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I. INTRODUCTION

Over the past three decades, in atomic and molecular
physics an interest arose in effects associated with magnetic
anapole moments. These effects may be divided into two
principal categories. The first category comprises those
atomic and molecular phenomena in which a nuclear mag-
netic anapole moment, resulting from parity nonconservation
in nuclear forces, manifests itself �cf., e.g., Refs. 1–6�. The
second category includes those effects which evince the
magnetic anapole moment of an atomic or a molecular elec-
tronic cloud �7–22�.

In this paper, we shall be concerned with an effect falling
into the second of the aforementioned categories. Specifi-
cally, we shall be interested in the anapole moment induced
in the ground state of the one-electron Dirac atom by a weak,
spatially uniform, static electric field. This problem was al-
ready considered a decade ago, both nonrelativistically and
relativistically, by Lewis and Blinder �16�; the reason for
which we have decided to revisit it is that the relativistic
calculations carried out in Ref. 16 were approximate in
character. Exploiting the Sturmian expansion of the general-
ized Dirac-Coulomb Green function �23–27�, in the present
paper we shall calculate the Stark-induced anapole moment
exactly.

The structure of the paper is as follows. In Sec. II we
define the anapole moment. In Sec. III we consider the one-
electron Dirac atom in the weak, spatially uniform, static
electric field and apply the first-order Rayleigh-Schrödinger
perturbation theory, together with the Green functions tech-
nique, to derive an approximate expression for a perturbed
electronic wave function. Next, in Sec. IV, this approximate
wave function is used to determine an induced electric cur-
rent density in the atom. Subsequently, the anapole moment
of the resulting �i.e., unperturbed plus induced� current dis-
tribution is considered. It is found that only the induced cur-
rent contributes and the form of this contribution is calcu-
lated analytically exploiting the Sturmian functions

technique. The paper ends with conclusions, constituting
Sec. V, and with several appendixes containing supplemen-
tary material.

II. DEFINITION OF THE MAGNETIC ANAPOLE
MOMENT

Consider a bounded sourceless system of stationary cur-
rents characterized by the current density j�r�. The magnetic
anapole moment of such a system is defined as �28�

t =
1

2
�

R3
d3r�r · j�r��r . �2.1�

The definition �2.1� links the anapole moment with the fam-
ily of so-called magnetic toroidal �toroid� multipole moments
with spherical components �28�

Tlm =
1

l + 1
� 4�

2l + 1
�

R3
d3rrlYlm�nr�r · j�r� , �2.2�

where �Ylm�nr��, with nr=r /r, are the spherical harmonics
�B3�. Indeed, since it follows from Eqs. �2.1� and �2.2�
that

t = 	
m=−1

+1

T1mem
* , �2.3�

where �em� are the spherical versors �29�, the magnetic ana-
pole moment appears to be the magnetic toroidal dipole mo-
ment �in Ref. 17, the alternative name “the displacement
current dipole moment” was proposed for t�.

Although the definition �2.1� is the most proper one from
the point of view of methodology, it is not necessarily the
most convenient one from the practical point of view. For
this reason, several other equivalent expressions for the vec-
tor t appear in the relevant literature �cf. Appendix A�.
Among them, for the purposes of the present work the most
suitable one appears to be �30�

t = −
1

4
�

R3
d3rr2j�r� . �2.4�
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III. A RELATIVISTIC HYDROGENLIKE ATOM IN A
WEAK, SPATIALLY UNIFORM, STATIC ELECTRIC FIELD

Consider a relativistic hydrogenlike atom, with an infi-
nitely heavy, pointlike, and spinless nucleus of charge +Ze,
placed in a weak, spatially uniform, static electric field F.
The energy quasieigenvalue problem for quasibound states
of this system is constituted by the Dirac equation


− ic�� · � + mec
2� −

Ze2

�4��0�r
+ eF · r − E���r� = 0,

�3.1a�

supplemented by the boundary conditions

r��r� �
r→0

0, r��r� �
r→�

0. �3.1b�

In Eq. �3.1a�, and hereafter, � and � are the standard Dirac
matrices �31�. Because of our assumption that the electric
field is weak, the electron-field interaction potential

V�1��r� = eF · r �3.2�

may be considered as a small perturbation of the Dirac-
Coulomb Hamiltonian describing an isolated atom. In virtue
of this, one may attack the problem �3.1a� and �3.1b� with
the aid of the Rayleigh-Schrödinger perturbation theory, with
the zeroth-order bound state eigenproblem constituted by the
Dirac-Coulomb equation


− ic�� · � + mec
2� −

Ze2

�4��0�r
− E�0����0��r� = 0,

�3.3a�

supplemented by the boundary conditions

r��0��r� �
r→0

0, r��0��r� �
r→�

0. �3.3b�

Throughout the rest of the work, we shall restrict our-
selves to the case when the unperturbed state of the atom is
the ground state. Then one has

E�0� = mec
2�1, �3.4�

where

�� = ��2 − �	Z�2, �3.5�

with 	=e2 / �4��0�c� �not to be confused with the Dirac ma-
trix �� being the Sommerfeld fine-structure constant. The
eigenvalue E�0� is doubly degenerate. Two orthonormal
eigenfunctions to the problem �3.3a� and �3.3b� associated
with E�0� may be chosen to be

�

�0��r� =

1

r
 P�0��r��−1
�nr�

iQ�0��r��+1
�nr�
� , �3.6�

with 
= ±1/2. Here ���
�nr�� are the spherical spinors �see
Appendix B�, while the radial functions are

P�0��r� = −� Z

a0

1 + �1

��2�1 + 1�
2Zr

a0
��1

exp�− Zr/a0� ,

�3.7a�

Q�0��r� =� Z

a0

1 − �1

��2�1 + 1�
2Zr

a0
��1

exp�− Zr/a0� ,

�3.7b�

with a0= �4��0��2 /mee
2 denoting the Bohr radius.

We shall seek approximate solutions to the quasi-
eigenproblem �3.1a� and �3.1b� in the form

��r� � ��0��r� + ��1��r� , �3.8a�

E � E�0� + E�1�, �3.8b�

where

��0��r� = a1/2�1/2
�0� �r� + a−1/2�−1/2

�0� �r� , �3.9�

with the coefficients a±1/2 constrained to obey

�a1/2�2 + �a−1/2�2 = 1. �3.10�

These coefficients should be determined so that the function
�3.9� is perturbation-adapted. The corrections ��1��r� and
E�1�, which, by assumption, are small quantities of the
first order in F= �F�, are solutions to the inhomogeneous
problem


− ic�� · � + mec
2� −

Ze2

�4��0�r
− E�0����1��r�

= − �eF · r − E�1����0��r� , �3.11a�

r��1��r� �
r→0

0, r��1��r� �
r→�

0. �3.11b�

To make the solution to the boundary value problem
constituted by Eqs. �3.11a� and �3.11b� unique, we demand
that

�
R3

d3r�

�0�†�r���1��r� = 0 
 = ±

1

2
� . �3.12�

Applying the Green functions technique, this solution is
found to be

��1��r� = − �
R3

d3r�G�0��r,r���eF · r� − E�1����0��r�� ,

�3.13�

where G�0��r ,r�� is the generalized �or reduced� Dirac-
Coulomb Green function for the unperturbed ground-state
energy level �3.4�. It solves the inhomogeneous differential
equation �r� fixed�


− ic�� · � + mec
2� −

Ze2

�4��0�r
− E�0��G�0��r,r��

= I3�r − r�� − 	

=±1/2

�

�0��r��


�0�†�r�� �3.14a�

�here I is the unit 4�4 matrix�, with the boundary
conditions

rG�0��r,r�� �
r→0

0, rG�0��r,r�� �
r→�

0, �3.14b�

and obeys the additional orthogonality constraints
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�
R3

d3r�

�0�†�r�G�0��r,r�� = 0 �
 = ± 1

2� . �3.14c�

On combining Eq. �3.14c� with the easily provable Hermi-
ticity property of G�0��r ,r��, one may simplify Eq. �3.13� to
the form

��1��r� = − eF · �
R3

d3r�G�0��r,r��r���0��r�� . �3.15�

Proceeding further, in the standard way from Eq. �3.11a�
one deduces that the coefficients a±1/2 solve the algebraic
system

V1/2,1/2
�1� − E�1� V1/2,−1/2

�1�

V−1/2,1/2
�1� V−1/2,−1/2

�1� − E�1� � a1/2

a−1/2
� = 0, �3.16�

with

V

�
�1� = eF · �

R3
d3r�


�0�†�r�r�
�
�0��r� �
,
� = ± 1

2� ,

�3.17�

while the energy correction E�1� is a root of the secular equa-
tion resulting from equating the determinant of the system
matrix in Eq. �3.16� to zero,

detV1/2,1/2
�1� − E�1� V1/2,−1/2

�1�

V−1/2,1/2
�1� V−1/2,−1/2

�1� − E�1� � = 0. �3.18�

Since both the functions �3.6� have the same parity,
the integrand in Eq. �3.17� is odd under inversion, which
implies

V

�
�1� = 0 
,
� = ±

1

2
� . �3.19�

Hence, it follows immediately that

E�1� = 0 �3.20�

is a double root of the secular equation �3.18�.
The important consequence of Eqs. �3.18�–�3.20� is that

whatever one chooses the coefficients a±1/2 in Eq. �3.9�, this
always results in the symmetry-adapted unperturbed eigen-
function ��0��r�. Physically, this corresponds to the fact that,
in the system under consideration, the external electric field
does not change the orientation of the permanent atomic
magnetic moment m�0� �cf. Appendix C and the last para-
graph in Sec. IV�.

IV. EVALUATION OF THE STARK-INDUCED MAGNETIC
ANAPOLE MOMENT OF THE ATOM

According to the Dirac theory, an electric current density
associated with the atomic electron in the state ��r� is

j�r� = − ec�†�r����r� . �4.1�

In virtue of Eq. �3.8a�, to the first order in the perturbing field
F one has

j�r� � j�0��r� + j�1��r� , �4.2�

where

j�0��r� = − ec��0�†�r����0��r� �4.3�

is the electronic current density in the unperturbed atomic
eigenstate �3.9�, while

j�1��r� = − 2ec Re���0�†�r����1��r�� �4.4�

is an induced electronic current density due to the perturbing
field F. On combining Eqs. �2.4� and �4.2�–�4.4�, one finds
that the magnetic anapole moment of the atom may be writ-
ten as

t � t�0� + t�1�, �4.5�

where

t�0� =
1

4
ec�

R3
d3rr2��0�†�r����0��r� �4.6�

is the magnetic anapole moment of the atom in the unper-
turbed eigenstate �3.9�, while

t�1� =
1

2
ec Re �

R3
d3rr2��0�†�r����1��r� �4.7�

is the first-order Stark-induced magnetic anapole moment.
Exploiting Eqs. �3.9�, �3.6�, �B8�, and �B9�, with no dif-

ficulty one shows that all spherical components of the vector
t�0�, given by

em · t�0� =
1

4
ec�

R3
d3rr2��0�†�r�em · ���0��r� �m = 0, ± 1�

�4.8�

vanish. This implies that the unperturbed one-electron Dirac
atom has a vanishing magnetic anapole moment in its ground
state,

t�0� = 0. �4.9�

�It seems worthwhile to mention at this moment that, under
certain conditions, the unperturbed one-electron Dirac atom
may still have a nonzero magnetic anapole moment being in
some particular of its energetically excited stationary states
�32�.�

We turn to considering the induced moment t�1�.
On inserting Eq. �3.15� into Eq. �4.7�, the latter takes the
form

t�1� = �4��0�T · F , �4.10�

where

T = −
1

2

ce2

�4��0�
Re �

R3
d3r�

R3
d3r�r2��0�†�r�

��G�0��r,r��r���0��r�� �4.11�

is a tensor anapole �or toroidal dipole� polarizability �33�
for the system under study. The integrations over the
angular variables of r and r� in Eq. �4.11� may be done
with the aid of Eqs. �3.9� and �3.6�, of the well-known
partial-wave expansion of the generalized Green function
G�0��r ,r��,
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G�0��r,r�� =
�4��0�

e2 	
�=−�

���0�

�

	
m=−���+1/2

���−1/2
1

rr�
 g�++��

�0� �r,r����m�nr���m
† �nr�� − ig�+−��

�0� �r,r����m�nr��−�m
† �nr��

ig�−+��
�0� �r,r���−�m�nr���m

† �nr�� g�−−��
�0� �r,r���−�m�nr��−�m

† �nr��
� , �4.12�

and some of the properties of the spherical versors �29� and the spherical spinors �cf. Appendix B�. This yields the following
representation of the tensor T in the Cartesian basis �nx ,ny ,nz�:

T = �nx ny nz�T�c��nx ny nz�T, �4.13�

with

T�c� = � � 0 �a1/2�2 − �a−1/2�2 − 2 Im�a1/2
* a−1/2�

− �a1/2�2 + �a−1/2�2 0 2 Re�a1/2
* a−1/2�

2 Im�a1/2
* a−1/2� − 2 Re�a1/2

* a−1/2� 0
� . �4.14�

In Eq. �4.14�, � is the anapole polarizability given by

� = �+1 + �−2, �4.15�

where

�+1 = −
1

18
c�

0

�

dr�
0

�

dr�r2r��Q�0��r� 3P�0��r� �G+1
�0��r,r��

�P�0��r��
Q�0��r��

� �4.16�

and

�−2 = −
1

9
c�

0

�

dr�
0

�

dr�r2r��Q�0��r� 0 �G−2
�0��r,r��P�0��r��

Q�0��r��
� ,

�4.17�

with

G�
�0��r,r�� = g�++��

�0� �r,r�� g�+−��
�0� �r,r��

g�−+��
�0� �r,r�� g�−−��

�0� �r,r��
� �� = + 1,− 2�

�4.18�

being the symmetry-adapted generalized radial Dirac-
Coulomb Green functions for the problem at hand.

To perform the radial integrals in Eqs. �4.16� and �4.17�,
we shall make use of the following Sturmian expansion of
the generalized radial Dirac-Coulomb Green function:

G�
�0��r,r�� = 	

n=−�

�
1


n�
�0� − 1

Sn�
�0��r�

Tn�
�0��r�

�
��
n�

�0�Sn�
�0��r�� Tn�

�0��r�� � �� = + 1,− 2� ,

�4.19�

found by one of us in Ref. 23. Here


n�
�0� =

�n� + �� + Nn�

�1 + 1
, �4.20�

while

Sn�
�0��r� =� �1 + �1���n� + 2����n�!

2ZNn��Nn� − �����n� + 2���

� 2Zr

a0
���

e−Zr/a0
L�n�−1
�2���2Zr

a0
�

+
� − Nn�

�n� + 2��

L�n�
�2���2Zr

a0
�� �4.21a�

and

Tn�
�0��r� =� �1 − �1���n� + 2����n�!

2ZNn��Nn� − �����n� + 2���

� 2Zr

a0
���

e−Zr/a0
L�n�−1
�2���2Zr

a0
�

−
� − Nn�

�n� + 2��

L�n�
�2���2Zr

a0
�� �4.21b�

are the radial Dirac-Coulomb Sturmian functions, with
Ln

�	���� being the generalized Laguerre polynomial �35� �we
define L−1

�	�����0�. The “apparent principal quantum num-
ber” Nn�, appearing in Eqs. �4.20�, �4.21a�, and �4.21b�, is
defined as

Nn� = ± ���n� + ���2 + �	Z�2 = ± ��n�2 + 2�n��� + �2

�4.22�

�notice that Nn� may assume positive as well as negative
values�. The following sign convention is adopted in the
definition �4.22�: the plus sign should be chosen for n�0
and the minus one for n�0; for n=0 one chooses the plus
sign if ��0 and the minus sign if ��0. On inserting the
expansion �4.19� into Eq. �4.16�, making use of the formula
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�
0

�

d��	e−�Ln
������ =

��	 + 1���n + � − 	�
n!��� − 	�

�Re�	� � − 1� ,

�4.23�

and collecting terms with the same �n�, with no difficulty one
finds that

�+1 = 	c
a0

4

Z4

��1 + 1��2�1 + 1��2�1
2 + �1 − 2�

72
. �4.24�

Proceeding in the analogous way with Eq. �4.17�, after te-
dious calculations exploiting the definition of the generalized
hypergeometric series

pFqa1, . . . ,ap

b1, . . . ,bq
;z� =

��b1� ¯ ��bq�
��a1� ¯ ��ap�

�	
n=0

�
��a1 + n� ¯ ��ap + n�
��b1 + n� ¯ ��bq + n�

zn

n!

�4.25�

and the Gauss’ formula �35�

2F1a1,a2

b
;1� =

��b���b − a1 − a2�
��b − a1���b − a2�

�Re�b − a1 − a2� � 0� ,

�4.26�

one eventually arrives at the following result:

�−2 = 	c
a0

4

Z4
 ��1 + 2��2�1 + 1��2�1 + 3��2�1 + 5��2�1
2 + 2�1 − 3�

216�4�1 + 1�

−
��1 − 2����1 + �2 + 3����1 + �2 + 4�

288��1 + 1��4�1 + 1���2 − �1���2�1 + 1���2�2 + 1� 3F2�2 − �1 − 3,�2 − �1 − 2,�2 − �1

�2 − �1 + 1,2�2 + 1
;1�� . �4.27�

In principle, if Eqs. �4.24� and �4.27� are inserted into Eq. �4.15�, the task of evaluating the anapole polarizability � is
accomplished. However, the final result for � appears to be slightly simpler if the component �−2 is expressed in terms of the
generalized hypergeometric series

3F2�2 − �1 − 1,�2 − �1 − 1,�2 − �1

�2 − �1 + 1,2�2 + 1
;1� ,

which is the same 3F2 series which appears in the known formula for the dipole magnetizability �25,36,37� �and also in one of
the recently found representations of the dipole polarizability �38�� of the ground state of the Dirac one-electron atom. This
goal is most conveniently achieved in two steps. In the first step, we transform the 3F2 series appearing in Eq. �4.27� with the
aid of the relation �cf. Appendix D�

3F2a1,a2,a3

a3 + 1,b
;1� = −

a3

a1 − a3

��b���b − a1 − a2�
��b − a1���b − a2�

+
a1

a1 − a3
3F2a1 + 1,a2,a3

a3 + 1,b
;1� �Re�b − a1 − a2� � 0� . �4.28�

This yields

�−2 = 	c
a0

4

Z4
 ��1 + 1���1 + 2��2�1 − 1��2�1 + 1��2�1 + 3��2�1 + 5�
216�4�1 + 1�

−
��1 − 2��2��1 + �2 + 3�

144�4�1 + 1���2 − �1���2�1 + 1���2�2 + 1� 3F2�2 − �1 − 2,�2 − �1 − 2,�2 − �1

�2 − �1 + 1,2�2 + 1
;1�� . �4.29�

In the second step, the 3F2 series in Eq. �4.29� is transformed with the use of the formula �cf. again Appendix D�

3F2a1,a2,a3

a3 + 1,b
;1� = −

a3�a1a2 + �a1 + a2 − a3��b − a1 − a2 − 1��
�a1 − a3��a2 − a3�

��b���b − a1 − a2 − 1�
��b − a1���b − a2�

+
a1a2

�a1 − a3��a2 − a3� 3F2a1 + 1,a2 + 1,a3

a3 + 1,b
;1� �Re�b − a1 − a2� � 1� . �4.30�
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This results in

�−2 = 	c
a0

4

Z4
 ��1 + 1��2�1 + 1��2�1 + 3��4�1
2 + 9�1 + 14�

864

−
��1 − 2��4�1 + 1��2��1 + �2 + 2�

576��2 − �1���2�1 + 1���2�2 + 1�

� 3F2�2 − �1 − 1,�2 − �1 − 1,�2 − �1

�2 − �1 + 1,2�2 + 1
;1�� . �4.31�

Hence, upon inserting Eqs. �4.24� and �4.31� into Eq. �4.15�,
one eventually arrives at the following representation of the
anapole polarizability:

� = 	c
a0

4

Z4
 ��1 + 1��2�1 + 1��8�1
3 + 54�1

2 + 67�1 + 18�
864

−
��1 − 2��4�1 + 1��2��1 + �2 + 2�

576��2 − �1���2�1 + 1���2�2 + 1�

� 3F2�2 − �1 − 1,�2 − �1 − 1,�2 − �1

�2 − �1 + 1,2�2 + 1
;1�� . �4.32�

It seems worthwhile to investigate the nonrelativistic limit
of Eq. �4.32�. Since

�1 �
c→�

1, �2 �
c→�

2, �4.33�

and

3F20,0,1

2,5
;1� = 1, �4.34�

we obtain

� �
c→�9

8

�

me

a0
3

Z4 , �4.35�

which agrees with what may be inferred from the finding
reported by Lewis and Blinder �16, Eq. �29��.

Before concluding, we shall relate the above found ana-
pole moment t� t�1� to the electric �d� and magnetic �m�
dipole moments in the perturbed atomic state �3.8a�. To this
end, we observe that it follows from Eq. �4.14� that the Car-
tesian components of the anapole polarizability tensor T may
be written as

Tij
�c� = � 	

k��x,y,z�
�ijk�k �i, j � �x,y,z�� , �4.36�

where �ijk is the Levi-Civita completely antisymmetric sym-
bol and ��k� are the Cartesian components of the unit vector
� defined in Eq. �C6�. Thus, invoking Eqs. �4.10� and �4.13�,
we have

t�1� = − �4��0��� � F . �4.37�

The perturbing electric field F induces in the atom the elec-
tric dipole moment which, to the first order in F, is given by

d�1� = �4��0�	dF , �4.38�

with 	d being the static dipole polarizability; it has been
found �38� that, in terms of this particular 3F2 series which
appears in Eqs. �4.31� and �4.32�, one has

	d =
a0

3

Z4
−
�1��1 + 1��2�1 + 1��2�1

2 − 9�1 − 17�
36

+
��1 − 2�2�2��1 + �2 + 2�

24��2 − �1���2�1 + 1���2�2 + 1�

� 3F2�2 − �1 − 1,�2 − �1 − 1,�2 − �1

�2 − �1 + 1,2�2 + 1
;1�� .

�4.39�

Making use of Eq. �4.38�, and also of the relationship be-
tween the unit vector � and the magnetic dipole moment m�0�

of the atom in the unperturbed state �3.9�,

m�0� = −
2�1 + 1

3

B� �4.40�

�cf. Appendix C�, one finds that

t�1� =
3

2�1 + 1

�


B	d
m�0� � d�1�. �4.41�

Since it is not difficult to show that, to the first order in the
perturbing electric field F, it holds that

d � d�1�, m � m�0�, �4.42�

on combining Eqs. �4.5�, �4.9�, �4.41�, and �4.42�, one ob-
tains that, to the first order in the perturbing electric field, it
holds that

t �
3

2�1 + 1

�


B	d
m � d . �4.43�

In the nonrelativistic limit, exploiting Eqs. �4.33� and �4.35�
and the fact that

	d �
c→�9

2

a0
3

Z4 �4.44�

�this follows immediately from Eqs. �4.39�, �4.33�, and
�4.34��, Eq. �4.43� becomes

tnr �
1

2e
mnr � dnr �4.45�

�the suffix denotes the nonrelativistic limit�, which again
agrees with what may be inferred from the finding of Lewis
and Blinder �16, Eq. �9’��.

V. CONCLUSIONS

The Dirac-Coulomb Sturmian technique �23,24� allows
one to find a series representation of the generalized Dirac-
Coulomb Green function. In this paper, we have exploited
this fact to derive exact analytical expressions for the first-
order Stark-induced magnetic anapole moment t�1� and for
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the associated anapole polarizability � of the Dirac one-
electron atom in the ground state. We have managed to write
down the expression for � in the form which involves the
same 3F2 function with the unit argument which appears in
the well-known representation of the dipole magnetizability
�25,36,37� �and also in one of the recently found representa-
tions of the dipole polarizability �38�� of the relativistic hy-
drogenlike atom in the ground state. In the nonrelativistic
limit, our results agree with the findings of Lewis and
Blinder �16�.

APPENDIX A: VARIOUS EQUIVALENT EXPRESSIONS
FOR THE ANAPOLE MOMENT VECTOR

We start with the observation that if j�r� is divergenceless,

� · j�r� = 0, �A1�

and such that

lim
r→�

r5j�r� = 0, �A2�

then the following relationship holds:

�
R3

d3r�r · j�r��r = −
1

2
�

R3
d3rr2j�r� . �A3�

To prove this statement, consider the integral

X = �
R3

d3r � · �r2j�r�r� . �A4�

With the aid of the Gauss’ divergence theorem, it may be
transformed to the form

X = lim
r→�

r5�
4�

d2nr�nr · j�r��nr, �A5�

hence, in virtue of the assumption �A2�, it follows that

X = 0. �A6�

On the other hand, carrying out the differentiation under the
integral sign in Eq. �A4�, and exploiting the facts that

�r2 = 2r, � r = I �A7�

�I is the unit dyadic�, one has

X = 2�
R3

d3r�r · j�r��r + �
R3

d3rr2�� · j�r��r + �
R3

d3rr2j�r� .

�A8�

In virtue of the assumption �A1�, the second integral on the
right-hand side of the above equation vanishes, which yields

X = 2�
R3

d3r�r · j�r��r + �
R3

d3rr2j�r� . �A9�

On combining Eqs. �A6� and �A9�, the identity �A3� follows
immediately.

Rewriting the definition

t =
1

2
�

R3
d3r�r · j�r��r �A10�

in the form

t =
1

2
��

R3
d3r�r · j�r��r +

1

2
�1 − ���

R3
d3r�r · j�r��r ,

�A11�

where � is an arbitrary complex number, and applying sub-
sequently the identity �A3� to the second integral on the
right-hand side, transforms Eq. �A11� into

t =
1

4
�

R3
d3r�2��r · j�r��r − �1 − ��r2j�r�� . �A12�

Various equivalent expressions for the anapole moment
found in the literature may be obtained from Eq. �A12� by
making there a suitable choice of �. In particular, the expres-
sion �A10�, adopted by us in Sec. II as the definition of the
anapole moment, corresponds to the choice �=1
�7,10,28,39�. For �=0, from Eq. �A12� one has
�1–6,10,11,13–16,20,28,39–41�

t = −
1

4
�

R3
d3rr2j�r� , �A13�

choosing �= 1
5 yields �8,9,17,28,34,42–46�

t =
1

10
�

R3
d3r��r · j�r��r − 2r2j�r�� , �A14�

while setting �= 1
3 results in �22,47�

t =
1

6
�

R3
d3r��r · j�r��r − r2j�r�� . �A15�

The latter expression may be rewritten, perhaps more el-
egantly, as �18,39,48�

t =
1

6
�

R3
d3rr � �r � j�r�� . �A16�

APPENDIX B: SPHERICAL SPINORS

Unfortunately, in the physical and mathematical literature
there are no unique phase conventions for defining the
spherical harmonics and the spherical spinors. On the other
hand, recurrence relations linking the spherical spinors with
various indices appear to be phase-dependent. Therefore, to
avoid any misunderstandings, in this appendix we define the
spherical spinors �as well as the spherical harmonics� used in
this paper, and list these particular recurrence relations
obeyed by them which have been exploited by us.

The spherical spinors are defined as
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��
�nr� =�sgn�− ���� +
1

2
− 


2� + 1
Yl,
−1/2�nr�

�� +
1

2
+ 


2� + 1
Yl,
+1/2�nr�

� ,

�B1�

where �= ±1, ±2, . . ., 
=−���+ 1
2 ,−���+ 3

2 , . . . , ���− 1
2 , and

l � l��� = �� +
1

2
� −

1

2
= �− � − 1 for � � 0

� for � � 0,
�

�B2�

while Ylm�nr� is the spherical harmonics defined as

Ylm�nr� =�2l + 1

4�

�l − m�!
�l + m�!

Pl
m�cos ��eim�, �B3�

with l=0,1 ,2 , . . ., m=−l ,−l+1, . . . , l, and with Pl
m��� being

the associated Legendre function,

Pl
m��� =

�− �m

2ll!
�1 − �2�m/2dl+m��2 − 1�l

d�l+m �− 1 � � � 1� .

�B4�

The definition �B3� and �B4� conforms to the Condon-
Shortley phase convention �49�.

The following properties of the spherical spinors have
proved useful in the course of preparing the present work:

�
4�

d2nr��

† �nr����
��nr� = ���

�, �B5�

e0 · nr��
�nr� = −
2


4�2 − 1
�−�
�nr� +

�� +
1

2
�2

− 
2

�2� + 1�
��+1,
�nr� +

�� −
1

2
�2

− 
2

�2� − 1�
��−1,
�nr� , �B6�

e±1 · nr��
�nr� = ± �2

��2 − 
 ±
1

2
�2

4�2 − 1
�−�,
±1�nr� +

�� ± 
 +
1

2
�� ± 
 +

3

2
�

�2�2� + 1�
��+1,
±1�nr�

−

�� � 
 −
1

2
�� � 
 −

3

2
�

�2�2� − 1�
��−1,
±1�nr� , �B7�

e0 · ���
�nr� = −
2


2� + 1
��
�nr� − 2

�� +
1

2
�2

− 
2

�2� + 1�
�−�−1,
�nr� , �B8�

e±1 · ���
�nr� = ± �2

��2 − 
 ±
1

2
�2

2� + 1
��,
±1�nr� − �2

�� ± 
 +
1

2
�� ± 
 +

3

2
�

2� + 1
�−�−1,
±1�nr� , �B9�

e0 · �nr � ����
�nr� = i
4
�

4�2 − 1
�−�
�nr� + i

�� +
1

2
�2

− 
2

�2� + 1�
��+1,
�nr� − i

�� −
1

2
�2

− 
2

�2� − 1�
��−1,
�nr� , �B10�

e±1 · �nr � ����
�nr� = � i2�2�

��2 − 
 ±
1

2
�2

4�2 − 1
�−�,
±1�nr�

+ i

�� ± 
 +
1

2
�� ± 
 +

3

2
�

�2�2� + 1�
��+1,
±1�nr� + i

�� � 
 −
1

2
�� � 
 −

3

2
�

�2�2� − 1�
��−1,
±1�nr� .

�B11�
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The Pauli vector � appearing in Eqs. �B8�–�B11� is defined
as

� = �xnx + �yny + �znz, �B12�

with

�x = 0 1

1 0
�, �y = 0 − i

i 0
�, �z = 1 0

0 − 1
� .

�B13�

It is to be emphasized that relations �B8�–�B11� have to be
modified if the matrix �y is defined, as it occasionally hap-
pens in the literature, as the negative of that in Eq. �B13�.

APPENDIX C: MAGNETIC DIPOLE MOMENT OF THE
DIRAC ONE-ELECTRON ATOM IN THE

UNPERTURBED STATE (3.9)

The magnetic dipole moment for a stationary bounded
electric current distribution characterized by the density j�r�
is defined as

m =
1

2
�

R3
d3rr � j�r� . �C1�

For the hydrogenlike atom in the unperturbed energy eigen-
state �3.9� it holds that

j�r� � j�0��r� = − ec��0�†�r����0��r� �C2�

and Eq. �C1� becomes

m�0� = −
1

2
ec�

R3
d3r��0�†�r�r � ���0��r� �C3�

�the superscript added at m corresponds to the superscript at
��0��r��. Integration over angular variables in Eq. �C3� may
be carried out with the aid of the identities �B10� and �B11�;
this results in

m�0� = m�0�� , �C4�

where

m�0� =
2

3
ec�

0

�

drrP�0��r�Q�0��r� , �C5�

while

� = 2 Re�a1/2
* a−1/2�nx + 2 Im�a1/2

* a−1/2�ny

+ ��a1/2�2 − �a−1/2�2�nz �C6�

is the vector of a unit length �this may be verified after ex-
ploiting the normalization constraint �3.10��. The radial inte-
gral in Eq. �C5� is easily performed after making use of the
definitions �3.7a� and �3.7b�; this yields

m�0� = −
2�1 + 1

6

e�

me
, �C7�

or equivalently, in terms of the Bohr magneton 
B
=e� /2me,

m�0� = −
2�1 + 1

3

B. �C8�

Because of the normalization constraint �3.10�, the coef-
ficients a±1/2 may be parametrized by two real variables �
and �, chosen to satisfy 0���� and 0���2�, according
to

a1/2 = ei� cos��/2�, a−1/2 = ei� sin��/2� . �C9�

Making use of this parametrization in Eq. �C6� gives

� = sin � cos �nx + sin � sin �ny + cos �nz, �C10�

which shows that � and � may be interpreted as the polar
and azimuthal angles, respectively, specifying the orientation
of the unit vector � in the spherical coordinate system �with
the polar and azimuthal axes of the latter directed along the
Cartesian versors nz and nx, respectively�.

APPENDIX D: DERIVATIONS OF RELATIONS (4.28) AND
(4.30)

Consider the generalized hypergeometric series

3F2�a1 ,a2 ,a3 ;a3+1 ,b ;z�. Specializing the definition �4.25�
to this particular case, making use of the relationship

��a1 + n���a3 + n� = −
��a1 + n���a3 + 1 + n�

a1 − a3

+
��a1 + 1 + n���a3 + n�

a1 − a3
�D1�

and of the property

3F2a1,a2,a3 + 1

a3 + 1,b
;z� = 2F1a1,a2

b
;z� , �D2�

one finds that the following recurrence relation holds:

3F2a1,a2,a3

a3 + 1,b
;z� = −

a3

a1 − a3
2F1a1,a2

b
;z�

+
a1

a1 − a3
3F2a1 + 1,a2,a3

a3 + 1,b
;z� .

�D3�

Shifting in the above equation from a2 to a2+1, interchang-
ing in the emerging expression a1 with a2, and exploiting the
result to transform the right-hand side of Eq. �D3� leads to

3F2a1,a2,a3

a3 + 1,b
;z� = −

a3

a1 − a3
2F1a1,a2

b
;z�

−
a1a3

�a1 − a3��a2 − a3� 2F1a1 + 1,a2

b
;z�

+
a1a2

�a1 − a3��a2 − a3�

�3F2a1 + 1,a2 + 1,a3

a3 + 1,b
;z� . �D4�
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Specializing Eq. �D3� to the case z=1 and exploiting the
Gauss’ formula �4.26� yields

3F2a1,a2,a3

a3 + 1,b
;1� = −

a3

a1 − a3

��b���b − a1 − a2�
��b − a1���b − a2�

+
a1

a1 − a3
3F2a1 + 1,a2,a3

a3 + 1,b
;1�

�Re�b − a1 − a2� � 0� , �D5�

i.e., Eq. �4.28�. Proceeding in the same way with Eq. �D4�
gives

3F2a1,a2,a3

a3 + 1,b
;1� =

−
a3�a1a2 + �a1 + a2 − a3��b − a1 − a2 − 1��

�a1 − a3��a2 − a3�

�
��b���b − a1 − a2 − 1�

��b − a1���b − a2�
+

a1a2

�a1 − a3��a2 − a3�

�3F2a1 + 1,a2 + 1,a3

a3 + 1,b
;1�

�Re�b − a1 − a2� � 1� , �D6�

i.e., Eq. �4.30�.
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