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For the metastable states of antiprotonic helium atoms, 3He+p̄, the fine and hyperfine splittings of energy
levels are calculated within the framework of the Breit-Pauli Hamiltonian. The latter represents the �2 order
relativistic corrections to the nonrelativistic energy. Results include as well the leading �3 order contribution
due to the anomalous magnetic moment of electron. The final relative accuracy of the hyperfine intervals is
estimated to be about 5�10−5.
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I. INTRODUCTION

During the past ten years, the experimental accuracy in
spectroscopic measurements of transition lines between
metastable states in an antiprotonic helium atom has been
increased �1,2� from few parts per million �ppm� to several
parts per billion �ppb� �3� and further improvement to a sub-
ppb lever is expected �see a review �4� for details�. A one ppb
level means that the experimental results become sensitive to
the uncertainty in the �anti�proton/electron mass ratio �5�. At
this level of precision, information about sublevels of the
fine and hyperfine structure is crucial for proper determina-
tion of the “central” spin-averaged transition frequency.

Furthermore, the microwave experiments for direct mea-
surement of the hyperfine structure �HFS� in antiprotonic
helium-4 atoms have been carried out recently �6�. The aim
of these experiments is to improve the value of the magnetic
moment of an antiproton known so far with rather poor ac-
curacy of 0.3%. In a forthcoming series of experiments, it is
expected to obtain precise data on the hyperfine intervals
both in helium-4 and helium-3 atoms.

So far, an extensive study of the HFS of the helium-4
states has been carried out in Refs. �7–9�. For the helium-3
case, however, only one publication is available �10�, where
results have been obtained with the use of the coupled rear-
rangement channel variational method of Gaussian type. The
purpose of this work is to present an independent and ex-
tended calculation of the hyperfine structure in 3He+p̄ atoms.

In what follows, atomic units are used throughout.

II. VARIATIONAL WAVE FUNCTION

In our calculations, we use the exponential variational ex-
pansion, which has been discussed in various ways in a va-
riety of works �11–13�. Details and strategy of particular
choice of the variational nonlinear parameters and basis
structure that has been adopted in the present work can be
found in Ref. �14� and those typical for the antiprotonic he-
lium atoms in Ref. �15�.

Briefly, the wave function for a state with a total orbital
angular momentum L and of a total spatial parity �= �−1�L is
expanded as follows:

��r1,r2� = �
l1+l2=L

YLM
l1l2�r̂1, r̂2�Gl1l2

L� �r1,r2,r12� ,

Gl1l2
L� �r1,r2,r12� = �

n

Cne−�nr1−�nr2−�nr12, �1�

where r1 is a position vector of an antiproton and r2 is a
position vector of an electron with respect to a nucleus �he-
lion�; parameters in exponents are generated in a pseudoran-
dom way,

�n = �� 1
2n�n + 1��p���A2 − A1� + A1� ,

�n = �� 1
2n�n + 1��p���B2 − B1� + B1� ,

�n = �� 1
2n�n + 1��p���C2 − C1� + C1� . �2�

Here, �x� denotes the fractional part of x, and p�, p�, or p� are
some prime numbers. The advantage of these simple genera-
tors of pseudorandom numbers is the ability to reproduce
results of previous variational calculations.

However, when exponents �n, �n, and �n are real, the
method reveals slow convergence for molecular type Cou-
lomb systems. In order to cure this problem, one may switch
to complex exponents and then use instead of �1� the follow-
ing expansion:

��r1,r2,r12� = �
n=1

N

�Cn Re�e−�nr1−�nr2−�nr12�

+ Dn Im�e−�nr1−�nr2−�nr12�� . �3�

For the antiprotonic helium metastable states, the varia-
tional solution with this basis set provides an accuracy of
about 10−10–10−12 a.u. for the nonrelativistic energies at
moderate basis lengths of N=1000–1200.

III. BREIT-PAULI HAMILTONIAN

The leading correction to the nonrelativistic energy is the
�2 order relativistic correction determined by the Breit-Pauli
Hamiltonian. It is derived in many different ways �see, for
example, Ref. �16,17�� for a system with a number of par-
ticles greater than two. For a composite particle, the finite
size electromagnetic structure plays an important role, the*Electronic address: korobov@theor.jinr.ru
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interaction of such a particle with electromagnetic field is
discussed in Ref. �18�. In a more recent paper by Kinoshita
and Nio �19�, it is shown using the nonrelativistic QED
theory how the electromagnetic structure of nuclei can be
incorporated into the Breit-Pauli Hamiltonian in a proper
way.

The spin dependent part of the Hamiltonian for a system
of particles of spin 1/2 has the following form:

HB = −
e2

c2�
j�i

ZiZjcS
�j��rij � p j�s j

2mj
2rij

3

−
e2

c2�
i�j

ZiZj�cF
�i��rij � p j�si − cF

�j��rij � pi�s j�
mimjrij

3

+ �
i�j
	
�i� j

rij
3 − 3

��irij��� jrij�
rij

5 � −
8�

3
�i� j	�rij�� .

�4�

Here �i= �cF
�i�Zi /2mic��i is an operator of magnetic moment

and coefficients cF and cS are defined as

cF
�i� = 1 + 
i,

cS
�i� = 1 + 2
i,

where 
i is an anomalous magnetic moment of a particle.
In the calculations presented below, the following values

of physical constants have been adopted: 
h=−4.184 153,

p̄=1.792 847 337, and ae=1.159 652 186�10−3.

IV. EFFECTIVE HAMILTONIAN

The effective Hamiltonian, which arises from Eq. �4�, has
a form of spin-spin and spin-orbital angular momentum in-
teractions

Heff = E1�L · se� + E2�L · sp̄� + E3�L · sh� + E4�se · sp̄�

+ E5�se · sh� + E6�sp̄ · sh� + E7�2L�L + 1��s1 · s2�

− 3��L · s1� + �L · s2��� + E8�2L�L + 1��s1 · s3�

− 3��L · s1� + �L · s3��� + E9�2L�L + 1��s2 · s3�

− 3��L · s2� + �L · s3��� . �5�

It is scalar and couples eight states with the same Jz. In fact,
it is a block diagonal matrix with two one-dimensional
blocks for the states with J=L±3/2 and two three-
dimensional blocks for the states with J=L±1/2. The matrix
elements of the Hamiltonian �5� can be easily obtained by
using the algebra of angular momentum, the necessary for-
mulas can be found, for example, in Ref. �20�.

Coefficients Ei are obtained numerically by evaluating op-
erators from �4�, which depend on the spatial degrees of
freedom. An analytical integration of the matrix elements is
then reduced to integrals of a form

�lmn��,�,�� =  r1
l r2

mr12
n e−�r1−�r2−�r12dr1dr2dr12,

where some of the indices �l ,m ,n� may acquire negative
values up to −4. The integrals in this case are divergent, but
in operators they are encountered in such combinations that
the final expression is finite, thus the divergent terms are
canceled out. In our calculation, we follow the numerical
scheme described in Ref. �21�. In a more transparent way, the

TABLE I. Coefficients of the effective Hamiltonian �in 10−12 a.u.�.

�n , l� E1 E2 E3 E4 E5 E7 E8 E9

�31,30� −75 333.77 2013.787 −1021.587 −76 680.56 −514 257.6 −11.550 23 0.948 421 −0.541 187

�32,31� −72 874.55 1588.638 −819.5040 −70 659.35 −553 210.9 −11.354 01 0.910 356 −0.406 011

�33,31� −68 427.31 1388.983 −719.5835 −62 325.06 −614 396.2 −11.763 11 0.918 418 −0.356 565

�34,31� −63 637.48 1214.753 −631.6302 −54 389.84 −675 656.5 −11.957 38 0.916 723 −0.313 097

�33,32� −70 128.41 1251.272 −657.8301 −64 469.23 −595 018.3 −11.110 67 0.871 443 −0.305 411

�34,32� −65 320.74 1091.152 −575.9888 −56 257.42 −65 8792.1 −11.357 13 0.872 926 −0.267 535

�35,32� −60 294.43 951.0382 −503.7652 −48 631.25 −722 061.3 −11.395 05 0.865 490 −0.234 114

�36,32� −55 171.96 829.4708 −440.6018 −41 700.88 −783 188.0 −11.232 35 0.848 660 −0.204 885

�34,33� −67 068.28 982.6191 −527.7282 −58 150.81 −639 716.2 −10.813 81 0.831 493 −0.230 048

�35,33� −61 911.97 854.4058 −460.6073 −50 159.09 −705 419.5 −10.894 49 0.826 243 −0.200 937

�36,33� −56 646.49 742.8777 −401.6934 −42 902.35 −769 369.8 −10.772 88 0.811 598 −0.175 379

�37,33� −51 422.86 646.4982 −350.3799 −36 473.79 −830 140.4 −10.471 61 0.787 425 −0.153 102

�35,34� −63 672.35 768.2345 −422.5347 −51 752.25 −687 233.6 −10.456 88 0.790 641 −0.173 283

�36,34� −58 210.15 666.0303 −367.5496 −44 102.20 −754 036.6 −10.372 59 0.778 332 −0.150 889

�37,34� −52 769.96 577.8712 −319.6835 −37 328.64 −817 666.0 −10.101 16 0.756 864 −0.131 378

�38,34� −47 508.82 502.3901 −278.3759 −31 480.82 −876 809.4 −9.676 596 0.727 296 −0.114 521
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generating functions �say, �−4,0,0�� ,� ,��, etc.� have been ob-
tained in Ref. �22�.

Results of calculation for the states of the antiprotonic
helium atom, 3He+p̄, are presented in Table I. Coefficient E6
is defined by the expectation value �	�rhp̄��, which is for-
mally nonzero for the three-body system. But due to a large
orbital momentum of an antiprotonic orbital, L�30, it is
negligibly small and is not shown in the Table I.

V. SPIN FUNCTIONS

We adopt the following coupling scheme for spins:
F=L+se, G=F+sh, and J=G+sp̄, since operators F and G
provide good approximate quantum numbers.

A general hyperfine substate can be expressed as

��JJz� = �
Lz+�e+�h+�p̄=Jz

CLz�e�h�p̄
��vLLz��se�e��sh�h��sp̄�p̄�� .

�6�

States corresponding to the adopted coupling of angular
momenta are expressed in terms of the Clebsch-Gordan
coefficients

�vLFGJJz� = �
�e,�h,�p̄

CLz�e�h�p̄

LFGJJz � ��vLLz��se�e��sh�h��sp̄�p̄�� ,

�7�

where

CLz�e�h�p̄

LFGJJz = CLLzse�e

FFz CFFzsh�h

GGz CGGzsp̄�p̄

JJz .

For this basis set of spin functions, the off-diagonal matrix
elements of the effective Hamiltonian are small. It means

that the spin function �6� of a hyperfine substate is approxi-
mately described by the appropriate function defined by �7�.
Still, the exact solution is a mixture of states of the same J.

Owing to the property that the effective Hamiltonian
is about diagonal, it is convenient to introduce the following
notation. Say, the state with approximate quantum numbers
F=L+se and G=F−sh and total angular momentum
J=G−sp̄ will be denoted by �� � � and similarly for other
states.

VI. RESULTS

Numerical results for the energy shift of the sublevel rela-
tive to the “spin-averaged” energy are presented in Table II.
They are obtained by direct numerical diagonalization of the
effective �8�8� Hamiltonian �5� discussed above.

It is worth noting that the calculations presented here in-
volve the consideration of only the leading order terms to the
fine and hyperfine structure of the states of the antiprotonic
helium atom, 3He+p̄. Since neither corrections of relativistic
nature �Z��2, nor radiative ones of order ��Z�� have been
included here, the relative accuracy of obtained hyperfine
intervals is limited by about 50 ppm. The numerical errors
are estimated to be smaller.
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TABLE II. Fine and hyperfine splitting �in MHz� of energy levels for the states of the 3He+p̄ atom.

�n , l�  � � �� � �� �� ���

�31,30� −8244.32 −8542.09 −6502.11 −6788.68 8852.29 8334.72 7187.64 6681.28

�32,31� −8312.40 −8560.39 −6503.83 −6742.89 8899.94 8485.12 7044.81 6638.92

�33,31� −7953.77 −8192.15 −6027.76 −6258.06 8569.25 8229.10 6428.77 6096.71

�34,31� −7560.84 −7790.95 −5531.16 −5753.47 8222.34 7946.91 5782.51 5514.87

�33,32� −8335.16 −8546.72 −6451.11 −6655.35 8914.61 8588.80 6859.44 6540.94

�34,32� −7927.29 −8134.27 −5925.46 −6125.45 8548.73 8287.67 6191.68 5937.61

�35,32� −7496.75 −7698.74 −5395.39 −5590.13 8180.26 7974.22 5506.65 5307.86

�36,32� −7053.94 −7249.99 −4878.36 −5066.22 7821.35 7660.59 4820.24 4667.66

�34,33� −8307.74 −8493.34 −6341.56 −6520.84 8891.49 8643.06 6624.01 6381.90

�35,33� −7849.11 −8033.31 −5769.39 −5947.08 8490.19 8297.06 5904.09 5717.48

�36,33� −7377.36 −7558.59 −5208.59 −5382.45 8097.73 7950.13 5180.35 5040.12

�37,33� −6906.66 −7083.00 −4679.06 −4846.51 7729.48 7617.98 4471.78 4369.17

�35,34� −8225.21 −8392.92 −6173.20 −6335.01 8826.40 8645.20 6331.89 6156.58

�36,34� −7717.53 −7885.42 −5561.50 −5722.73 8393.16 8257.99 5563.50 5435.00

�37,34� −7209.07 −7374.66 −4979.90 −5137.37 7982.75 7883.88 4808.25 4717.51

�38,34� −6715.16 −6876.00 −4447.97 −4598.58 7610.65 7539.09 4085.96 4024.62
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