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Iterative vibrational wave packet squeezing by a sequence of femtosecond pulses is proposed. Analytic
formulas are derived for the harmonic oscillator case, and the practical implementation of the scheme is tested
on different electronic transitions in Rb2.
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Squeezed quantum states are a subject of considerable
attention, specially in light. From a fundamental point of
view they represent an interesting confrontation to the uncer-
tainty relations. In the molecular frame, increasing the spatial
localization of a wave packet �or alternatively, of its velocity�
has important consequences in time-dependent spectroscopy.
For instance, the detection by femtosecond probing �1� and
time-and-frequency resolved fluorescence �2,3� allows the
inversion of potential energy data depending on the motion
and width of the wave packet. Position and kinetic energy
control can be used as well to better specify the desired com-
ponent of a wave packet obtained after dissociation.

Borrowing ideas from quantum optics, the first schemes
for molecular squeezing involved squeezing small vibra-
tional populations in excited electronic states �4,5�. Alterna-
tively, optimal control techniques were applied with excel-
lent, albeit hard to generalize, results �6�. Additionally, work
on adiabatic compression in light-induced potentials showed
that a wave packet could be frozen and partially squeezed
with very strong nonresonant pulses �7�. In all previous work
the squeezing was achieved in excited �typically not very
stable� states.

In this work we propose a general mechanism that allows
maximal squeezing or stretching of the wave packet at the
ground or the excited potential. We call it the iterative
squeezing-stretching �ISS� scheme. The scheme is based on
the properties of free motion of wave packets in harmonic or
approximately harmonic potentials and just requires a se-
quence of ultrafast transform-limited pulses �of area ��
which are precisely time delayed. A nonstationary Gaussian
wave packet remains Gaussian as it moves in a harmonic
potential, with the average position �x�t�� and momentum
�p�t�� following the trajectory of a classical particle, while
the width in position ��x�t�� oscillates from wide to narrow
and vice verse. The frequency of this oscillatory motion �or
breathing� is two times the harmonic frequency ��, where �
labels the electronic state.

In order to induce and increase the amplitude of the os-
cillatory breathing of the wave packet’s width we need to use
at least two electronic potentials, which must be approxi-
mately harmonic and with different harmonic frequencies.

Consider for instance that initially the system is in the
ground vibrational state of the fundamental electronic poten-
tial V1�x�. If this wave function is promoted to the Franck-
Condon region of an excited potential V2�x�, with lower har-
monic frequency, the promoted packet will oscillate in V2�x�
and its width, which is initially narrower than the equilib-
rium one, will stretch. If we then dump it back to V1�x� when
the width is maximal, it will again oscillate and now, since
its initial width is wider than the equilibrium one, it will
squeeze. This process can be iteratively repeated leading to
increasing stretching of the Gaussian wave packet in V2�x�
and squeezing in V1�x�. Figure 1 sketches the idea behind the
scheme.

The quantum dynamics of the coupled harmonic oscilla-
tors �HO� can be solved analytically, assuming � pulses of
area � that fully transfer the electronic population between
the potentials at a negligible time compared to 1/��. Using
the Gaussian ansatz for the packet’s shape in each potential
�8–10�
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and x�,0 is the equilibrium configuration of V��x�. In Eqs.
�2�–�4� the sequence of pulses is decomposed into a series of
pump followed by dump pulses, acting at times ts

�n�, where s
is “p” for the pump pulse and “d” for the dump pulse, and n
labels the iteration number. When the pulses are time-
delayed a quarter of the oscillator’s period, �2= td

�n�− tp
�n−1�

=� /2�2 and �1= tp
�n�− td

�n�=� /2�1, the free wave packet mo-
tion leads to maximal squeezing in V1�x� and stretching in
V2�x�, given by

��x2
�n��max = �n��x1� , �6�

and

��x1
�n��min = �−n��x1� . �7�

The physical origin of the squeezing comes from the har-
monic frequency ratio between both potentials �=�1 /�2.
Additionally, we need to couple this resource with the free
motion in the different potentials, by using short pulses. The
average position and momentum of the wave packet at maxi-
mal stretching and squeezing are: �x1

�n��min=dRn−1 /�,
�p1

�n��min=−m�2d�Qn−1, �x2
�n��max=dQn−1, and �p2

�n��max

=m�2dRn−1, where Qn��� and Rn��� are the geometrical se-
ries Qn���=1−�+�2− ¯ + �−��n and Rn���=1−1/�+1/�2

− ¯ +1/ �−��n. The critical parameters for the motion are the
distance between the equilibrium configurations d, and the
actual frequency of the potentials �or mass of the molecule�.
These parameters enter into the physical resources needed
for the pulses to operate. For instance, in order to fully trans-
fer the population between the electronic states, the band-
width of the transform-limited pulses must be approximately
given by the electronic absorption spectra, which for the

V2→V1 transition are roughly given by the potential energy
uncertainty of the promoted wave packets in the Franck-
Condon regions �11�. While the equilibrium configurations
of the electronic states V2�x� and V1�x� are separated by d
 ��x�n��max=�n��x1�, one obtains
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For d��n��x1� a better approximation is given by
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where one typically neglects the zero point energy �1 /2.
Therefore, for large n and a given desired final squeezing,
one needs pulses with time widths given by �Qn→�n /1+�,
as n→��
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for large d, and
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for small d. The parameter 
 relates the width of the pulse
with the approximate pulse bandwidth, given a desired yield
of wave packet transfer �e.g., greater than 99%�. 
 can be
estimated theoretically �12� but is typically found numeri-
cally. From Eqs. �10� and �11� one observes that the physical
resources scale more rapidly than the squeezing. The qua-
dratic dependence of the pulse widths on � basically comes
from the need of manipulating wave packets which change
width as ��x2

�n��max / ��x1
�n��min=�2n in each iteration. The

need of shorter pulses is further stressed when d is large,
since �d�� ��x1�, and for light molecules, because of the de-
pendence with �1

−1. Finally, since the photon transitions de-
couple the oscillatory motions of �x�t�� and ��x�t��, the
Franck-Condon windows change in time, and for a physical
implementation of the scheme, one needs to adjust the carrier
frequency of the pulses at each transition.

Two are the key problems to physically implement the
ISS scheme: the need of very short pulses, and having to deal
with the anharmonicity of the vibrational motion. In the har-
monic oscillator approximation we can predict the maximal
squeezing and stretching and estimate the optimal parameters
of the pulses �time delays, time widths, and peak amplitudes�
from the analytical results shown previously. When consid-
ering realistic potentials, one has to readjust the optimal pa-
rameters to take into account the anharmonicity. For in-
stance, the periods of motion and the oscillatory breathing
increase, but more importantly, the shape of the wave packet
as it propagates freely on the potentials can be severely dis-
torted, so that the maximal squeezing �stretching� can only
be estimated numerically.
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We have applied the scheme to two different transitions in
Rb2: X 1�g→ 11�u and 1 1�u→3 1�g. Following the HO
approximation, in the first one �=1.24, so that according to
Eq. �7� the wave packet can be squeezed to one half basically
in 1 ps at the third iteration �n=3�. The equilibrium configu-
rations of the X 1�g and 1 1�u states are quite displaced of
each other, d=0.56 a.u. �approximately 3.6 times the width
of the initial wave function ��x1��, so that following Eq. �10�
with 
=4, the minimum width pulses needed to achieve the
squeezing are of 7.3 fs. On the other hand, in the second
transition �=1.08, so that more time �t3.6 ps� and itera-
tions �n=9� are needed to obtain 50% squeezing of the initial
wave function in the HO limit. However, since the equilib-
rium configurations of 1 1�g and 3 1�g are practically the
same �d=−0.02 a.u.�, following Eq. �11� �with 
=4� the
minimum pulse time width is just 30 fs.

Figure 2 shows the numerical results obtained by solving
the time dependent Schrödinger equation �TDSE� for the
two-coupled electronic potentials using ab initio potential
energy curves �13�

i
�

�t
��1�t�

�2�t�
� = �T + V1�x� − �E�t�

− �E�t� T + V2�x�
���1�t�

�2�t�
� , �12�

where T is the kinetic energy operator, and E�t� is the se-
quence of Gaussian pulses. We assume the Condon limit
�unit dipole moments� but we do not use the rotating wave
approximation. The pulse time delays in the sequence are

chosen so that the wave packet is at maximum squeezing or
stretching in V1 and V2, respectively. The resonant carrier
frequencies are obtained numerically by evaluating the aver-
age energy difference of the wave packet at both potentials.
In certain cases the pulses are short enough to overcome the
shift from resonance due to the displacement of the Franck-
Condon windows. The pulse widths are approximately esti-
mated to ensure more than 99% population transfer at each
transition. Finally, the pulse amplitudes are chosen to guar-
antee a � pulse area. The results of the numerical simulation
are compared with the analytical solution of the harmonic
oscillator approximation.

For the 1 1�u→3 1�g case we fix the carrier frequency of
all the pulses at 710 nm. The width and peak intensity up to
n=3 is 50 fs and 75 GW/cm2 respectively, while for the next
iterations is 25 fs and 300 GW/cm2 respectively. Since the
displacement between potentials is negligible, the wave
packet moves all the time in regions of small anharmonicity
and the ISS scheme can work during many iterations, with
small deviations from the HO limit. We obtain a maximum
squeezing of 43% at n=7. In fact, as Fig. 3 shows, the
scheme works for several more iterations, but the squeezed
packet develops small nodes increasing the standard devia-
tion �the width� quite beyond the value for a Gaussian shape
of similar FWHM �full width at half maximum�. If a smaller
statistical weight is given to the far-off wings of the wave
packet �restricting for instance the measure to within five
units of the standard deviation around the average position�,
one can observe that the squeezing continues up to 48% at
n=9.

In the X 1�g→ 11�u case, the carrier frequencies of the
pulses are adjusted so that all transitions are approximately
resonant, since the frequency shifts could only be compen-

FIG. 2. �Color online� Wave packet breathing dynamics of the
ISS in Rb2 for the X 1�g→1 1�u transition �upper frame� and for
the 1 1�u→3 1�g transition �lower frame�. Dotted lines represent
the analytical results in the HO approximation. Gray line refers to
the excited �V2� potential and black line to the ground �V1�
potential.

FIG. 3. �Color online� Maximally stretched and squeezed wave
packets in the ISS scheme for the 1 1�u→3 1�g transition in Rb2.
The numbers label the wave packet at each iteration. The increasing
squeezing at consecutive iterations can be seen more clearly from
the increasing peak density of the wave packet.

WAVE-PACKET SQUEEZING BY ITERATIVE PUMP-… PHYSICAL REVIEW A 73, 023407 �2006�

023407-3



sated by extremely short pulses. We numerically find for the
first pump pulse a carrier frequency of approximately
670 nm and of 650 nm for the second pump, while both
dump pulse carrier frequencies are approximately 700 nm.
For n=1 the width of both pulses is 10 fs �implying
1.2 TW/cm2 of peak intensity�, and for n=2 it is 5 fs
�7.9 TW/cm2 of peak intensity�. On the other hand, since the
Franck-Condon windows for the pump and dump transitions
are quite displaced, the kicked vibrational motion occurs in
regions of high anharmonicity. Although more squeezing can
be achieved at the first iteration compared to the HO model
�35% vs 19%, respectively�, the scheme breaks down at
the second iteration, where the packet’s width increases dur-
ing several periods. At this point the packet approaches the
collapsed state �8� and the squeezing regime cannot be re-
covered at least until full revivals occur �14�.

For the 11�u state, assuming a simple anharmonic poten-
tial �where the anharmonicity �e is obtained by fitting the
potential to a Morse curve� the revival time is Trev
=2� /�1�e220 ps �300 ps for the X state�. The collapsed
state is a dispersed wave packet whose phase relations mimic
an incoherent state �8�. Following Robinett’s nomenclature,
and assuming a k=3 potential �15�, Tcol=Trev /6���n, where
�n is the width of the packet measured in vibrational quanta,
that is, the average number of states forming its linear com-
bination. For the second iteration we numerically find �n
5 and Tcol4 ps. Therefore, we should expect the ISS to
work for more iterations before the wave packet collapses. In
fact, in Fig. 4 we can observe that the failure of the ISS
scheme starts when the phase of the wave packet departs
from linearity, in disagreement with the Gaussian ansatz �see
Eq. �1��. The parabolic dependence of the phase at n=2 im-
plies that the wave packet in the ground potential will no
longer squeeze, but keep spreading. On the other hand, phase
dispersion can be overcome by frequency chirping, at the
expense of reducing the maximal stretch of the wave packet
before dumping �16�, and therefore the efficiency of the
squeezing mechanism. Probably, some optimal balance could
be achieved specific of the potential.

In this paper we have proposed a simple method to
squeeze �or stretch� vibrational wave packets in the ground
�or excited� electronic potential. We have only considered the
effect of vibrations. The sequence of � pulses will only
switch the population for the set of molecules that are ori-
ented along the laser field. Since the pulses are ultrafast, the
orientation of the molecules can be safely considered fixed
during the laser action, but only a fraction of molecules will
experience the optimal pulse parameters. Alternatively, one
could find optimal parameters that squeeze a specifically po-
larized fraction of the sample. For randomly oriented mol-
ecules, the overall efficiency of the scheme will likely be
small, particularly after large number of iterations. Possible
ways to improve the efficiency would require applying
schemes for molecular orientation that minimize the distur-
bance of the vibrational wave function prior to the vibra-
tional squeezing �17�, and the design of a strategy for main-
taining the molecular orientation during the ISS procedure
�18�. For heavy molecules like Rb2 we believe that this
should be possible, since the rotational period and the rota-
tional dephasing time are much larger than the times required

for squeezing the wave packet in the ISS scheme. Given a
fixed �or laser� oriented molecular sample, or a fraction of it,
for almost harmonic potentials the scheme is only limited by
the pulse bandwidth available. The other physical limitation
comes from the effects of anharmonicity on the dynamics. If
the equilibrium configurations of the electronic transitions
are quite separated, the free wave packet motion occurs in
regions of high anharmonicity. We have shown that the
squeezing regime can be stopped quite before the onset of
the collapsed state. Another nonexplored effect is related to
the coordinate dependence of the dipole moment, which can
distort the wave packet during the fast vertical V2→V1 tran-
sition. This may induce further squeezing or stretching, de-
pending on the dipole function, or accelerate the onset of the
collapsed state. However, there is some freedom in the
choice of the Franck-Condon windows �11�, so that any det-
rimental effect could be partially controlled. Finally, we have
shown physical systems where we believe that the scheme
could be tested.
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FIG. 4. �Color online� Maximally stretched and squeezed wave
packets in the ISS scheme for the X 1�g→1 1�u transition in Rb2.
The arrows indicate the wave packet motion at the different itera-
tions. After n=2 �t=1.4 ps� the dumped wave packet on the ground
potential disperses. This is due to frequency dispersion. On the plot
we also show the packet’s phase for two cases. The range of the
ordinate axis of the phase varies from −� /2 to � /2. Before the
onset of dispersion, for instance in the ground wave packet at n
=1, the phase is linear. However, the parabolic phase of the excited
wave packet at n=2 implies that the wave packet can not be
squeezed later during the time scale of the dynamics.
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