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The Rabi oscillations of a two-level atom illuminated by a laser on resonance with the atomic transition may
be suppressed by the atomic motion through averaging or filtering mechanisms. The optical analogs of these
velocity effects are described. The two atomic levels correspond in the optical analogy to orthogonal polariza-
tions of light and the Rabi oscillations to polarization oscillations in a medium which is optically active,
naturally or due to a magnetic field. In the latter case, the two orthogonal polarizations could be selected by
choosing the orientation of the magnetic field, and one of them be filtered out. It is argued that the time-
dependent optical polarization oscillations or their suppression are observable with current technology.
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I. INTRODUCTION

The analogies between phenomena occurring in two dif-
ferent physical systems open a route to find new effects or to
translate solution techniques or devices, and quite often help
to understand both systems better. The parallelism between
light and atom optics, in particular, has been a strong driving
force for fundamental and applied research, and it has re-
ceived recently renewed impulse with the advent of laser
cooling techniques, and Bose-Einstein condensation of
alkali-metal gases. Atomic interferometers or atom lasers are
important examples that illustrate the fruitfulness of this cor-
respondence.

The analogy may also enable us to perform in one system
experiments which are difficult to carry out in the other one.
As an example, tunneling time experiments are much easier
for microwaves than for matter waves �1,2�, and the fact that
the atoms are much slower than light, can be of great help in
the analysis of time-dependent phenomena.

In this paper we shall describe the optical analogs of the
time-dependent atomic Rabi oscillation in a laser field and of
several dynamical suppression effects due to quantum, pure
state atomic motion. The Rabi oscillation is at the heart of
measurement procedures for time and frequency standards
�3�, photon number in a cavity �4�, and other metrological
applications �5,6�, so its dynamic suppression may be a rel-
evant effect, in particular for atomic clocks working with
ultracold atoms. This suppression has been also proposed as
a way to prepare specific internal atomic states by projection
in quantum information applications �7�.

The relation between light and atom optics is frequently
established at the level of translational �external� degrees of
freedom, but here we need, in addition, an optical parallel of
the two internal levels of the atom, which is provided by the
orthogonal states of light polarization. Thus we follow in
reverse order, from matter to light, a connection that can be
traced back historically to early experiments of Rabi, later
modified by Ramsey, which lead to the development of

atomic clocks, and provided atomic analogs of polarization
interferometry in optics, with the internal states of the atom
or molecule playing the role of the polarization states of the
photon �3,5,8�.

For completeness a brief review of the dynamical sup-
pression of the Rabi oscillation is provided in Sec. II, which
is mostly based on Ref. �7� but incorporates also some new
elements. Section III is devoted to the description of the
optical analog. Section IV presents numerical illustrations.
Section V describes a possible implementation of polariza-
tion filtering making use of magnetic fields.

II. RABI OSCILLATION SUPPRESSION FOR MOVING
ATOMS

Neglecting decay, the effective Hamiltonian for a two
level atom at rest and in presence of a detuned laser field is

H =
�

2
�0 �

�* − 2�
� , �1�

where � is the on-resonance Rabi frequency, �=�L−� is the
detuning ��L being the laser frequency and � the atomic
frequency� and internal ground and excited states are repre-
sented as �1�	� 1

0
� and �2�	� 0

1
�, respectively. If at time zero

the atom is in the ground state, the ground and excited com-
ponents of the state evolved with this Hamiltonian are

��1� = ei�t/2�cos���t/2� − �i�/���sin���t/2�� , �2�

��2� = ei�t/2��− i�/���sin���t/2�� , �3�

so that the populations ���1,2��2 alternate oscillating harmoni-
cally in time with “Rabi period” 2� /�� and effective Rabi
frequency ��	�� 2+ ���2�1/2. The oscillation may, however,
be suppressed when the atoms move into a region illumi-
nated by a perpendicular laser beam �7�. For an idealized
sharp laser profile in a one-dimensional approximation �its
validity and the three-dimensional case are examined in Ref.
�9��, the Hamiltonian becomes
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H = p̂2/2m +
�

2
��ẑ��0 �

�* − 2�
� , �4�

where ẑ and p̂ are position and momentum operators, and �
is the Heaviside function. If reflection is negligible, for mod-
erate to high velocities, the stationary eigenfunction for inci-
dence in the ground state with wave number k can be ap-
proximated, up to a normalization constant, as

	k
�1� 
 eikzei�t/2�cos���zm

2 � k
� − �i�/���sin���zm

2 � k
��,

	k
�2� 
 eikzei�t/2��− i�/���sin���zm

2 � k
�� . �5�

Comparing with Eqs. �2� and �3�, this expression reveals a
spatial Rabi oscillation where the quantity zm / �k plays the
role of time in the arguments of the trigonometric functions.
Note also the additional plane wave factor with momentum
k� denoting the translation of the center of mass. In other
words, the Rabi oscillation is also evident spatially in the
stationary eigenstates, under the form of density undulations
of the two components with a “Rabi wavelength” 
R
=kh /m��.

The Rabi oscillation may be suppressed “adiabatically” if
a quasimonochromatic, pure-state wave packet enters slowly
into the laser illuminated region. In the quasimonochromatic
regime the time dependent wave function may be approxi-
mately factorized into translational and internal factors as in
Eq. �5�, with the translational factor describing the spatial
location of the packet for a given time. If this localization is
sharp with respect to 
R, the z in the internal factor may be
substituted by a classical, well defined position, z�0�
+ �k� /m�t, so that the z-integrated populations oscillate once
the packet has entered the laser region at z=0, for tent=
−z�0�m / �k� �. However, if the wave packet is broad with
respect to 
R, or equivalently, the time interval required by
the packet to enter into the laser region is greater than the
Rabi period, the average over z to get the populations cancels
the oscillation out. Note that this oscillation suppression in
the quasi-monochromatic regime is not due to an average
over different frequencies but to a phase averaging. Intu-
itively, and according to a classical picture, the atoms in the
ensemble start to oscillate at different times because of their
different entrance instants corresponding to a significant
spread of the initial values z�0�. This intuitive interpretation
cannot be taken too literally though. In particular, the sup-
pression involves a pure state and not a statistical mixture.
Note also that no incoherent “fading” due to decay from the
excited state is involved. �The effect of fading was discussed
in Ref. �7�.�

A second group of suppression effects is associated with
state filtering or velocity splitting. To explain these two re-
lated concepts, we need a more accurate representation than
before. In the laser region, let �
+� and �
−� be the eigen-
states, corresponding to the eigenvalues 
±, of the matrix
1
2

� 0
�*

�
−2�

�. One easily finds


± =
− � ± ��

2
, �6�

�
±� =  1

− � ± ��

�
� , �7�

where �
±� have not been normalized. �For later comparison
with “circularly polarized states” notice that by setting �=0
and for the case �= i ���, 
±= ±� /2, and �
±�= � 1

�i
�.� The

stationary state for z�0 can be written as a superposition

k�z� = C+�
+�eik+z + C−�
−�eik−z, �8�

where

k± = k�1 −
m�− � ± ���

�k2 �1/2

, �9�

and the coefficients C± are obtained from the matching con-
ditions at z=0 �7�. The two components �±� have two differ-
ent propagation velocities and in fact the Rabi oscillation
may be understood as an interference between the two terms
when k±
k+m������ / �2�k�. For initially quasimono-
chromatic packets, with the wave number spread much
smaller than the average wave number �k /k0�1, the two
different velocities also imply eventually a spatial separation
of the �
±� components, so that the interference and associ-
ated Rabi oscillation finally disappear for times larger than
the time to split the packet into two, 2�zk /��, where �z

2 is
the spatial variance of the wave packet. An extreme case is
the complete state filtering that occurs for very low kinetic
energies, when k− is purely imaginary so that eik−z becomes
an evanescent wave and only the �
+� component survives in
the laser region for z greater than the penetration length
�Im�k−��−1. Since the exact form of the surviving �
+� state
can be modified by the laser detuning and Rabi frequency,
this state filtering effect provides a projection mechanism to
prepare especific internal states regardless of the incident
atomic state �7�.

III. OPTICAL ANALOG

In the optical analog of the dynamic effects described, the
internal states will be substituted by orthogonal polarizations
of the field, and the laser region by an optically active me-
dium; the rotation of the polarization plane and correspond-
ing oscillation of the linear polarization intensities will
mimic the Rabi oscillation, and electromagnetic pulses will
play the role of the atomic wave packets.1

The use of a complex electric field for quasi-
monochromatic pulses within analytic signal theory facili-

1One further correspondence may be established with a spin-
polarized electron incident on a region with a perpendicular mag-
netic field, i.e., there is an analogy between Rabi oscillations and
Larmor precession, which has been used to extend the concept of a
Larmor clock �10,11� and other definitions of a traversal time to
atomic systems �11–18�.
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tates the comparison and correspondence between quantum
wave function and electric field components. Some of the
parallelisms are quite direct. For example, we shall keep the
same notation for the quantum wave numbers and the optical
propagation constants k and k±, or for the coefficients in the
stationary waves, such as C± and the reflection amplitudes R,
although their values and detailed expressions need not be
equal. Atomic populations in the ground state may be related
to total energies in the vertical, linear polarization compo-
nent and, similarly, the atomic excited state will be mimicked
by horizontal, linear polarization. In our analogy, positions
and times are present both in optics and quantum mechanics
since we want to describe and compare pulses and wave
packets in space-time. This is at variance with the analogy
established by Zaspasskii and Kozlov �19�, in which the spa-
tial coordinate played the role of time in a Schrödinger-like
equation satisfied by the polarization vector. From the Max-
well equations in a nonmagnetic, electrically neutral dielec-
tric medium, the wave equation for the E field of a harmonic,
plane wave solution is

km � �km � E� +
�2

c2 E = −
�2

c2 �E , �10�

where the subscript m in km stands for “medium” and it will
be used to avoid confusion with k=� /c in vacuum. � is the
susceptibility tensor,

� = ��11 �12 �13

�12
* �22 �23

�13
* �23

* �33
� . �11�

The medium is assumed to be nonabsorbing so that � is
Hermitian. The absorbing case is briefly considered in Sec. V
and in the Appendix.

Written in components, Eq. �10� leads to

Ez = − ��13
* Ex + �23

* Ey�/�3 �12�

and the system

�− km
2 +

�2

c2 ��1 −
��13�2

�3
��Ex +

�2

c2 ��12 −
�13�23

*

�3
�Ey = 0,

�2

c2 ��12
* −

�23�13
*

�3
�Ex + �− km

2 +
�2

c2 ��2 −
��23�2

�3
��Ey = 0,

�13�

where � j 	1+� j j. It can be solved by making the determi-
nant of the coefficients vanish, and the result is a fourth order
equation �km

4 +�km
2 +�=0�.

Since we shall assume that the wave incides from a
vacuum region adjacent to a semi-infinite medium, we only
pick up two physical solutions �if complex they must have a
positive imaginary part to decay; if real they must be positive
to implement outgoing boundary conditions� and denote
them as k±,

k± =
�

c
n±, �14�

n± being the corresponding refraction index. Examples will
be given soon.

The polarization corresponding to each solution in the
x-y plane, up to an intensity constant, may be given in terms
of the Jones vector � Ex

Ey
�

±
�20�. For a closer comparison with

the atomic case we may use the notation E�1�	Ex, E�2�

	Ey, reminiscent of the atomic ground- and excited-state
amplitudes. In particular, the internal atomic states � 1

0
�

�ground� and � 0
1

� �excited� correspond to the Jones vectors
� 1

0
�, � 0

1
� which denote, respectively, “vertical” �x direction�

and “horizontal” �y direction� linear polarization.
Since we are not specifying the total intensity, the polar-

ization is also represented by any proportional vector. In par-
ticular, it is convenient to work with

�
±� = � 1

�Ey

Ex
�

±
� , �15�

where

�Ey/Ex�± =

�1 −
��13�2

�3
−

k±
2c2

�2

− �12 + �13�23
* /�3

. �16�

Depending on the value of �Ey /Ex�±=a+ ib �a and b real�,
the polarization can be linear �b=0�, circular �a=0,b= ±1�,
or in general elliptic.

For an optically active medium with a susceptibility ten-
sor of the form

� = ��11 �12 0

�12
* �11 0

0 0 �33
�, Re��12� = 0, �17�

the optical propagation constants are given by

k± =
�

c
�1 + �11 ± ��12��1/2. �18�

Assuming Im��12��0, two orthogonal harmonic solutions
for right �+� and left �−� circularly polarized light, forward-
moving or possibly evanescent �if k− becomes imaginary� are

� 1

− i
�eik+ze−i�t, �1

i
�eik−ze−i�t, �19�

In vacuum, we have instead �=0, and the following forward/
backward moving orthogonal harmonic solutions �with signs
+/−, respectively�

�1

0
�e±ikze−i�t, �0

1
�e±ikze−i�t, �20�

where k=� /c�0.
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If the optically active medium occupies the region z�0,
and for normal incidence �k in z direction� of vertically po-
larized light, the harmonic solution reads, up to a constant
e−i�tFk�z�, where

Fk�z� = ��
1

0
��eikz + R11e

−ikz� + �0

1
�R21e

−ikz, z � 0,

C+�1

− i
�eik+z + C−�1

i
�eik−z, z � 0.

�21�

Imposing at z=0 the continuity of the tangential components
of the electric and magnetic fields amounts, for normal inci-
dence, to enforce the continuity of the components Ex,y and
their derivatives. Solving the resulting system,

R11 =
k+k− − k2

�k + k+��k + k−�
, C+ =

k

k + k+
, �22�

R21 =
− ik�k− − k+�

�k + k+��k + k−�
, C− =

k

k + k−
. �23�

There are thus two propagation constants k±, and two group
velocities in the optically active medium

d�

dk±
=

c

n±
. �24�

When ��11�,��12 � �1, the two propagation constants differ
only slightly,

k± 

�

c
�1 +

�11 ± ��12�
2

� , �25�

there is also negligible reflection Rj1
0 �j=1,2� and C±


1/2, so that in the optically active medium z�0,

E�1� 
 ei�kz−�t�cos�k��12�z/2� , �26�

E�2� 
 ei�kz−�t�sin�k��12�z/2� . �27�

Each z is thus characterized by some linear polarization that
rotates when z increases �optical activity�. The rotation
length for a full cycle of the moduli squared is L
=2�c /� ��12� or, equivalently, the cycle requires a time T
=2� /� ��12� for a quasimonochromatic pulse. Pulses are
analogous to wave packets in the present correspondence and
are formed by superposition of harmonic components. More-
over, in the quasi-monochromatic regime, we can interpret
the modulus squared of complex field components as �half�
short time averages of the real field, according to the theory
of complex analytic signals �21�. Up to a constant that fixes
the actual intensity, the time dependent field is given by

E�z,t� =
1

�2��1/2�
0

�

dk A�k�Fk�z�e−i�t. �28�

The time �t required, from the entrance instant of the pulse
peak, to split the pulse into two separated pulses of orthogo-
nal circular polarization may be estimated by imposing that
the spatial increment between the two components, due to

their different group velocities, be equal to the pulse width
�z. In particular, for �11=0 and ��12 � �1,

�t =
2�t

��12�
, �29�

where �t=�z /c. A time dependent observation of the polar-
ization rotation, which is the optical analog of a temporal
Rabi oscillation, requires �t�T to avoid the splitting, but
also �t�T to avoid an averaging suppression. Combining
the two constraints gives the ideal conditions

�12 �
�k

k0
� 1. �30�

IV. NUMERICAL EXAMPLE

In this section we shall demonstrate with numerical ex-
amples the time dependence of the polarization rotation in
the optically active medium and several dynamical suppres-
sion effects. The pulse is chosen within the quasimonochro-
matic regime, so that we may neglect any variation with k of
the matrix elements of the susceptibility and consider con-
stant values in each calculation. We have used Eq. �28� with
the Gaussian amplitude

A�k� = ��z� 2

�
�1/4

e−�k − k0�2�z
2
e−ikz0. �31�

It is for convenience “normalized” so that �dk �A�k��2=1 and,
at time zero, �dz �E�1��z , t=0��2=1. In all cases the central
wavelength is chosen in the visible region of the spectrum,

0=2� /k0=500 nm. The pulse is thus a right moving Gauss-
ian pulse of vertically polarized light centered at time t=0 at
z0�0, outside the optically active medium, and with spatial
variance �z

2.
Figure 1 shows the oscillation of the integrated polariza-

tion intensity I�2�,

FIG. 1. Oscillation suppression due to slow �adiabatic� entrance
in the optically active medium. I�2��t� is represented for different
pulse widths: �t=100 fs �dotted-dashed line�; �t=200 fs �dotted
line�; �t=600 fs �solid line�. �11=0, �12=0.002. The pulse is given
in Eqs. �28� and �31� with z0=−600 �m and 
0=500 nm.
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I�j��t� 	 �
0

�

dz�E�j��z,t��2, j = 1,2, �32�

proportional to the total energy in horizontal linear polariza-
tion within the optically active medium versus time. Whereas
optical activity is standardly considered in coordinate space
and measured in stationary conditions at the end of a slab,
here we adopt a different, time dependent view, closer to the
quantum Rabi oscillation analog.

If the pulse duration is much smaller than the rotation
period, the oscillation is clearly visible. If the pulse width is
increased and becomes comparable or larger than the rotation
wavelength, however, the oscillation is suppressed. This is
the optical analog of the adiabatic suppression of the Rabi
oscillation due to a slow entrance of the atoms in the laser
region.

An interesting phenomenon occurs if the observation time
is large enough so that the pulse splits as a consequence of
the two different group velocities. This is shown in Fig. 2,
where the oscillation eventually fades away because of the
progressive lack of interference between the two circularly
polarized components.

Finally, the rotation suppression by filtering, analogous to
atomic state filtering, is illustrated in Fig. 3. The left circular
polarization becomes evanescent for the chosen susceptibil-
ity �11=0 and �12=1.2, so, after a transient, the pulse in the
active medium is only composed by right handed circular
polarization, see Fig. 3�b�, where the total intensities

I± = �
0

�

dz�E�±��2 �33�

are represented versus time. The absence of left-handed po-
larization after the transient peak precludes any oscillation of
the linear polarization intensities I�1,2�, as shown in Fig. 3�a�.

V. MAGNETO-OPTIC EFFECTS

Instead of finding materials with the susceptibility tensors
necessary to observe the different suppression effects, it is
possible to manipulate � for an isotropic dielectric by apply-
ing a static magnetic field B. The susceptibility tensor matrix
elements in terms of the resonance frequency �0, plasma
frequency �p, and cyclotron frequencies �cu, u=x ,y ,z, is
given in the Appendix for a simple Lorentz model. Let us
first examine the “Faraday configuration,” with the magnetic
field along the z direction. In that case the susceptibility takes
the form given in Eq. �17� and the solutions k± correspond to
two orthogonal circular polarizations.

If instead the selected magnetic field direction is x
�Cotton-Mouton configuration�, the form of the susceptibility
tensor becomes

� = ��11 0 0

0 �33 �23

0 �23
* �33

�, Re��23� = 0, �34�

which leads to modes with linear polarizations in x and y
directions. A field B in an arbitrary direction between the
Faraday and the Cotton-Mouton configurations produces, in
general, two elliptic polarizations.

FIG. 2. Oscillation suppression of the integrated polarization
intensities due to pulse splitting: I�1� �solid line� and I�2� �dashed
line�. �12=0.08, �t=100 fs, and other parameters as in Fig. 1. A
transition time that separates the two regimes �with or without ro-
tation� may be estimated as the time for the arrival of the pulse peak
at the medium plus the splitting time of Eq. �29�. This gives 4.5 ps
for the present parameters.

FIG. 3. Oscillation suppression of the integrated polarization
intensities due to filtering. �12=1.2, �t=100 fs, and other param-
eters as in Fig. 1. In �a� we show the vertical �solid line� and hori-
zontal �dashed line� polarization components and in �b� the right
�solid line� and left �dashed line� circular polarization components.
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Let us determine the conditions which make one, and only
one, of the propagation constants evanescent, to achieve po-
larization state filtering and selection. We shall work out in
detail the Faraday configuration, but the Cotton-Mouton case
or some other magnetic field orientation could be treated
similarly. For the Faraday configuration, k± are either purely
real or purely imaginary, and the parameter regions in which
one wave becomes evanescent are delimited by the zeros of
k±, which correspond, respectively, to

1 + �11 = � ��12� , �35�

see Eq. �18�. Using the expressions for �11 and �12 given in
the Appendix, Eq. �35� becomes

1 +
�p

2

���0
2 − �2�2 − �2�cz

2 �
= ± � �p

2��cz

���0
2 − �2�2 − �2�cz

2 �
� ,

�36�

with �cz=eBz /me. This leads to a second order equation for
the modulus of �cz,

− �2S��cz�2 ± �p
2���cz� + S��0

2 − �2����0
2 − �2� + �p

2� = 0,

�37�

where S the sign of ���0
2−�2�2−�2�cz

2 �. The formal solutions
are

�1cz =
− �p

2 − ��0
2 − �2�

�
, �38�

�2cz =
��0

2 − �2�
�

, �39�

�3cz =
�p

2 + ��0
2 − �2�

�
, �40�

�4cz =
− ��0

2 − �2�
�

. �41�

The parameter region in which filtering occurs �k− purely
imaginary and k+�0�, is represented in Fig. 4 with a light
shaded area �in the darker area both solutions are evanescent
so there is total reflection�. It can be divided into four �
subregions I, II, III, IV, delimited by the curve crossing fre-
quencies �=�0, �=�S	��0

2+�p
2 /2�1/2, and �=�0p	��0

2

+�p
2�1/2. The lower and upper bounds for the leftmost region

I are the curves �2cz and �3cz �i.e., Eqs. �39� and �40��; for
region II, the curves �4cz and �3cz; for region III, �3cz and
�4cz; and finally the bounds for region IV are the curves �1cz
and �4cz. �=�S also marks a polarization mode change. In
the light shaded areas, �Ey /Ex�±= ± i if ���S, whereas
�Ey /Ex�±= � i otherwise.

An additional constraint is set by the maximum available
intensity of the magnetic field. It establishes a flat upper
bound for �cz, and restricts the frequency range where filter-
ing may be accomplished. The smallest fields could be used
at or near the frequencies �0 and �0p	��0

2+�p
2�1/2 where the

boundary curves in Eqs. �38�–�41� touch the zero field axis.
In practice the second one, �0p, would be more useful since

�p could be controlled in some cases, e.g., for a gas. More-
over, in general the possible perturbation on the filtering ef-
fect by absorption can be made negligible if the condition
��2−�0

2���� is satisfied. In �0p this assumes the form

�p
2

��0p
� 1, �42�

where � is the damping constant, see the Appendix. This
ratio may be around 500 for realistic parameters in the near
ultraviolet region �22�, or near 20 for typical infrared absorp-
tion lines in ionic crystals �23�. Two other important factors
that must be taken into account for the observability and
potential application of the polarization filtering are the pen-
etration length of the evanescent wave in the optically active
medium, and the probability of the surviving mode.

The penetration length is proportional to the inverse of
Im�k−�. In practice the medium is not semi-infinite, of
course, but the filtering effect may be achieved by a finite
medium as long as it extends beyond the penetration length.
In this case, using the transfer matrix technique, it can be
seen that the polarization of the transmitted wave beyond the
finite medium is equal to the one of the nonevanescent mode.

With respect to the probability of the surviving mode, the
ratio n+ �C+�2 between the energy flux of the surviving polar-
ization and the incident energy flux is greater than 0.2 for
�cz /�0�0.2 at �=�0p and �p /�0=1.

Finally, real materials hold multiple resonances and our
theory has to be generalized by summing over them with
appropriate oscillator-strength factors �20�. Thus, the previ-
ous analysis cannot be considered a full feasibility study for
a practical implementation of the polarization selection,
since a careful search of optimal materials and conditions is
still required. The possibility to compete with other polariza-
tion methods will depend on the efficiency achieved, and
other technical factors.

FIG. 4. Parameter region in which k− is purely imaginary and
k+�0 �light shaded area� for �p /�0=0.84. The critical points
where curve crossings occur are, from left to right, �/�0�1 �it
separates regions I and II�, �1+ ��p

2 /2�0
2� �between regions II and

III�, and �1+ ��p
2 /�0

2� �between regions III and IV�.
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VI. DISCUSSION

In summary, we have shown that the atomic time-
dependent Rabi oscillation and its suppression for moving
atoms incident on a laser-illuminated region, is analogous to
the time-dependent polarization rotation and its suppression
for light pulses entering into an optically active medium. The
eigenmodes in the laser region depend on Rabi frequency
and detuning and in the optically active medium on the sus-
ceptibility matrix elements. Since ultrashort femtosecond
pulses can be tracked experimentally by interferometric pho-
ton scanning tunneling microscopy �PSTM� �24�, the time
dependence of polarization rotation and its suppressions, by
averaging, pulse splitting or filtering, can be tested experi-
mentally. These effects may be of interest for the design of
an all-optical quantum computer with information encoded,
transferred or manipulated using the polarization state �25�;
similarly, their atomic counterparts may be relevant in me-
trology and provide a mechanism for controlled quantum
internal state preparation by projection or filtering, i.e., irre-
spective of the initial state, so that their experimental exami-
nation at a light-optics level is both feasible and worth pur-
suing. The optical analog of atomic state-filtering provides a
way to produce polarized light. Whereas the atomic state
may be selected by playing with the laser detuning and in-
tensity, the polarization may be selected by a magnetic field.

We have emphasized the similarities between the atomic
and the optical systems, but there are also differences worth
noticing: the dispersion relations relating � or E /� with k are
not equal and this leads to different evolutions of the light
pulse or the atomic wave packet. Also, the two polarizations
outside the active region are degenerate whereas, in general,
the two orthogonal atomic internal components outside the
laser region travel with different wave numbers.
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APPENDIX A: SUSCEPTIBILITY TENSOR ELEMENTS

The general expressions for the elements of the � tensor
for a homogeneous dielectric in a magnetic field are obtained
here from a simple, classical, Lorentz model. Each electron
displacement from its equilibrium position re is assumed to
satisfy

me
d2re

dt2 = − eE − e
dre

dt
� B − Kre − me�

dre

dt
, �A1�

where K is an elastic force constant that keeps it bound, B is
a static, external magnetic field, me the mass of the electron,
and � a damping constant. �We neglect the small force due to
the magnetic field of the optical wave.� Assuming that the
applied electric field and re vary harmonically as e−i�t, and
using for the macroscopic polarization P=−Nere=��0E,
where N is the number of electrons per unit volume, and �0
the permittivity of the vacuum, a lengthy but straightforward
calculation gives, for �=0,

�11 = �p
2 ��0

2 − �2�2 − �2�cx
2

���0
2 − �2�2 − �2�c

2���0
2 − �2�

, �A2�

�12 = �p
2 ��i�cz��0

2 − �2� − �cx�cy��
���0

2 − �2�2 − �2�c
2���0

2 − �2�
,

�13 = �p
2 ��− i�cy��0

2 − �2� − �cx�cz��
���0

2 − �2�2 − �2�c
2���0

2 − �2�
,

�22 = �p
2 ��0

2 − �2�2 − �2�cy
2

���0
2 − �2�2 − �2�c

2���0
2 − �2�

,

�23 = �p
2 ��i�cx��0

2 − �2� − �cy�cz��
���0

2 − �2�2 − �2�c
2���0

2 − �2�
,

�33 = �p
2 ��0

2 − �2�2 − �2�cz
2

���0
2 − �2�2 − �2�c

2���0
2 − �2�

,

where

�0 = �K/me, �A3�

�c = eB/me, �cu = eBu/me,

u = x,y,z , �A4�

�p = � Ne2

me�0
�1/2

, �A5�

are resonance, cyclotron, and “plasma” frequencies, respec-
tively, and B= �Bx

2+By
2+Bz

2�1/2.
In the Hermitian case, i.e., for �=0, �ij =� ji

* . If ��0 the
elements in Eq. �A2� would have the same form except for
the substitution

��0
2 − �2� → ��0

2 − �2 − i��� . �A6�

The other nondiagonal elements �ij can be obtained formally
by taking first the complex conjugate of the expressions of
the transpose elements � ji in Eq. �A2� and then making the
substitution of Eq. �A6�.
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