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A complete set of cross sections is presented for photodouble ionization of He at 0.1 eV above the threshold.
Special care is taken to clear the asymmetry parameter and the energy differential cross section of any
ionization-excitation contribution. As a result, their limiting behaviors for the fully asymmetric partitionings of
the excess energy are elucidated, thus shedding light on pending discussions in the field. A reliable scheme
follows for computing the fully integrated cross section. Very good agreement is observed between the calcu-
lated and measured fully differential cross sections after a detailed reassessment of the experimental normal-
ization procedure. The present findings are compared with the assumptions underlying the Wannier picture of
near-threshold double escape.
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I. INTRODUCTION

Considerable progress has been made in the past few
years regarding the description of highly correlated three-
body Coulomb systems above their full fragmentation
threshold �see �1� for the results up to 2000 and Ref. �2� for
more recent work�. Our qualitative understanding of the
mechanisms underlying double escape �see, for instance,
Refs. �3,4�� has advanced in line with our ability to describe
this process quantitatively. In this respect, a variety of ab
initio computational methods are now capable of predicting
accurate absolute cross sections at any level of differentiation
for the prototypical processes of electron-impact ionization
of H or double ionization of He. These methods have been
applied within an extended energy domain ranging from a
few eV to a few hundreds of eV above the relevant thresh-
olds. On the high-energy side, where the three-body nature
of the system has a marginal expression, approximate meth-
ods based on a perturbative treatment of electronic correla-
tions can take over �see Ref. �5� for a recent application�. On
the low-energy side, the theoretical supply remained re-
stricted to the Wannier classical model �6� and its subsequent
avatars �see Ref. �1� and references therein for details� up to
2004. Then, converged cross sections were obtained simulta-
neously both for electron impact ionization of H at 0.01 a.u.,
using the propagating exterior complex scaling method �7�,
and for photon impact double ionization of He at 0.1 eV,
using the hyperspherical R matrix method with semiclassical
outgoing waves �HRM-SOW� �8�. This opened the way to a
critical reassessment of Wannier ideas based on ab initio
calculations. However, before proceeding any further with
the HRM-SOW method, one had to design a practical
scheme to unravel the double ionization channel of interest

from the infinite series of competing ionization-excitation
channels with the highest possible accuracy. The projection
scheme demonstrated in Ref. �8� has now led to an opti-
mized, vectorized, and parallelized numerical procedure. Ac-
cordingly, we are now able to present a full panorama of the
three-body dynamics of He at only 0.1 eV above the double
ionization threshold. In a recent paper �9�, we have presented
cross sections and asymmetry parameters for ionization-
excitation leaving the residual ion in levels up to n=50.
Here, we present the complementary double ionization data,
which include a full set of cross sections: �5�E ;E1 ,�1 ,�2�,
which is differential in the emission directions �1 and �2 of
the two electrons and in the energy E1 of one of them, for a
given total energy E, will be referred to as the fivefold
differential cross section �FDCS�; �3�E ;E1 ,�1� will be char-
acterized by the asymmetry parameter ��E ;E1� which con-
trols its shape; the energy differential cross section �1�E ;E1�
will be referred to as the singly differential cross section
�SDCS�; �0�E� will be referred to as the integrated cross
section �ICS�.

In Sec. II, we recall the main features of the method and
present the numerical procedure used to strip off the succes-
sive ionization-excitation channels from the photoionization
wave function to get as clean a double ionization wave func-
tion as possible. We also present the general form of this
wave function, to make the expressions of the cross sections
used later on understandable. In Sec. III, we present partly
differential cross sections, starting with the asymmetry pa-
rameter and the SDCS. A simple procedure allows us to clear
these quantities of any remaining ionization-excitation con-
tribution and to derive their limits for the extreme energy
sharings E1=E and E1=0. The ICS follows by integrating the
SDCS over half its energy interval of definition. In Sec. IV,
we compare our calculated FDCSs with those measured in
Ref. �10�. Very good agreement is achieved between theory
and experiment after a detailed reexamination of the experi-
mental normalization procedure. All these findings are con-
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fronted with the expectations based on previous near-
threshold theoretical and experimental work, a review of
which can be found in Ref. �11�. The concluding Sec. V
summarizes the present contribution and announces further
developments.

II. METHOD

The HRM-SOW method proposes a simple scheme to
compute the wave function of a helium atom, initially in its
ground state �0�r�1 ,r�2� of energy E0, after it has absorbed a
single linearly polarized photon carrying an energy larger
than the He double ionization potential. This photoionization
wave function, denoted ��r�1 ,r�2�, is obtained by solving the
stationary inhomogeneous Schrödinger equation

�H − �E0 + �����r�1,r�2� = −
1

2
E� · D� �0�r�1,r�2� �1�

for an outgoing wave asymptotic condition. In Eq. �1�, H

denotes the field-free two-electron Hamiltonian, and D� the
dipole operator that couples the atom to the external electric

field of amplitude E� and frequency �. This equation is solved
in a set of partially collective coordinates which consists of
the hyperspherical radius R=�r1

2+r2
2, the radial correlation

angle �=tan−1�r2 /r1�, and the spherical angles �1 ,�1, and
�2 ,�2, that specify the directions of the unit vectors r̂1 and r̂2
with respect to the polarization axis z. For convenience, we
introduce the compact notations �1= ��1 ,�1�, �2= ��2 ,�2�,
and �= �� ,�1 ,�2�. The R−1 dependence of the three-body
Coulomb potential suggests to separate configuration space
into two regions: an inner region, R	R0, where the R de-
pendence is strong, and a complementary outer region where
it is weak enough to support a semiclassical treatment. The
fully quantal inner region calculation, based on the R-matrix
approach and the adiabatic partial wave analysis, provides
the solution ��R0 ;�� on the hypersphere R=R0. In the outer
region, the five-dimensional angular motion is described ac-
cording to quantum mechanics, whereas the hyperradial mo-
tion is treated semiclassically. This brings the solution of Eq.
�1� back to a hyperradial propagation problem. The solution
extracted at the border R0 of the inner region is then propa-
gated to a very large distance R
 where the cross sections are
obtained directly from the relevant outgoing fluxes.

This general scheme, the details of which can be found in
previous publications �12–14�, is complemented by two dif-
ferent procedures which have been designed to identify the
successive ionization-excitation channels and to subtract
them from the photoionization wave function � at appropri-
ate hyperradii in the course of the propagation.

The first procedure is based on the expansion of the wave
function at R0 on the adiabatic angular basis defined at this
distance. As shown in previous publications �see, for in-
stance, Ref. �15��, groups of adiabatic channels can be asso-
ciated with ionization-excitation to successive levels of the
residual ion, the multiplicity of each group being equal to the
first-order Stark degeneracy of the corresponding hydrogenic
level of He+. This procedure is applied here at the border
R=R0=60 a.u. of the inner region. Ionization-excitation

channels up to and including n=3, corresponding to the first
nine adiabatic channels, are identified and subtracted from
the wave function to propagate. The latter, called �3�R0 ;��,
is given accordingly by

�3�R0;�� = ��R0;�� − �
�=1

9

u��R0�Z��R0;�� , �2�

where Z��R0 ;�� denote the adiabatic angular partial waves
at R0 and u��R0� the expansion coefficients of ��R0 ;�� on
this locally adapted angular basis.

In the second procedure, the ionization-excitation channel
n is described by the projection of the photoionization wave
function on the hydrogenic state n of the residual ion, per-
formed at the appropriate hyperradius Rn as explained in Ref.
�9�. Denoting Pn the corresponding projector, and
�n−1�Rn ;�� the current photoionization wave function,
cleared of all ionization-excitation channels up to and includ-
ing n−1, we can write the wave function to be propagated
beyond Rn as

�n�Rn;�� = �1 − Pn��n−1�Rn;�� . �3�

This procedure is applied here from n=4. Beyond n=50, the
accuracy of the projection technique deteriorates, so that we
can no longer extract reliable ionization-excitation cross sec-
tions and asymmetry parameters. Accordingly, beyond R50,
we propagate �50�R50;�� without subtracting further excita-
tion channels. Noting P�Rn ,Rn−1� the unitary operator that
propagates the wave function from Rn−1 to Rn, we can then
summarize the propagation scheme that is used here by the
expression

�50�R
;�� = P�R
,R50�	 

n=50

5

�1 − Pn�P�Rn,Rn−1��
��1 − P4�P�R4,R0��3�R0� . �4�

In the following, it will be shown that the residual
ionization-excitation contributions to the final wave function
�50�R
 ;�� are confined within � intervals around �=0 and
�=
 /2, the width of which is of the order of 
 /100. Since
tan ���E2 /E1 for large R, these values of � correspond to
extremely asymmetric sharings of the excess energy, namely
E2 /E1	10−3 or E1 /E2	10−3. Accordingly, the FDCS,
SDCS, and �, obtained from �50 for energy sharings outside
these very restricted ranges, will be pure double ionization
cross sections and asymmetry parameters. Moreover, a
simple procedure will be presented to extrapolate the pure
double ionization SDCS and � toward �=0 and �=
 /2.
Therefore, a full set of accurate double ionization cross sec-
tions will be extracted from �50 in what follows. Explicit
expressions of these cross sections will be given, which de-
pend on the exact form of the final wave function. We thus
complete the present section by expliciting �50, which turns
out to be the product of three terms: a geometrical factor
associated with the volume element in the six-dimensional
configuration space, a semiclassical outgoing wave that de-
scribes the bulk of the hyperradial motion in terms of an
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effective local momentum, and a reduced wave function that
depends only weakly on R. We have then

�50�R
;�� =
1

R

5/2 sin 2�

1
�p�R
,E�

�exp	ı

R0

R


p�R�,E�dR������ , �5�

where p�R ,E� is known from previous publications �see, for
instance, Ref. �15��. Note that we call the reduced wave
function ����, omitting its dependence on R
 for simplicity.
This wave function is obtained in our approach as the fol-
lowing expansion over normalized symmetrized bipolar har-
monics �Y��+1

10 ��1 ,�2�:

���� = �
�=0

L

�
�=g,u

c�
�����Y��+1

10 ��1,�2� , �6�

where �=g �u� labels functions that are symmetric �antisym-
metric� in the exchange of the two electrons. The entire in-
formation is then contained in the set of coefficients c�

����
which will enter the expressions of the cross sections in the
following sections.

III. PARTLY DIFFERENTIAL AND INTEGRATED
CROSS SECTIONS

A. Limiting behavior of � and the SDCS for fully asymmetric
energy sharings

The FDCS is obtained from the flux of �50�R
 ;��
through an elementary surface on the hypersphere R=R
.
Accordingly, it can be expressed in terms of the reduced
wave function as

�5�E;E1,�1,�2� = 2
2
�

c

1

E sin 2�
������2. �7�

The triply and singly differential cross sections follow by
successive integrations. They are given by

�3�E;E1,�1� = 2
2
�

c

1

E sin 2�

 d�2����,�1,�2��2,

�8a�

�1�E;E1� = 2
2
�

c

1

E sin 2�

 d�1 d�2����,�1,�2��2,

�8b�

and the asymmetry parameter reads

��E;E1� =
�20


�1�E;E1� 
 d�1 Y20
* ��1��3�E;E1,�1� . �9�

Taking account of Eq. �6�, one can rewrite these expressions
more conveniently as

�1�E;E1� = 2
2
�

c

1

E sin 2�
Dg��� , �10a�

��E;E1� =
Ng��� + Nu���

Dg���
, �10b�

the new functions introduced being given in terms of the
expansion coefficients of the reduced wave function by

Dg��� = �
�=0

L

��c�
g�2 + �c�

u�2� , �11a�

Ng��� = �
�=0

L
2�2 + 4� + 3

4�2 + 8� + 3
��c�

g�2 + �c�
u�2�

− �
�=0

L−1

3
��2 + 3� + 2

2� + 3
Re�c�

gc�+1
g* − c�

uc�+1
u* � ,

�11b�

Nu��� = − �
�=0

L

6
� + 1

4�2 + 8� + 3
Re�c�

gc�
u*�

+ �
�=0

L−1

3
��2 + 3� + 2

2� + 3
Re�c�

gc�+1
u* − c�

uc�+1
g* � .

�11c�

The advantage of introducing the functions above lies in
their symmetry properties and limiting behaviors. First of all,
they are either symmetric �Dg ,Ng� or antisymmetric �Nu� in
the exchange of the two electrons. Accordingly, Eqs. �10�
make clear that �1�E ,E1� is symmetric in this operation,
whereas ��E ,E1� is neither symmetric nor antisymmetric.
But more importantly, their limiting behavior at the edges of
the � interval is known. They tend toward zero to allow
�1�E ,0�, ��E ,0�, and ��E ,E� to take finite values, which are
given indeed by

�1�E,0� = �1�E,E� =
2
�

cE
Dg��0� ,

�	E,
0

E
� =

Ng��0� ± Nu��0�
Dg��0�

. �12�

The functions Dg ,Ng, and Nu, as calculated from Eqs. �11�,
are displayed in Fig. 1. As the extreme energy sharings are
approached, they first tend toward zero as expected. Yet a
different behavior sets in at about 
 /100 rad from the edges,
namely strong and rapid oscillations occur, due to the
ionization-excitation channels n�50 which have not been
projected out of the propagated wave function. However, our
knowledge of the physical behavior of the Dg , Ng, and Nu
functions makes it easy to get rid of this unwanted contribu-
tion. All one has to do is to fit the calculated gerade �unger-
ade� functions, over the reduced interval �
 /100, �
 /2�
− �
 /100�� where they are uncontaminated by single escape
channels, by even �odd� polynomials in the variable
��−
 /4�, designed to vanish at the edges �=0 and 
 /2. The
best fits are plotted in Fig. 1. They are used to reconstruct a
singly differential cross section and a � parameter free of
any residual ionization-excitation contribution, which there-
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fore exhibit the correct physical behavior for the extreme
energy sharings.

B. Continuity between ionization with excitation to discrete
levels and double ionization

The reconstructed energy differential cross section is plot-
ted in Fig. 2. Its limit for the extreme energy sharings
E1 /E=0 or E1 /E=1 is emphasized by arrows. It is notably
different from the limit derived in Ref. �9� by extrapolating

ionization-excitation data: the latter, represented by the dot-
ted line, lies indeed much closer to �1�E ;E /2� than to
�1�E ;E�. This has prompted us to reconsider the conjecture
expressed by Eq. �40� of Ref. �9�.

The continuity between the discrete and the continuum
part of the photoabsorption spectrum of H is well established
�16�. It can be expressed quantitatively in terms of the oscil-
lator strengths per unit energy for excitation to discrete and
continuum states as

limn→


dn

dEn
fn = limE→I

dfE

dE
, �13�

where I denotes the ionization threshold �see, for instance,
�17� for a detailed derivation of this relation�. Such a conti-
nuity is expected between photoionization with excitation
and photodouble ionization as well. Yet giving it a quantita-
tive expression is not a trivial task. To our knowledge, the
only case in which it has been performed rigorously is that of
a fixed photon energy far above the double ionization thresh-
old �18,19�. In this case, electronic correlations are very
weak, and the excess energy above each threshold can be
considered as constant regardless of the channel considered.
In these circumstances, the continuum electron that takes
away the whole excess energy can be considered a spectator
and Eq. �40� of Ref. �9� appears as a natural extension of Eq.
�13�. These simplifications, however, disappear at 0.1 eV
above the threshold, where electronic correlations are strong,
and where the excess energy above each threshold varies
significantly from one channel to the other. Accordingly, we
are not surprised to note that, at this very low energy, ex-
trapolating ionization-excitation data using Eq. �40� of Ref.
�9� does not yield the expected double ionization limit given
by Eq. �12�. Note in this respect that the n−3 dependence of
�n, implied by Eq. �40� of Ref. �9�, has already been ques-
tioned �20� on the basis of extensions of the energy differen-
tial expression of the Wannier law �21,22�. These extensions,
motivated by the symmetric cusp observed in threshold pho-
toelectrons spectra at the double ionization threshold, sug-
gest the following improved version of Eq. �40� of �9�:

limn→
��n�E� � �n�E�� = �1�E;E�,

where �n�E� = 	1 +
Z2

n2E
�−0.056 n3

Z2 . �14�

The curve representing �n�E��n�E� as a function of n, plotted
in Fig. 3, must be compared with its counterpart in Fig. 8 of
Ref. �9�. It evidences a stabilization at about 2.04 kb/eV
from n=12, compared to 2.25 kb/eV from n=10 in Ref. �9�.
More importantly, this stabilization persists up to n=50 to a
significantly better approximation than in Ref. �9�, no steady
decay being observed as n increases. This confirms that Eq.
�14� incorporates some additional physics compared to Eq.
�40� of �9�. Accordingly, we consider the value of
2.04 kb/eV, indicated by a dashed horizontal line in Fig. 2,
as an improved extrapolation of ionization-excitation data.
However, it still lies much closer to �1�E ;E /2� than to
�1�E ;E�, just like the less accurate value derived in Ref. �9�.

FIG. 1. �Color online� Building blocks of the energy differential
cross section and asymmetry parameters in a.u. as a function of the
radial correlation angle � in radians. Thin blue continuous line: raw
calculation; thick black dashed line: best polynomial fit satisfying
the boundary conditions at �=0 and 
 /2.

FIG. 2. Reconstructed energy differential cross section in kb/eV
shown in two views. Thick continuous line: full view, referred to
the left vertical and bottom horizontal axis. Thin continuous line:
partial view, referred to the right vertical and top horizontal axis.
The arrows point to the limits of the reconstructed SDCS for
E1=0 or E1=E. The dotted horizontal line indicates the limit of
n3�n�E� /Z2 as n→
 as extracted from ionization-excitation data in
Ref. �9�. The dashed horizontal line indicates the limit of
�n�E��n�E� as n→
 as extracted from ionization-excitation data
�see text�.

BOURI et al. PHYSICAL REVIEW A 73, 022724 �2006�

022724-4



Thus, the modified conjecture expressed by Eq. �14� is still
incorrect.

The reconstructed asymmetry parameter is displayed in
Fig. 4. Its limits for the extreme energy sharings E1 /E=0 and
E1 /E=1 are emphasized by arrows. It turns out that ��E ;E�
is close to the value obtained by extrapolating ionization-
excitation data in Ref. �9�, represented by the dotted line.
However, shortly after Ref. �9� was published, we found a
more convincing extrapolation method for the asymmetry
parameter. The latter is based on the analysis of the cross
sections and asymmetry parameters for ionization-excitation
in terms of parabolic states of the residual ion, the direction
of the ionized electron being taken as the reference axis �23�.
The resulting extrapolated asymmetry parameter, represented
by the dashed horizontal line at −0.71, lies significantly far
from the expected ��E ;E�. We consider this result as an
indication that the conjecture expressed by Eq. �41� of Ref.
�9� must be reconsidered at low energy.

In fact, the best extrapolated values of the ionization-
excitation data, namely �
�E�=−0.71 and �
�E��
�E�
=2.04 kb/eV, turn out to be very close to their double ion-
ization counterparts averaged over all energy partitionings.

The latter indeed are given by �1�E�=2.13 kb/eV and
��E�=−0.69. Our results, therefore, suggest a new picture of
the merging of ionization-excitation into double ionization,
appropriate to the low-energy domain: in this picture, ioniza-
tion excitation data merge, for infinite n, into their double
ionization counterparts averaged over all possible sharings
of the available energy.

C. Comparison of the calculated SDCS and � with previous
experimental and theoretical results

In the absence of experimental investigations, the shape
of the SDCS close to the double ionization threshold has
been the subject of numerous theoretical studies. Early cal-
culations �24� following the pioneering work of Wannier �6�
assumed an essentially flat pattern, a hypothesis that was
retained in many subsequent calculations �25�. Later on,
classical trajectory studies performed within the Wannier ap-
proach �21,22,26� produced a more detailed picture: it was
recognized that for excess energies below a few eV, the
SDCS should present a positive curvature, the more so the
lower the energy. This trend was readily confirmed by first
quantum-mechanical ab initio calculations �27,28�, although
the latter were performed at higher energies. Looking at the
magnified view of the SDCS given in Fig. 2, we note that our
calculations start from a local maximum at 2.12 kb/eV for
equal energy sharing, then decrease slowly down to a local
minimum of 2.09 kb/eV for E1 /E�0.1, in agreement with
the expectations based on these latter calculations. However,
for more asymmetric energy sharings, the calculated SDCS
increases again up to the limiting value of 3.225 kb/eV.
Given the care we have taken to eliminate ionization-
excitation contributions, we believe that this unexpected pat-
tern cannot be attributed to spurious contributions from these
two-body channels. The only previous ab initio calculation
performed at excess energies below 1 eV is a recent one that
focuses on the threshold behavior of the electron impact ion-
ization cross sections of H �7�. Interestingly, a behavior simi-
lar to the one reported here is observed in the SDCS obtained
by these authors at 0.01 a .u. Namely, instead of decreasing
steadily as the asymmetry increases, their cross section
clearly flattens out for E1 /E	0.15.

There are only two measurements of the asymmetry pa-
rameter in the energy region that is of interest here. One �29�
yields a � parameter of −0.58±0.15 for a photoelectron car-
rying less than 20 meV kinetic energy out of 120 meV ex-
cess energy above the double ionization threshold. This value
compares well with the high-energy limit �E1=E� of the
present calculations, whereas it was intended to provide an
estimate of the opposite limit �E1=0�. By contrast, the ex-
periment �10� provides a value of the equal energy sharing
parameter at 0.1 eV excess energy, which is in perfect agree-
ment with the present calculations.

On the theoretical side, early approaches following Wan-
nier’s scheme assumed that the asymmetry parameter was
independent of the partitioning of the excess energy between
the two electrons �see, for instance, Ref. �30��. However, it
was shown later on �31� using a more refined treatment that
this view was oversimplified and that the partitioning of the

FIG. 3. Extrapolating the ionization-excitation cross sections to
infinite n. Dots with error bars: calculated values of �n�E��n�E� �in
kb/eV�; horizontal line: best constant fit �see text�.

FIG. 4. Asymmetry parameter. Continuous curve: present recon-
structed asymmetry parameter. The arrows point to the limits of the
reconstructed � for E1=0 or E1=E. Dotted horizontal line: the limit
of �n�E� as n→
 as extracted from ionization-excitation data in
Ref. �9�. Dashed horizontal line: the limit of �n�E� as n→
 as
extracted from ionization-excitation data in Ref. �23�. Full circle
with error bar: measurement �10�. Full triangle with error bar: mea-
surement �29�.
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energy could play a significant dynamical role, notably when
approaching threshold. In addition, the two-dimensional
function ��E ;E1� computed in the 3C model of Ref. �31�
was found to have a minimum along E1=E /2. The measure-
ments �32� were first taken as a confirmation of these predic-
tions. Yet the authors in Ref. �32� made the assumption that
the double ionization part of photoelectron kinetic energy
spectra taken at fixed photon energy and fixed angle was
symmetric with respect to E1=E2=E /2 whatever the angle.
Since this holds only at the magic angle �40�, their asymme-
try parameters appeared wrongly symmetric in the energy
sharing with a minimum at equal sharing. In fact, if the de-
pendence of � on the energy sharing can be considered as
confirmed by this experiment, this is not so as regards the
existence of a minimum at equal sharing. In other respects, a
completely different approach, exploiting the symmetry
properties of doubly excited states �33�, led to the prediction
that the double ionization asymmetry parameter correspond-
ing to the slow electron should reach −1 at threshold. The
present results shed light on this discussion. First of all, they
show that the asymmetry parameter retains a significant de-
pendence on the energy sharing even close to threshold.
In addition, this parameter is neither symmetric nor antisym-
metric with respect to E1 /E=0.5, due to the ungerade
coefficients c�

u which would be neglected in Wannier-type
models. Moreover, the asymmetry parameter has a minimum
when the detected electron has zero energy, opposite to
what was observed in Ref. �31�. This is consistent with the
basic classical picture stating that the force exerted by each
electron on the other within a pair alters the linear momenta

of both, this alteration being more important, on the relative
scale, for the slow electron. Finally, the very low value
of this minimum, −0.88, confirms the prediction made in
Ref. �33�.

D. Integrated cross section

Two methods were proposed in Ref. �8� to derive the in-
tegrated cross section for photodouble ionization from
HRM-SOW calculations: Integrating the SDCS over half the
energy interval where it is defined, or subtracting the
ionization-excitation cross sections from the total �single
+double� ionization cross section. Each of these methods had
its drawbacks: in the first one, the SDCS was cleared of
spurious ionization-excitation contributions in a somewhat
arbitrary way; on the other side, the second method implied
extrapolating the ionization-excitation cross sections to infi-
nite values of n, which was a delicate task. At this stage,
however, we had no serious doubts regarding the n−3 law
which was taken as a rule to extrapolate, and accordingly, we
recommended the second method. The present experience
has reversed our views. Not only do we own now a reliable
procedure that produces a pure double ionization SDCS, we
also have shown that the n−3 law was not verified accurately.
As a result, we now recommend the first method. Integrating
the reconstructed SDCS of Fig. 2 over the energy interval
�0,E /2�, we thus get �th

0 =0.107 kb, to be compared with
�K

0 =0.091±0.008 kb from the reference measurements �34�.
The computed value thus lies 0.008 kb above the top of the
experimental error bar. Retaining this mismatch as an upper

FIG. 5. FDCS �b/eV/sr2� as a
function of the polar angle �2 of
the second electron in the detec-
tion plane �degrees� for the three
coplanar geometries investigated
in Ref. �10�: �1=30° ,60° ,90°
from left to right. Top row:
present calculation, raw result.
Bottom row: original measure-
ments �10�.

FIG. 6. Normalization of the experimental
FDCS. Top row: dimensionless corrective factor
to apply to the original data �10�. Bottom row:
experimental FDCS deduced from the improved
normalization procedure. Units as in Fig. 5.
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bound to the absolute uncertainty attached to the theoretical
result, we get a maximum relative uncertainty of the order
of 7%. This can be considered very satisfying given the
challenge theory must face: extracting a double ionization
contribution of the order of 10−1 kb from a total ionization
cross section of the order of 730 kb �35� with a precision
better than 10−2 kb. Forthcoming tests of the Wannier thresh-
old law for the ICS will be based on the numerical scheme
just outlined.

IV. FIVEFOLD DIFFERENTIAL CROSS SECTION (FDCS)

A. An apparent disagreement between theory
and experiment

The FDCS was expressed in terms of the reduced wave
function in Eq. �7�. Using Eq. �6� and the relations

gY��+1
10 ��1,�2� =

�6

8

�cos �1 + cos �2�

��− 1���� + 1P�
01�cos �12� , �15a�

uY��+1
10 ��1,�2� =

�6

8

�cos �1 − cos �2�

��− 1��+1�� + 1P�
10�cos �12� �15b�

given in Ref. �36�, we can recast it now into the convenient
form

�5�E;E1,�1,�2� = ��cos �1 + cos �2�Ag���

+ �cos �1 − cos �2�Au����2, �16�

which was predicted in Ref. �30�. The so-called dynamical
factors Ag and Au are then given by

Ag��� =� 3�

8
cE sin 2�
�

�

�− 1���� + 1P�
01�cos �12�c�

g��� ,

�17a�

Au��� =� 3�

8
cE sin 2�
�

�

�− 1��+1�� + 1

�P�
10�cos �12�c�

u��� , �17b�

where �12 is the mutual angle of the two electrons.

The radiation used in the experiment �10� was character-
ized by a Stokes parameter S1=0.95. We have checked
that assuming pure linear polarization �S1=1� does not alter
the results in any visible way. We have thus pursued the
analysis in this approximation, the FDCSs being then given
directly by Eqs. �16� and �17�. They have been calculated for
the three coplanar �37� kinematics investigated experimen-
tally in Ref. �10�, that is to say E=100 meV, E1=50 meV,
�12=�1−�2=0°, and �1=30° ,60°, and 90°. They are dis-
played in the first row of Fig. 5 as functions of the polar
angle �2 of the second electron in the detection plane �to be
distinguished from the polar spherical angle �2�, the experi-
mental results �10� being reproduced in the second row.
The absolute scales in these two rows are very different:
for instance, the calculated cross section �th

5 at�1=90° is
close to 240 b/ �eV/sr2� at its highest point, compared to
hardly 75 b/ �eV/sr2� for its experimental counterpart
�exp

5 . This is not completely unexpected: in Ref. �10� indeed,
the authors focused on the shapes of the angular patterns,
the absolute scale being proposed only tentatively, and
the possibility of an underestimation of the cross section be-
ing acknowledged. Careful re-examination of the experimen-
tal normalization procedure is thus needed before a meaning-
ful comparison between experiment and theory can be
attempted.

B. Enforcing the self-consistency of the experimental
normalization procedure

The procedure used in Ref. �10� is based on the relation

N5�E;E1,�1,�1,�2,�12�
N0�E�

=
�5�E;E1,�1,�1,�2,�12�

�0�E�
�18�

between the numbers of double ionization events recorded in
an ideal experiment and the corresponding physical cross
sections. This relation allows one to derive the absolute
FDCS using any well established reference for the absolute
ICS. In the low-energy range, it is usual to rely upon the
parametrization �K

0 �E�=1.02 E1.05 given in Ref. �34�, where
E is in eV and �K

0 in kb.
In any real experiment, however, the spectral profile of

the photon beam has a nonzero width. Accordingly, the mea-
sured N 0�E� results from a convolution of the ICS with this

FIG. 7. Comparison between measured and
calculated FDCS. Top row: Full line��th

5 ; full
circles with error bars��exp-norm

5 deduced from
Ref. �10� �see text�. Bottom row: Full line��th

5 ;
full circles with error bars��exp-norm

5 deduced
from Ref. �10� �see text�. Units as in Fig. 5.
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spectral profile. In addition, the time and space resolution of
the detectors is finite. The measured
N5�E ;E1 ,�1 ,�1 ,�2 ,�12�, therefore, takes account of all
events characterized by a sextuplet of kinematic parameters
�E� ;E1� ,�1� ,�1� ,�2� ,�12� � located within a finite six-
dimensional volume element surrounding the reference
point. Moreover, when the statistics is very low, it may be
convenient to increase it artificially: for instance, by accumu-
lating the detected events over energy and angular intervals

larger than those determined by the resolutions of the experi-
mental devices; or else by adding together all distinguishable
events which are known to yield identical cross sections, like
those differing only in the value of the absolute azimuthal
angle �1. Finally, it may also be desirable to discard some
series of events, for instance those corresponding to kinemat-
ics which lead to deteriorated resolutions. Thus, after reex-
amining the conditions of Ref. �10� with one of the authors
�38�, it appeared realistic to rewrite Eq. �18� as

N5�E;E1,�1,�1,�2,�12�
N 0�E�

=

 dV 6�5�E�;E1�,�1�,�1�,�2�,�12� �G�E�;E,�E�H�E� − E1� − Ec�



−


+


�0�E��G�E�;E,�E�dE�

, �19�

where �dV 6 is a shortened notation for the six-dimensional integration


 dV 6 = 

�1−���1/2�

�1+���1/2�

sin �1�d�1�

0

2


d�1�

�2−���2/2�

�2+���2/2�

sin �2�d�2�

�12−���12/2�

�12+���12/2�

d�12� 

E1−��E1/2�

E1+��E1/2�

dE1�

−


+


dE�. �20�

In Eq. �19�, G�E� ;E ,�E� is a Gaussian function of width
�E=135 meV, centered at E=100 meV, normalized to en-
sure that �−


+
dE�G�E� ;E ,�E�=1. It represents the spectral
profile of the photon beam. H�E−E1−Ec� is a Heaviside
function. It simulates the elimination of electrons having an
energy less than the critical value Ec=20 meV, below which
the angular resolution deteriorates rapidly. Finally, the energy
and angular integration ranges in Eq. �20� are as follows:
�E1=60 meV, ��1=��2=20°, and ��12=40°.

In Ref. �10�, however, it is assumed as usual �39� that the
width �E of the Gaussian is negligible and that �5 and the
sine functions in Eq. �19� can be taken out of the integral
�dV6. The experimental FDCS �exp

5 is then defined by

�exp
5 =

�K
0

�V exp
6 �

N5

N0

where �V exp
6 = 2
 sin �1��1 sin �2��2��12�E1.

�21�

In addition, the authors report that it is reproduced very sat-
isfactorily within the Wannier model by the expression

�exp
5 �E;E1,�1,�1,�2,�12�

= aexp�E��cos �1 + cos �2�2exp�− 4 ln 2	�12 − 


�exp�E�
�2�

�22�

with �exp�E�=57±4° and aexp�E�=0.590 kb/ �eV�sr2� for
E=0.1 eV. This suggests a very simple consistency check of
the entire procedure: integrating Eq. �22� over E1 and the
four angular variables at fixed E should indeed give the ref-
erence ICS back. Interestingly, this is not the case, as this

integration yields a cross section of 0.041 kb, which is too
small by a factor 2.2 since �K

0 =0.091 kb. This mismatch re-
veals that either the normalization procedure �21�, or the
Wannier model �22�, or both, are inaccurate. To clear this
point, we have fitted Eq. �22� to our theoretical FDCS at
�1=90°, thus obtaining ath=2.55 kb/ �eV�sr2� and �th

=50°, which after integration yields a total cross section of
0.110 kb, in fair agreement with our exact value of 0.107 kb.
Accordingly, the observed lack of self-consistency results
from the failure of the usual normalization procedure �21� in
the extreme conditions of the experiment �10�.

In an attempt to improve this procedure, let us then intro-
duce the averaged FDCS �5, the averaged ICS �K

0 , the exact
volume element �V 6,

�5 =

 dV6�5GH


 dV6GH
, �K

0 = 

−


+


dE��K
0 G and

�V6 =
 dV6GH , �23�

as well as the ratios �5=�5 /�5 , �K
0 =�K

0 /�K
0 , and �6

=�V6 /�Vexp
6 . Rewriting Eq. �19� in terms of these ratios and

using Eq. �21�, we can define an improved experimental
FDCS by

�exp-imp
5 = �exp

5 �5

�K
0 �6 . �24�

We have evaluated the ratios �K
0 , �6, and �5, numerically. It

turns out that �K
0 �0.98 provides a negligible correction. As
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to �6, it is the product of an angular contribution, which
amounts to 0.99 for all geometrical arrangements considered
in Ref. �10�, and a contribution of 0.69 coming from the
energy resolutions. This yields the very important corrective
factor �6�0.68 for all angular distributions measured in Ref.
�10�. The evaluation of the last factor �5 required some pa-
rametrization of the FDCS. We have used the Wannier model
�22� with ��E�=67.6E0.074 and a�E�=0.783E−0.217, E being
in eV, � in degrees, and a in kb/ �eV�sr2�. These parametri-
zations of the energy dependence of the width and amplitude
reproduce the � values of 57° and 60° measured at 0.1 and
0.2 eV, respectively �10�, and ensure that the fivefold inte-
gration of Eq. �22� yields the reference ICS �K

0 back at these
two energies. In this model, the resulting �5 is strongly de-
pendent on �2��2�, reaching a maximum value of about 1.2
at the peaks of the cross section, and decreasing toward zero
at its geometrical nodes. The overall corrective factor
�5 / ��K

0 �6� is plotted in Fig. 6, along with the improved ex-
perimental cross section �exp-imp

5 . The important question is
now, does this correction restore the self-consistency of the
normalization procedure? Actually, the best fit of Eq. �22� to
�exp-imp

5 is obtained for aexp-imp=0.86 kb/ �eV�sr2�, � being
taken equal to 57°. The fivefold integration of Eq. �22� with
these two parameters yields an ICS of 0.061 kb, which is still
a factor 1.5 smaller than �K

0 . So, despite the significant cor-
rection applied, which takes account of experimental resolu-
tion effects and culminates at about 1.8, the result of our
consistency check remains negative when applied to �exp-imp

5 .
Clearly, another experimental effect still escapes the analy-
sis. It is likely to be due to the small but finite dead time of
the detector used in the experiment, under the specific con-
ditions of coplanar geometry �38�. This is why we have de-
cided to remedy the remaining inconsistency by roughly
multiplying �exp-imp

5 by a global factor 1.5, thus obtaining
what we call the consistent cross sections �exp-cst

5 . The latter
are the best estimates of the physical cross sections that can
be extracted from the experiment considered.

C. Agreement between theory and renormalized experiment

Comparison between theory and experiment can then be
performed in various ways.

The most usual one consists in comparing the raw theo-
retical FDCS, �th

5 , with the best approximation of the latter
that can be extracted from experiment, taking the current
theory as a reference for normalizing the experiment, namely
�exp-norm

5 =�exp-cst
5 ��th

0 /�K
0 �. This is done on the top row of

Fig. 7, which demonstrates a remarkable agreement between
theory and experiment on the absolute scale. Note how the
improved normalization procedure restores the nodes in the
experimental cross section, thus improving the agreement
with the raw theoretical cross section, which shows exact
nodes. The advantage of this approach is that it allows one to
extract from experiment the quantities of physical interest,
that is to say the cross sections, which are independent of
every peculiarity of the experimental set-up. However, it
does so using an approximate model of the FDCS �22�. In
this respect, a comparison between theory and experiment
independent of any model might be still more relevant.

Such a comparison can be performed between averaged
cross sections. We have thus averaged the theoretical cross
section �th

5 over the angular and energetic intervals relevant
to the experiment Ref. �10� to get �th

5 . On the other side, Eqs.
�19� and �23� can be used to define an averaged experimental
cross section by

�exp
5 =

�K
0

�V6

N5

N0 . �25�

The latter is then related to the experimental cross section of
�10� by �exp

5 =�exp
5 /�0�6. Before comparison with the theory,

it must still be corrected for the unidentified experimental
effects revealed in the previous section, which decrease the
yield of events by a factor 1.5. It must also be renormalized
to the current theoretical ICS �th

0 instead of �K
0 . The resulting

averaged cross section, denoted by �exp-norm
5

=�exp
5 1.5��th

0 /�K
0 �, which is nothing but �exp-norm

5 /�5, is dis-
played on the bottom row of Fig. 7. One sees that �th

5 and
�exp-norm

5 are very close to each other on the absolute scale.
Contrary to what was observed on the top row of the figure,
the averaging of the theoretical FDCS now fills the exact
nodes of the raw data, thus improving the agreement with the
raw experiment. This comparison, opposite to the previous
one, is independent of any model of the FDCS. Yet it con-
cerns only averaged cross sections defined under particular
experimental conditions. Note that the same approach was
already used in Ref. �8�, leading to outline the excellent
agreement between theory and experiment, yet on the basis
of a slightly different set of experimental data, anterior to
those published in Ref. �10�.

To conclude this section, let us point out that the agree-
ment between theoretical and experimental averaged cross
sections validates the theory, irrespective of any model. The
raw cross sections of interest can therefore be taken from the
theory with confidence. Finally, the agreement between the-
oretical and experimental raw cross sections validates the
model-dependent renormalization procedure we have pro-
posed in the previous section.

D. Discussion of Wannier’s model of the FDCS

To complete this study of the fully differential cross sec-
tion, let us now confront the assumptions underlying the ex-
pression �22� of the FDCS with what we can learn from the
present ab initio calculations. The first of these assumptions
is that the ungerade amplitude Au in Eq. �17� is negligible
with respect to its gerade counterpart Ag for all energy shar-
ings. To test this hypothesis, we have calculated the ratio of
the FDCS at �12=
 to the peak value of the FDCS for a
series of kinematics characterized by coplanar geometries
and asymmetric sharings of the excess energy. This ratio,
which gives an estimate of �Au /Ag�2, never exceeds a few
percent. The second assumption states that Ag is independent
of the energy sharing. In this respect, we have observed,
while computing �th

5 , relative variations of the main �second-
ary� peak values of the FDCS of up to 10% �30%� as E1 /E
described the interval �0,1�. As to the last assumption leading
to Eq. �22�, namely that Ag is a Gaussian function of the
mutual angle with energy-dependent width and amplitude, it
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simply cannot be tested against ab initio calculations regard-
less of the two previous ones. The present analysis thus con-
firms that Eq. �22� is a valuable first-order approximation.
Yet it cannot account for every detail of the cross sections
that nowadays experiments are able to distinguish. Accord-
ingly, one should be prepared to observe very significant
departures from the behaviors expected in this model. �Note,
this is not at variance with the fact that we obtain satisfying
fits of Eq. �22� to the theoretical cross sections, since any
reasonable expression with enough build-in flexibility would
do nicely.�

V. CONCLUSION

We have presented a full set of cross sections, ranging
from the fully differential to the fully integrated one, for
photodouble ionization of He at only 0.1 eV above the
threshold. To our knowledge, there are only two previous ab
initio studies of double escape in this near-threshold energy
region: one of them, based on the propagating exterior com-
plex scaling method, is devoted to electron impact ionization
of H down to 0.01 a .u. above the threshold �7�; the other
presents preliminary results obtained in the early stages of
the present work �8�. This scarcity of the results reflects a
major difficulty inherent in near-threshold studies, namely
that a correlated dynamics prevails over distances that are
very large, typically of the order of the inverse excess en-
ergy.

Despite their arduousness, such studies are essential to
assess the relevance of the various pictures of the near-
threshold dynamics which have emerged from previous
model studies.

Care has therefore been taken to confront the present re-
sults with a series of forecasts regarding the differential cross
sections, derived from the physical ideas outlined by Wan-
nier in his pioneering study. As a result, these predictions are
confirmed to provide valuable first-order approximations, it

being understood that significant departures from the ex-
pected behaviors can be observed.

Photodouble ionization has also been approached as the
limit of single ionization with excitation for infinitely high
excitations. The present results, complementing those pre-
sented in the recent paper �9�, suggest a new picture of this
limit in the region close to the double ionization threshold,
and call for further investigations.

Near-threshold studies are also very challenging for ex-
perimentalists: the cross sections are very low, which prom-
ises a very low counting rate; they vary rapidly with the
excess energy, so that outstanding energy resolutions would
be required to get more than an energy averaged information;
the ejected electrons are very slow, which requires a perfect
rejection of perturbing electric and magnetic fields. The
agreement observed between the present results and the rare
experiments available is therefore all the more remarkable.
Regarding the fully differential cross sections, this agreement
is obtained thanks to the changes we have introduced in the
procedure that is currently used for normalizing the data
from third-generation spectrometers. These changes might be
of interest beyond the framework of the present study.

More generally, the present results, along with those pre-
sented in Ref. �9�, demonstrate the ability of the HRM-SOW
method to provide a comprehensive view of the near-
threshold dynamics, encompassing two- and three-body
channels. In the near future, this method will be used to
revisit the Wannier threshold law for the integrated cross
section. We also plan to investigate the vicinity of the double
ionization threshold from below.
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