poles. Since �s�E� and �s�E� are peri-
odic functions of E with period unity, the poles in each
group, E= ± ��+s�, respectively, are equally spaced and have
the same residue. The residues

R+ = lim
E−�±n→0

�E − � ± n�det�E� ,

R− = lim
E+�±n→0

�E + � ± n�det�E� �19�

are independent of n. Furthermore, it can be directly verified
that the residues R+ and R− differ from each other only by a
sign:

R+�D,�� = − R−�D,�� . �20�

Each group of poles with the same residue on the real E

axis of the complex-E plane suggests a cotangent function.
We also observe that det�E= i� �=1. Thus the exact value of
the determinant �17� can only be the following function:

det�E� = 1 + R+ �
n=−�

� � 1

E − � + n
−

1

E + � + n
�

= 1 + �R+cot���E − ��� − �R+cot���E + ���

= 1 + �R+
sin�2���

sin���E − ���sin���E + ���
. �21�

By the uniqueness theorem in complex analysis, the right
side of Eq. �21� and that of Eq. �17� agree with each other on
the whole E plane.

When 2� is a positive integer, the two groups of simple
poles are merged to become double poles. When �=0, the
poles at E=integer still remain as first-order or zeroth-order
ones. �The details will be discussed in the Appendix.�

Thus we are able to put the characteristic equation
det�E�=0 into an exact and closed form

sin���E − ���sin���E + ��� = − �R+sin�2��� . �22�

Solving the above equation, with inclusion of the prereso-
nance case, we obtain a cosine function of the quasienergy:

cos�2�E� = cos�2��� + 2�R+sin�2��� �2� � n�,

cos�2�E� = cos�2��� + �− 1�n2�2rn �2� = n� ,

�23�

where rn are residues of R+ as a function of 2�, defined by
the limiting processes

lim
2�→n

R+sin�2��� = �− 1�n lim
2�→n

R+��2� − n� = �− 1�n�rn.

�24�

We note that r0=0 for n=0. �The detailed proof is presented
in the Appendix.�

This expression �23� for the energy shift has a unique
advantage: the Floquet condition is automatically satisfied in
view of the cosine function.

The next main job is to evaluate the factor R+. In
the context below, for writing convenience, we use finite
determinant notation to express the infinite determinants. We
find
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R+ = lim
E→�

�E − ��det�E� =

�
�
�
�
� 1

D�� + 3�
3�2� + 3�

· · · · ·

D�� + 2�
2�2� + 2�

1
D�� + 2�
2�2� + 2�

· · · ·

·
D�� + 1�
�2� + 1�

1
D�� + 1�
�2� + 1�

· · ·

· ·
D

2
0

D

2
· ·

· · ·
D�� − 1�

− 1�2� − 1�
1

D�� − 1�
− 1�2� − 1�

·

· · · ·
D�� − 2�

− 2�2� − 2�
1

D�� − 2�
− 2�2� − 2�

· · · · ·
D�� − 3�

− 3�2� − 3�
1 �
�
�
�
�

.

�25�

The following lemma is useful to determine the residues
of R+.

Lemma. For any integer n, the function det�E� with 2�
=n has the second-order poles at E= l+n /2, where l is an
arbitrary integer, with coefficients equal to the residue of
R+�2�� at the first-order pole 2�=n—i.e.,

lim
E→�l+n/2�

�E − �l + n/2��2det�E��2�=n = rn, �26�

where rn are residue of the function R+�2�� at the pole 2�
=n.

Proof. From Eqs. �21� and �24�,

det�E��2�=n = �1 +
�− 1�n�2rn

sin���E − ���sin���E + ���
�

2�=n

= 1 +
�2rn

sin2���E − n/2��
, �27�

we can see that when E→ �l+n /2�, the function

�2 / sin2���E−n /2�� behaves like a second-order pole �E
− �l+n /2��−2.

In the n=0 case, the above proof still holds, since
R+�2�=0=0 �see the Appendix � and r0=0. Q.E.D.

From this lemma we learn that the function of R+�2�� can
only have first-order poles at nonzero integers. Thus, R+ can
be expressed as

R+ = R+
� + �

n=−�

�
rn

2� − n
= �

n=1

�
4�

4�2 − n2rn, �28�

where �a� rn=r−n, �b� r0=0, and �c� R+
�=0 have been used.

The proofs for �b� and �c� are given in the Appendix . The
proof for �a� is the following: Using Eq. �26� to express r−n,
we verify that the values of the two factors on the left-hand
side of this equation do not change with changing n→−n.
That the second factor does not change can be seen from
Eqs. �21� and �20� while the first one can be seen with sub-
stituting l in l−n /2 by l�+n since both l and l� can be arbi-
trary integers.

Further evaluation of R+ is based on the evaluation of the
residues rn. In the following, we list a few low-photon-
number residues as examples:
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r1 =

�
�
�
�
� 1

7

2
D

3 � 4

· · · · · ·

5

2
D

2 � 3

1

5

2
D

2 � 3

· · · · ·

·

3

2
D

1 � 2

1

3

2
D

1 � 2

· · · ·

· ·
D

2
0

D

2
· · ·

· · ·
D

2
0

D

2
· ·

· · · ·
−

3

2
D

2 � 1

1
−

3

2
D

2 � 1

·

· · · · ·
−

5

2
D

3 � 2

1
−

5

2
D

3 � 2

· · · · · ·
−

7

2
D

4 � 3

1 �
�
�
�
�

, �29�

r2 =

�
�
�
�
� 1

4D

3 � 5
· · · · · · ·

3D

2 � 4
1

3D

2 � 4
· · · · · ·

·
2D

1 � 3
1

2D

1 � 3
· · · · ·

· ·
D

2
0

D

2
· · · ·

· · · 0 1 0 · · ·

· · · ·
D

2
0

D

2
· ·

· · · · · −
2D

3 � 1
1 −

2D

3 � 1
·

· · · · · · −
3D

4 � 2
1 −

3D

4 � 2

· · · · · · · −
4D

5 � 3
1 �
�
�
�
�

, �30�
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r3 =

�
�
�
�
� 1

D
7

2

5 � 2

· · · · · ·

D
5

2

4 � 1

1
D

5

2

4 � 1

· · · · ·

·
D

2
0

D

2
· · · ·

· ·
D

1

2

2�− 1�
1

D
1

2

2�− 1�
· · ·

· · ·
D�−

1

2
�

1�− 2�
1

D�−
1

2
�

1 � �− 2�
· ·

· · · ·
D

2
0

D

2
·

· · · · ·
D�−

5

2
�

�− 1��− 4�
1

D�−
5

2
�

�− 1��− 4�

· · · · · ·
D�−

7

2
�

�− 2��− 5�
1 �
�
�
�
�

, �31�

and

r4 =

�
�
�
�
� 1

D4

6 � 2
· · · · · · ·

D3

5 � 1
1

D3

5 � 1
· · · · · ·

·
D

2
0

D

2
· · · · ·

· ·
D1

3�− 1�
1

D1

3�− 1�
· · · ·

· · · 0 1 0 · · ·

· · · ·
D�− 1�
1�− 3�

1
D�− 1�
1�− 3�

· ·

· · · · ·
D

2
0

D

2
·

· · · · · ·
D�− 3�

�− 1��− 5�
1

D�− 3�
�− 1��− 5�

· · · · · · ·
D�− 4�

�− 2��− 6�
1 �
�
�
�
�

. �32�

For general n, rn can be expressed as an determinant of infinite rank:
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rn =

�
�
�
�
� 1

D�n

2
+ 3�

3�n + 3�
· · · · ·

D�n

2
+ 2�

2�n + 2�
1

D�n

2
+ 2�

2�n + 2�
· · · ·

·
D�n

2
+ 1�

1�n + 1�
1

D�n

2
+ 1�

1�n + 1�
· · ·

· ·
D

2
0

D

2
· ·

· · ·
D�n

2
− 1�

− 1�n − 1�
1

D�n

2
− 1�

− 1�n − 1�
·

· · · ·
D�n

2
− 2�

− 2�n − 2�
1

D�n

2
− 2�

− 2�n − 2�

· · · · ·
D�n

2
− 3�

− 3�n − 3�
1

· · ·

· · ·

· · ·

1
D�n

2
− 3�

3�n − 3�
· · · · ·

D�n

2
− 2�

2�n − 2�
1

D�n

2
− 2�

2�n − 2�
· · · ·

·
D�n

2
− 1�

1�n − 1�
1

D�n

2
− 1�

1�n − 1�
· · ·

· ·
D

2
0

D

2
· ·

· · ·
D�n

2
+ 1�

− 1�n + 1�
1

D�n

2
+ 1�

− 1�n + 1�
·

· · · ·
D�n

2
+ 2�

− 2�n + 2�
1

D�n

2
+ 2�

− 2�n + 2�

· · · · ·
D�n

2
+ 3�

− 3�n + 3�
1
�
�
�
�
�

. �33�
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In this notation, the lower part in the expression is the con-
tinuation of the upper part in the direction of the main diag-
onal.

We have been able to work out the first a few terms for
the residues in the dipole expansion. Here we only cite the
results:

r1 = −
1

4
D2 + ��2

48
+

1

64
�D4 + ¯ ,

r2 = −
1

9
D4 +

13

162
D6 + ¯ ,

rn = −
1

4
� n

n2 − 1
�2

D4 + ¯ �n � 1� , �34�

The numerical coefficients given here are all exact.
Thus, the expression for R+ up to the D4 term is

R+ = −
D2

4
+ D4��2

48
+

1

64
� + ¯ � 4�

4�2 − 1

+ �
n=2

� −
D4

4
� n

n2 − 1
�2

+ ¯ � 4�

4�2 − n2 . �35�

The explicit form of R+ can be used to evaluate the energy
shift. In the preresonance case, from Eq. �23�, the cosine
engergy shift reads as

cos�2�E� = − 1 +
�2

2
D2 − �2��2

24
+

1

32
�D4 + ¯ �2� = 1� ,

cos�2�E� = �− 1�n − �− 1�n�2

2
� n

n2 − 1
�2

D4 + ¯

�2� = n � 1� . �36�

There are many exact ways to express E as an exact func-
tion of �. The following are the suggested ones:

E =
1

�
cos−1�cos2���� + �R+sin�2��� �2� � n� ,

E =
1

�
cos−1���− r2k+1� �2� = 2k + 1� �37�

and

E =
1

�
sin−1�sin2���� − �R+sin�2��� �2� � n� ,

E =
1

�
sin−1���− r2k� �2� = 2k� . �38�

The right side of the equations can all be added with an
integer, due to the Floquet feature for quasienergy. Here we
leave the sign determination for the square roots to the Dis-
cussion section.

The Bloch-Siegert shift, defined as EBS=2E−2�, has now
the exact expressions

EBS =
2

�
cos−1�cos2���� + �R+sin�2��� − 2� �2� � n� ,

EBS =
2

�
cos−1���− r2k+1� − 2� �2� = 2k + 1� �39�

and

EBS =
2

�
sin−1�sin2���� − �R+sin�2��� − 2� �2� � n� ,

EBS =
2

�
sin−1���− r2k� − 2� �2� = 2k� . �40�

V. WAVE FUNCTIONS

Equation �16� can be further written as �14�

for s � 0,
As

As−1
=

− 1

�E − s�2 − �2

D�E − s�
+

As+1

As

, �41�

for s � 0,
As

As+1
=

− 1

�E − s�2 − �2

D�E − s�
+

As−1

As

, �42�

for s = 0,
A−1

A0
+

E2 − �2

DE
+

A1

A0
= 0. �43�

By iterating the first relation, we express A1 /A0 as a con-
tinued fraction:

A1

A0
= −

1

�E − 1�2 − �2

D�E − 1�
−

1

�E − 2�2 − �2

D�E − 2�
− ¯

. �44�

Similarly by iterating the second relation, we have

A−1

A0
= −

1

�E + 1�2 − �2

D�E + 1�
−

1

�E + 2�2 − �2

D�E + 2�
− ¯

. �45�

Putting back all the transformations made, we obtain

Y� = �
s

�
q

Aq
�Jq−s�2D�e−is�Ȳ�1� + �

s

�

s ± E
As

�e−is�Ȳ�2�

= �
s

As
�e−is�ei2D sin �Ȳ�1� + �

s

�

s ± E
As

�e−is�Ȳ�2�

= �
s

As
�e−is�ei2D sin �e−iD sin � 1

�2
�1,− 1�t

+ �
s

�

s ± E
As

�e−is�eiD sin � 1
�2

�1,1�t
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= �
s

As
�e−is� 1

�2
�1,− 1�t +

�

s ± E
�1,1�t�eiD sin �

= eiD sin ��
s

As
�e−is� 1

�2
� �

s ± E
+ 1,

�

s ± E
− 1�t

, �46�

where the superscript � denotes that the solutions corre-
spond to �E.

VI. FREEMAN RESONANCES

In our solutions, we identify a Freeman resonance when
the new energy spacing 2E, which is field-intensity depen-
dent, is an integral multiple of the field photon energy. The
derived wave functions apparently have singularities only at
2E=2s�� �s=0, ±1, ±2, ±3, . . . �, and not at the prereso-
nance case. Here we do not exclude the 2E=0 case, since
2E=0 means 2E can be any integer. We also see from the
wave function that in the preresonance case, the wave func-
tions are finite, as well as the quasienergies given by Eqs.
�37� and �38�.

All this means that the preresonances are not true reso-
nances; only Freeman resonances are true resonances. At first
glance, one may think that the Freeman resonances occur
only when the resonating photon number is an even number.
Since the quasienergy spacing 2E can be added with an ar-
bitrary integral multiple of the photon energy, we can replace
2E�=2E+1 in the above equations related to the wave func-
tions. Thus, we immediately find the resonances with odd
photon numbers. This analysis also indicates that we need
four or more different quasienergy levels as basic ones even
in the nonresonance case, since 2E�=2E+1 may give differ-
ent wave functions. On the other hand, we do not need more
than four as basic ones, since 2E�=2E+2 will not give a new
wave function and it is included in the iteration process in
the continued fractions. Thus, we conclude that we need four
and only four different quasienergies as basic ones to pro-
duce the wave functions.

At the Freeman resonances where 2E=n, the intensity of
the field and the original energy spacing 2� satisfy the fol-
lowing equation from Eq. �23�:

cos�2��� + 2�R+sin�2��� = �− 1�n. �47�

When n=odd, the equation reduces to

2�R+ = − cot���� . �48�

When n=even, the equation reduces to

2�R+ = tan���� . �49�

In this case, as we pointed out before, the wave functions
have an infinite amplitude.

Equations �48� and �49� are transcendental equations. For
a given field intensity and Freeman resonance �E=n��, one
can solve the transcendental equation to identify the resonat-
ing atomic level, which has the original spacing 2� from the
ground state. This equation has discrete solutions for 2�,

which change when the field intensity changes. This theoret-
ical feature does agree with experimental findings. Experi-
mentalists call an electron energy peak in an ATI spectrum a
Freeman resonance when the energy spacing between the
ground state and the energy peak is an integral multiple of
the laser photon energy and interpret the energy peak as a
formation of photoelectrons from a shifted Rydberg state.
ATI spectra do show that the Freeman resonances have a
discrete feature for a fixed laser intensity. When the laser
intensity changes, different sets of Rydberg levels come into
play consecutively as Freeman resonances appearing in the
ATI spectrum.

VII. DISCUSSION

The basic requirement to a correct solution of an interact-
ing system is when the interaction vanishes, the solution re-
duces to the one of the corresponding non interacting system.
For the problem at hand, the interaction is imposed through
the dipole moment D. Thus the leading term of quasienergy
in the expansion in powers of D2�2 should satisfy the basic
requirement and also should signify the physical meaning of
the field intensity. Another important quantity is �2�−��2

which signifies the detuning of the field frequency from the
transition frequency of the original two-level atom and com-
petes with D2�2 in the near-preresonance processes. To see
the interesting competition in different limiting processes, we
consider the following two cases, respectively.

A. Energy shift at exact n-photon pre resonances

Practically, if we can tune up a laser in a way that an
integral multiple of laser frequency n� matches the
energy spacing 2� of a two-level atom—i.e., �2�−n��2

�D2�2—we can set 2�=n� and use Eqs. �36�–�40� to ob-
tain the energy shift in the small-dipole limit.

We have the following three subcases

1. Single-photon case

In the single-photon preresonance case, the quasienergy E
has a simple form by just keeping the leading term of D, with
� recovered in the expression explicitly,

E =
�

�
cos−1�±

�D

2
� . �50�

Using cos−1�x+d�=cos−1x− �1−x2�−1/2d, where x=0 and d
= ±�D /2, we find

E =
�

2
�1 + D�, EBS = �D , �51�

where the negative sign in Eq. �50� is selected according to
the limiting process from the near-preresonance case in the
next subsection.
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This is a simple interesting result that the shift is propor-
tional to D.

2. Odd-number photon case „nÅ1…

In this case, the quasienergy is

E =
�

�
cos−1�±

�D2

2

n

n2 − 1
� . �52�

Using cos−1�x+d�=cos−1x− �1−x2�−1/2d, where x=0 and d
= ±n�D2 /2�n2−1�, we find

E =
n�

2
�1 +

D2

n2 − 1
�, EBS =

n�D2

n2 − 1
, �53�

with the same negative sign selected as above.

3. Even-number photon case

In this case, the quasienergy is

E =
�

�
sin−1�±

�D2

2

n

n2 − 1
� . �54�

Using sin−1�x+d�=sin−1x+ �1−x2�−1/2d, where x=0 and d
= ±n�D2 /2�n2−1�, we find

E =
n�

2
�1 +

D2

n2 − 1
�, EBS =

n�D2

n2 − 1
, �55�

where the positive sign is selected in Eq. �54� according to
the same limiting process as discussed above.

Now we see that the BS shift is proportional to D in the
single-photon preresonance case, while it is proportional to
D2 in the multiphoton preresonance case.

B. Energy shift in the weak-field and near-preresonance case

In the previous case, we let �2�−n��2 be infinitesimal
first. In the present case, switching the limiting procedures
we let D2�2 be infinitesimal first—i.e., D2�2� �2�−n��2.

To treat this case, we need to expand the term
2� sin�2���R+ in Eq. �23� as

2� sin�2����
j=1

� � 1

2� − j
+

1

2� + j
�rj

� �− 1�n2�2�rn − �2� − n�2�2

6
rn

+ �2� − n�� �
j�1,�n

1

n − j
+ �

j=1

�
1

n + j
�rj

− �2� − n�2

� �
j�1,�n

1

�n − j�2 + �
j=1

�
1

�n + j�2�rj� . �56�

We consider the following subcases

1. Single-photon case

In the small-dipole case we only keep r1, because only r1
has D2 as its leading order, while all other rn have D4 as their
leading order. Thus, from Eqs. �23� and �28�, the cosine en-
ergy relation reads

cos�2�
E

�
� = − 1 +

�2

2
�2�

�
− 1�2

− 2�2r1 − �2r1�2�

�
− 1� ,

�57�

where r1�−D2 /4 in the leading order. By expanding
cos�2�E /���−1+�2��2E /��−1�2 /2, we obtain an ap-
proximated quadratic equation

�2E − ��2 = �2� − ��2 + D2�2 +
D2

2
��2� − �� , �58�

which has the solution

EBS 
 �2E − 2��

= − �2� − ��

±��2� − ��2 + D2�2 +
D2

2
��2� − �� . �59�

This result agrees with the one from the RWA but with an
extra correction term, the last term underneath the square-
root symbol.

For a small dipole D2�1, choosing the positive sign, the
BS shift reduces to

EBS �
D2�2

2�2� − ��
+

1

4
D2� . �60�

The extra term, the last term in the above equation, signifies
the one-photon emission effect beyond the RWA. Here we
see that when D2�2� �2�−��2—i.e., the interaction term is
smaller than the detuning—the BS shift is proportional to D2.

The sign selection here is forced by the requirement that
when the interaction D�→0, the value of EBS has to vanish.
With the positive sign selected in Eq. �59�, letting �2�−��
→0 directly, we get the same result as Eq. �51�, whose sign
is thus determined.

2. Multiphoton case

We have the expansion

cos�2�
E

�
� = �− 1�n�1 −

�2

2
�2�

�
− n�2� + �− 1�n2�2� 1

n − 1

+
1

n + 1
��2�

�
− n�r1. �61�
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By expanding cos�2�E /����−1�n�1−�2��2E /��
−n�2 /2�, we obtain an approximate quadratic equation

�2E − n��2 = �2� − n��2 + D2�
2n

n2 − 1
�2� − n�� , �62�

which has the solution

EBS 
 �2E − 2�� = D2�
n

n2 − 1
, �63�

where the sign is determined by the same method as before,
which also justifies the sign selection in Eqs. �53� and �55�.
An amazing thing here is that in the two different limiting
processes and with different formulas, EBS behaves the same
way, both proportional to D2 and with the same proportion-
ality constant.

VIII. CONCLUSIONS

In the following we summarize the features of the exact
solution obtained

�i� It explicitly exhibits the Floquet quasienergy be-
havior; namely, the quasienergy spacing is determined only
up to its cosine.

�ii� It incorporates all multiphoton effects.
�iii� When the original energy spacing matches an in-

teger number of photon energy, the preresonance case, the
interacting system does not really resonate. Both quasiener-
gies and wave functions are finite.

�iv� We have shown theoretically that when the shifted
energy spacing matches an integer number of photon energy,
the interacting system resonates. This theoretical feature ex-
plains the Freeman resonances observed in ATI experiments.
We have also proved that the Freeman resonances have a
discrete feature, and when the field intensity changes differ-
ent sets of unoccupied, excited atomic levels come into play
as the resonances.

�v� The Bloch-Siegert shift vanishes when the interac-
tion D vanishes. The way it vanishes obeys some simple
rules: Near the single-photon preresonance, whether the BS
shift vanishes as D or D2 depends on whether the detuning
first goes to zero or the interaction strength first goes to zero.
Near the multiphoton preresonances, the BS shift always
vanishes as D2, independent of the limiting process. These
rules can be subject to experimental tests.
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APPENDIX

We will show that R+ as the residue of det�E� vanishes
when 2�=0 and that

R+
� = lim

�→�
R+ =�

1
D

3 � 2
· · · · ·

D

2 � 2
1

D

2 � 2
· · · ·

·
D

1 � 2
1

D

1 � 2
· · ·

· ·
D

2
0

D

2
· ·

· · ·
D

− 1 � 2
1

D

− 1 � 2
·

· · · ·
D

− 2 � 2
1

D

− 2 � 2

· · · · ·
D

− 3 � 2
1

� = 0. �A1�

In the case of 2�=0,
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det�E���=0 =�
1

D

E + 3
· · · · ·

D

E + 2
1

D

E + 2
· · · ·

·
D

E + 1
1

D

E + 1
· · ·

· ·
D

E
1

D

E
· ·

· · ·
D

E − 1
1

D

E − 1
·

· · · ·
D

E − 2
1

D

E − 2

· · · · ·
D

E − 3
1

� . �A2�

We notice

lim
E→n

�E − n�det�E���=0 = R+�� = 0� , �A3�

which does not depend on n; thus,

det�E���=0 = 1 + �R+�� = 0�cot��E� . �A4�

The characteristic equation is obtained by setting det�E���=0

=0—i.e.,

sin��E� + �R+�� = 0�cos��E� = 0, �A5�

which has the solution

E = −
1

�
tan−1��R+�� = 0�� , �A6�

where R+��=0� is

R+�� = 0� =�
1

D

3
· · · · ·

D

2
1

D

2
· · · ·

· D 1 D · · ·

· ·
D

2
0

D

2
· ·

· · · −
D

1
1 −

D

1
·

· · · · −
D

2
1 −

D

2

· · · · · −
D

3
1

� = 0.

�A7�

The last step �=0� needs a proof.
Proof. We use a recurrence relation of Bessel functions

−
x

2n
�Jn−1 + Jn+1� + Jn = 0,

K�J−1 + J1� = 0, �A8�

where K is an arbitrary constant.
Let n run from −� to �. The algebraic equation set for Jn

has nonzero solutions. So the coefficient determinant must be
zero—i.e.,

det�x� =�
1

− x

6
· · · · ·

− x

4
1

− x

4
· · · ·

·
− x

2
1

− x

2
· · ·

· · K 0 K · ·

· · ·
x

2
1

x

2
·

· · · ·
x

4
1

x

4

· · · · ·
x

6
1

� = 0.

�A9�

By setting x=−D and K=D /2 we get Eq. �A1�. By setting
x=−2D and K=D /2 we get Eq. �A7�. Q.E.D. From Rt��
=0�=0, we immediately reach r0=0.
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