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Classical mechanics is not sufficient to describe ion confinement in the dynamic Kingdon trap. We compute
quantum corrections to the classical pseudopotential and supplement classical stability criteria with quantum
stability criteria. Considering a realistic experimental scenario we show that it is possible to operate the
dynamic Kingdon trap in the quantum regime.

DOI: 10.1103/PhysRevA.73.023411 PACS number�s�: 32.80.Pj

I. INTRODUCTION

The Kingdon trap �1�, a charged wire, is the simplest de-
vice for trapping a charged particle. Neglecting radiation
damping and rest-gas collisions, particles with nonzero an-
gular momentum and opposite charge to the one on the wire
revolve around the wire like planets �2� and thus are trapped
forever. The Kingdon trap is still in use today and serves, for
example, as a valuable tool for lifetime measurements �3�.
The classical and quantum dynamics of the Kingdon trap
have been investigated in great detail �4�. The advantage of
the Kingdon trap is its simplicity. Its disadvantage is the
angular momentum requirement in order to achieve stable
ion confinement.

A trap that does not require any angular momentum, but
retains the simplicity of the original static Kingdon trap is
the dynamic Kingdon trap �5–16�. It is a cylindrical capacitor
with a superposition of dc and ac voltages applied between
the central wire and the outer cylindrical electrode. Defining
the units of length and time,

l0 = � 2Z�dc

��0m�2�1/2

, t0 = 2/� , �1�

where Z is the charge of the trapped particle, �dc is the static
line charge on the central wire, �0 is the permittivity of the
vacuum, m is the mass of the particle, and � is the operating
frequency of the trap, the dimensionless equation of motion
of a particle with zero angular momentum stored in the dy-
namic Kingdon trap is given by

d2�

d�2 = �− 1 + 2� cos�2���
1

�
, �2�

where �=r / l0 is the dimensionless distance of the trapped
particle from the wire and � is the dimensionless control
parameter of the trap �7–9�.

The dynamic Kingdon trap was first investigated theoreti-
cally and experimentally under the guidance of E. Teloy at
Freiburg University in the context of two unpublished stu-
dent projects �5,6�. Solving Eq. �2� numerically and follow-
ing computed particle trajectories over extended periods of
time, these two students showed that the theoretical concept
of the trap is sound. By building an actual trap in the labo-
ratory, they showed that the trap is experimentally feasible
and capable of confining particles for a long time. In addi-

tion, using the technique of averaging �17,18�, Bahr and Be-
hre computed the pseudopotential �18�

Ueff
�CL���� = ln��� +

�2

4�2 �3�

of the dynamic Kingdon trap and showed that a stable po-
tential minimum exists in the space between the wire and the
outer cylinder at

�0
�CL� =

�

�2
. �4�

Thus they provided a physical explanation for the operating
principle of the trap.

After a long hiatus in which no work was done on the
dynamic Kingdon trap, the trap was independently rediscov-
ered many years later in the context of nonlinear dynamics
and chaos �7–9�. In addition to the seminal work by Bahr and
Behre �5,6� it was shown that the dynamic Kingdon trap
exhibits chaos already on the single-particle level �7� and
that in conjunction with laser cooling �19� crystalline con-
figurations can be obtained in the dynamic Kingdon trap
�8,9�. It was also shown that three-dimensional particle con-
finement is achieved with the help of end caps �7�, without
significantly changing the equation of motion �2�. The trap
exhibits period-doubling bifurcations �7,9,13� and stable
limit cycles �7,10�. The existence of period-doubling bifur-
cations has been confirmed experimentally �11�. Addition-
ally, the dynamic Kingdon trap has already found a practical
application �14�.

A kicked version of the dynamic Kingdon trap was inves-
tigated in Ref. �12�. It was shown that after judiciously ad-
justing the parameters of the kicked trap, its classical dynam-
ics is very close to the cw-driven dynamic Kingdon trap.

The dynamic Kingdon trap also has some surprises in
store. Since the pseudopotential �3� is globally confining, one
might be lead to think that the dynamic Kingdon trap con-
fines particles for all choices of the control parameter �. This
is not the case. Due to nonlinear resonances, beyond the
reach of the pseudopotential approximation, control param-
eters exist at which the dynamic Kingdon trap is unstable
�15,16�.
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The dynamic Kingdon trap is a close cousin of the Paul
trap �20–22�. Both traps are electrodynamical in nature and
their operating principle, the generation of focusing and de-
focusing forces due to rapidly oscillating inhomogeneous
fields, is based on the Kapitza effect �17�. Despite many
similarities, there are also important differences. While the
single-particle dynamics of the ideal Paul trap is exactly in-
tegrable and explicitly solvable both classically �20–22� and
quantum mechanically �23–25�, the dynamic Kingdon trap is
a chaotic system with a mixed phase space and exhibits a
period-doubling scenario �7,9�. The Paul trap, too, is a cha-
otic system, but only if two or more particles are stored
simultaneously in the trap �26,27�. Therefore the dynamic
Kingdon trap is an ideal device for studying nonlinear phe-
nomena �28� and quantum chaos �29� since it displays all of
the classic chaos phenomena already on the single-particle
level.

The most important difference between the Paul trap and
the dynamic Kingdon trap, however, is the following. For a
single stored particle the stability of the Paul trap does not
depend on the initial conditions of the particle in phase
space. Thus stability in the Paul trap depends only on the
trap’s control parameters �20–27�. In the dynamic Kingdon
trap, however, trapping is achieved by placing the particle
inside of a regular phase-space island, the trapping island
�7–9,15,16�. Thus, in addition to the control parameter �, ion
confinement in the dynamic Kingdon trap depends decisively
on the initial conditions of the particle. Classically, once an
ion is placed inside of the trapping island, it is confined to
the island forever. Due to the finite size of Planck’s constant
�, however, the quantum wave packet associated with the
trapped particle has a finite width. If the quantum width of
the packet is larger than the phase-space width of the trap-
ping island, the particle’s wave function “spills out” into the
chaotic sea. Thus, while quantum mechanics in the single-
particle Paul trap is not important for deciding whether a
particle is trapped or not, it is of crucial importance in the
dynamic Kingdon trap. In fact, in Sec. III, we amend the
classical trapping criteria of the dynamic Kingdon trap with
quantum trapping criteria.

Thus, especially at low ion temperatures, classical me-
chanics is not sufficient to describe the behavior of trapped
particles in the dynamic Kingdon trap. Although crucial for
the understanding of particle trapping in the dynamic King-
don trap, the quantum mechanics of the dynamic Kingdon
trap has never before been addressed in the literature. This
paper fills the gap. It is organized in the following way. In
Sec. II we derive the quantum pseudopotential and compare
it to the classical pseudopotential �3�. We show that the two
are only approximately equal; there are important quantum
corrections. In Sec. III we use the pseudopotential picture to
derive our quantum trapping criteria. In Sec. IV we discuss
our results. In Sec. V we summarize and conclude our paper.

II. CLASSICAL VERSUS QUANTUM PSEUDOPOTENTIAL

Trapping of a particle in the dynamic Kingdon trap can be
understood with the help of the idea of a time-averaged
pseudopotential �17,18�. The construction of a pseudopoten-

tial goes back to an idea of Kapitza �17�. The pseudopoten-
tial has been used extensively in the trapping literature in
order to understand the trapping mechanism and to deter-
mine the characteristics of traps such as widths and depths
�for a review see �22��. The classical pseudopotential is given
by Eq. �3�. The quantum pseudopotential is computed in the
following way.

The force F� acting on a particle in the dynamic Kingdon
trap is derived from the potential

U�r�,t� = � Z�dc

2��0
�ln� r

l0
��1 − 2� cos��t�� �5�

via F� =−�� U=−r̂�U /�r. We use this potential in the time-
dependent Schrödinger equation for a single particle in the
dynamic Kingdon trap:

i �
�	�r�,t�

�t
= −

�2

2m

	�r�,t� + U�r�,t�	�r�,t� . �6�

Because of the cylindrical symmetry of the trap,

	�r�,t� = ��r,t�eiM�eiKz, �7�

where M =0, ±1, ±2, . . . is the azimuthal quantum number
and �K is the momentum in z direction. Introducing the di-
mensionless variables defined in Eq. �1�, the radial part of
the Schrödinger equation becomes

i

����,��

��
= −


2

2

����,�� + �1 − 2� cos�2���ln������,�� ,

�8�

where


� =
d2

d�2 +
1

�

d

d�
−

M2

�2 − K2l0
2 �9�

and 
, the effective, dimensionless Planck constant is given
by


 = �����0

Z�dc
� =

�

L0
, �10�

where

L0 =
1

2
ml0

2� �11�

is the unit of angular momentum. The second equality in Eq.
�10� is particularly illuminating since it expresses the effec-
tive Planck constant 
 as the ratio of Planck’s constant � and
a typical system action, in this case the classical unit of an-
gular momentum �11�. Defining

���,�� = �1/2���,�� �12�

and

V��� =

2

2
�M2 − 1/4

�2 + K2l0
2� + ln��� , �13�

we obtain the one-dimensional radial Schrödinger equation
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i

����,��

��
= −


2

2

�2���,��
��2 + V������,��

− 2� cos�2��ln������,�� . �14�

Define a new wave function ��� ,�� via

���,�� = ei� ln���sin�2��/
���,�� . �15�

Inserting Eq. �15� into the Schrödinger equation �14� we ob-
tain the following Schrödinger equation for ��� ,��:

i

����,��

��
= −


2

2

�2���,��
��2 + Ueff

�QM�������,�� + i
� sin�2��

�	���,��
2�

−
����,��

��

1

�
−

�2

4�2 cos�4�����,�� ,

�16�

where the quantum pseudopotential Ueff
�QM� is given by

Ueff
�QM� = V��� +

�2

4�2 . �17�

In order to compare the quantum pseudopotential �17� with
the classical pseudopotential �3� we set M =0 and K=0 in
Eq. �13� and obtain

Ueff
�QM� = −


2

8�2 + ln��� +
�2

4�2 . �18�

Apparently Ueff
�CL���� and Ueff

�QM���� are not the same. They
differ by a quantum correction −
2 /8�2. From Eq. �18� we
obtain the quantum equilibrium position

�0
�QM� =

1

2
�2�2 − 
2. �19�

It is different from the classical equilibrium position �4�. The
quantum shift in the equilibrium position is approximately
given by

�0
�QM� − �0

�CL� � −

2

4��2
. �20�

It may be detectable experimentally.
At �0

�QM� the quantum pseudopotential can be approxi-
mated by an oscillator potential

Uosc��� = Ueff��0
�QM�� +

1

2
�osc

2 �� − �0
�QM��2, �21�

where

�osc =
2

��2 − 
2/2
�22�

is the pseudo-oscillator frequency. The second-order ap-
proximation �21� to the pseudopotential is known as the
pseudo-oscillator. For later considerations in connection with
the experimental feasibility of operating a dynamic Kingdon
trap in the quantum regime �see below� we state the pseudo-
oscillator frequency �22� in SI units. It is given by

�osc
SI =

E0
�osc

�
=

�

��2 − 
2/2
, �23�

where

E0 =
1

4
m�2l0

2 �24�

is the unit of energy.

III. QUANTUM STABILITY CRITERIA

The pseudo-oscillator approximation is an excellent guide
for a qualitative exploration of the quantum mechanics of the
dynamic Kingdon trap. The quantum states in the pseudo-
oscillator �21� are harmonic oscillator states given by

�n��� = �2nn ! b���−1/2Hn��� − �0
�QM��/b�

�exp�− �� − �0
�QM��2/�2b2��, n = 0,1,2, . . . ,

�25�

where Hn are the Hermite polynomials �30� and b is the
oscillator length given by

b =�


2
��2 − 
2/2. �26�

The spatial and momentum widths of the wave functions
�25� are given by


�n = b�n + 1/2, 
�̇n =



b
�n + 1/2. �27�

As a check we compute the uncertainty product of Eq. �27�.
It is given by 
�n
�̇n= �n+1/2�
�
�0
�̇0=
 /2, consis-
tent with Heisenberg’s uncertainty relation.

Since the trapping island of a dynamic Kingdon trap has a
finite width in � and �̇ �7–9,15,16�, not all of the wave func-
tions �25� can possibly be good approximations of the exact
quantum states, since according to Eq. �27� their widths grow
with increasing n, such that for high n the corresponding
wave functions will eventually spill out of the island and into
the chaotic sea. This observation results in new quantum
stability criteria supplementing the classical stability crite-
rion according to which a particle is trapped as soon as its
initial conditions are located inside of the trapping island.

Let us first estimate the maximum number of quantum
states, N, that are supported by a trapping island of spatial
width �� and momentum width ��̇. With Eq. �27� �note that
the counting of n states starts at n=0� we obtain

N � min	���

b
�2

,�b��̇



�2
 +

1

2
. �28�

For stable trapping at least one quantum state �the ground
state �0� has to be supported by the trapping island. Thus we
have to require

N � 1. �29�

This is our first quantum stability criterion. For given 
 it
sets limits on �� and ��̇.
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For given �� and ��̇ we obtain a limit on 
 if we require
that at least one quantum state should be trapped. For small

 we approximate b2�
� /2 and obtain


/2 � min	 2

�
����2,

�

2
���̇�2
 . �30�

This is our second quantum stability criterion.
With Eq. �28� we estimate the number of quantum states

confined to the trapping island at �=5 for a realistic situa-
tion. In this case the spatial width of the trapping island is
���0.6 and the momentum width is ��̇�0.2 �15�. Suppose
we operate the dynamic Kingdon trap at �=107 s−1, use
24Mg+ as the trapped particle species �27�, and arrange the dc
and ac voltages applied to the trap such that l0=1 mm; we
find N�2�108. The large number of trapped quantum states
indicates that under normal operating conditions classical
mechanics is an excellent approximation to the trapped par-
ticle’s dynamics. Moreover, under room-temperature condi-
tions �T=300 K�, the thermal ratio ��osc

SI / �kT��5�10−8

�1, indicating that the thermal energy of the trapped particle
exceeds by far the quantum energy-level spacing. However,
based on current technology, it is possible to operate a dy-
namic Kingdon trap in the quantum regime. First we note
that according to Eq. �23� the pseudo-oscillator frequency of
the dynamic Kingdon trap is directly proportional to the trap
frequency. This is a crucial observation in view of a possible
experimental implementation of a quantum dynamic King-
don trap. It means that the higher the trap frequency, the
stiffer the pseudo-oscillator, the larger the spacing between
the trap’s quantum states, the better the chances for the ex-
perimental resolution of individual quantum states. For the
separation of the energy levels at temperature T, for instance,
we need ��osc

SI / �kT��1, which is, for instance, fulfilled with
�=108 s−1 and T=0.1 mK. With laser cooling techniques
T=0.1 mK has already been reached �31,32�. All that re-
mains to be shown is that the relatively high trap frequency
��=108 s−1� does not lead to impossible conditions on trap
voltages and the diameter of the wire. According to Eq. �1�,
l0=1 mm, for instance, can be achieved with electric fields
of about 6�103 V/cm, well within technical reach. More-
over, lowering the temperature by one order of magnitude
allows a reduction of � to 107 s−1. Since the required electric
fields are proportional to the square of the trap frequency,
this lowers the required electric fields by two orders of mag-
nitude to about 60 V/cm, well within the range of voltages
used to operate ion traps �14,18,20–22,26,27,31–34�. We
conclude that based on the pseudo-oscillator picture there are
no physical principles that would prevent reaching the quan-
tum regime in the dynamic Kingdon trap. We note that the
quantum regime has already been reached in other types of
electrodynamical traps �31–34�.

IV. DISCUSSION

Of all the quantum dynamical traps the dynamic Kingdon
trap is perhaps the most interesting one from a nonlinear
dynamics point of view. Loaded with only a single charged
particle the trap shows a mixed phase space that possesses all

of the classic phase-space morphology, including regular is-
lands and a chaotic sea. Experimentally accessible quantum
chaotic systems are rare. We believe that due to its simplicity
the dynamic Kingdon trap will join the small family of quan-
tum chaos experiments. Among these the dynamic Kingdon
trap is perhaps closest in spirit to the hydrogen atom in a
strong microwave field �35,36�. Both systems are driven by
external ac fields, and both systems show a mixed phase
space.

Contrary to many other ion traps, such as the single-
particle Paul trap, the single-particle dynamic Kingdon trap
is not analytically solvable. The reason is the occurrence of
chaos. The absence of an analytical quantum solution indi-
cates the existence of a host of as-yet-undiscovered quantum
phenomena, among which may be the existence of quantum
localized states �35� or cantorus tunneling phenomena �37�.

Our quantum stability criteria �29� and �30� are based on
the classical intuition that once in the chaotic sea the par-
ticles are lost, because they quickly diffuse chaotically to-
ward the trap’s electrodes and discharge. However, it is well
known that in many cases chaotic diffusion produces quan-
tum localization �35�. Quantum localization is produced by a
subtle, destructive quantum phase interference process which
is easily destroyed by ambient noise �38�. Therefore, even if
the quantum dynamic Kingdon trap should show quantum
localization, quantum states trapped inside of the trapping
island are expected to be much more stable over long trap-
ping times than quantum localized states in the chaotic sea.
Therefore, even in the presence of quantum localization, we
expect our quantum stability criteria to retain their validity
indicating the borderline between stable, island-trapped
states, and fragile, quantum-localized states.

The quantum dynamic Kingdon trap provides conceptual
advantages compared with many other chaotic traps. We
mention the example of the two-particle Paul trap, another
chaotic electrodynamical trap. To our knowledge the quan-
tum mechanics of this trap has only been studied with the
help of approximate techniques �39� or by averaging over the
micromotion in the pseudopotential approximation �40�. The
difficulty here stems from the fact that even if we use all the
symmetries of the trap to our advantage, the phase space of
the two-ion Paul trap is still irreducibly four dimensional.
This may be compared with the two-dimensional phase
space of the dynamic Kingdon trap �� and �̇�, a considerable
simplification for analytical and experimental work.

V. SUMMARY AND CONCLUSIONS

In this paper we show that classical mechanics alone is
not sufficient to understand the physics of the dynamic King-
don trap. We show that the classical and quantum pseudopo-
tentials differ by a small quantum correction, which may be
experimentally measurable. We derive two quantum stability
conditions for the dynamic Kingdon trap. For given Planck’s
constant the first condition, �29�, sets limits on the phase-
space dimensions of the trapping island. For a given trapping
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island the second condition, �30�, sets a limit on the effective
Planck constant 
. Simple analytical estimates based on
the pseudopotential approach show that it should be possible
to operate the dynamic Kingdon trap in the quantum
regime in the laboratory. Because of its simple, but neverthe-
less representative phase-space structure, we are convinced
that the dynamic Kingdon trap has much to offer for

the fields of theoretical and experimental quantum chaos
research.
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