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Highly accurate nonrelativistic ground-state wave function and energy of the lithium atom are obtained in
the Hylleraas basis set. The leading relativistic corrections, as represented by the Breit-Pauli Hamiltonian, are
obtained in fair agreement with the former results. The calculational method is based on analytical evaluation
of Hylleraas integrals with the help of recursion relations.
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I. INTRODUCTION

Theoretical predictions for the energy levels of light few
electron atoms are much less accurate than for the hydro-
genic systems. It is for two reasons. The nonrelativistic wave
function has to include electron correlations to a high degree
of accuracy. This can be achieved by using the Hylleraas
basis set, but it is quite difficult to evaluate integrals with
Hylleraas functions for three and more electrons. The second
reason is the difficulty in the accurate treatment of relativistic
and radiative corrections. The commonly used Dirac-
Coulomb Hamiltonian for few electron atoms does not in-
clude relativistic corrections properly as it cannot be derived
from quantum electrodynamic theory and its continuous
spectrum ranges from −� to +�. One of the possible ap-
proaches is the derivation of an effective Hamiltonian �1�
within the so-called nonrelativistic quantum electrodynamic
�NRQED� theory. Matrix elements of this Hamiltonian give
exact correction to the energy at specified order in the fine-
structure constant �. However, this Hamiltonian becomes
quite complicated at higher orders and, for example, m�6

corrections have been obtained for few low-lying states of
helium only �2,3�, not for lithium or beryllium atoms.

Theoretical predictions for light hydrogenlike atoms are at
present limited by uncertainty in higher-order two-loop elec-
tron self-energy corrections �4�, which is a few kHz for the
1S state. For helium-like atoms predictions are approxi-
mately 103 times less accurate. Since the nonrelativistic
wave function was computed very accurately using Hylleraas
�5� or exponential basis sets �6�, the uncertainty in its levels
comes mainly from the unknown m�7 terms. These correc-
tions are currently under investigation in the context of he-
lium 23PJ fine splitting. For lithium atoms, the Hylleraas
functions give very accurate nonrelativistic wave function
and energies �7�, but the precise calculation of three-electron
integrals with Hylleraas functions is very time consuming
�8,9�, and so far no results for m�6 corrections have been
obtained. For the beryllium atom the most accurate results
have been obtained with explicitly correlated Gaussian func-
tions �10�. Although it was possible to calculate accurately
the leading relativistic and QED corrections �11�, the final

accuracy is limited by the nonrelativistic energy. Moreover,
this basis cannot be used for higher-order corrections since
the Gaussian wave functions do not fulfill the cusp condition.

So far the most accurate results for various states of the
lithium atom were obtained by Yan and Drake in Ref. �7�.
Here, we present even more accurate results for the lithium
ground state, as a demonstration of an analytic method to
compute the integrals with Hylleraas functions �12�. This
method is based on recursion relations between integrals
with different powers of electron-nucleus and interelectron
distances, which are fast and numerically stable for generat-
ing large basis sets. Our result for the ground-state energy

E = − 7.478 060 323 904 1�−50
+10� �1�

is significantly below the previous one, obtained in Ref. �7�,
which is E=−7.478 060 323 650 3�71�. As a further applica-
tion of the analytic approach, we obtain the leading relativ-
istic corrections to the binding energy by the calculation of
the expectation value of the Breit-Pauli Hamiltonian in Eq.
�13�. For this we used recursion relations for extended Hyl-
leraas integrals with 1/rij

2 and 1/ri
2 terms. They have been

derived in Ref. �13� and in this work respectively.
In the next section we construct the nonrelativistic wave

function, similarly to Ref. �7�, and obtain the ground-state
nonrelativistic energy and the wave function. In Sec. III we
compute the leading relativistic correction as given by the
Breit-Pauli Hamiltonian. In Sec. IV we derive recursion re-
lations for Hylleraas integrals containing 1/ri

2, which among
others, are necessary for relativistic matrix elements. In Sec.
V we summarize our result and present prospects for calcu-
lation of higher-order terms as well as the calculation of
Hylleraas integrals for four and more electrons.

II. NONRELATIVISTIC WAVE FUNCTION AND ENERGY

In the construction of the wave function we closely follow
the works of Yan and Drake in Ref. �7�. The ground-state
wave function � is expressed as a linear combination of �,
the antisymmetrized product of � and the spin function �,

� = A���r�1,r�2,r�3��� , �2�

��r�1,r�2,r�3� = e−w1r1−w2r2−w3r3r23
n1r31

n2r12
n3r1

n4r2
n5r3

n6, �3�
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� = ��1���2���3� − ��1���2���3� , �4�

with all ni non-negative integers and wi�R+. The matrix
element of the Hamiltonian H

H = �
a=1

3 � p�a
2

2
−

Z�

ra
� + �

a	b=1

3
�

rab
, �5�

or of any spin independent operator can be expressed after
eliminating spin variables, as

��	H	��
 = �2��1,2,3� + 2��2,1,3� − ��3,1,2� − ��2,3,1�

− ��1,3,2� − ��3,2,1�	H	���1,2,3�
 . �6�

In this way the calculation of this matrix elements is brought
to Hylleraas integrals, namely the integrals with respect to ri
of the form

f�n1,n2,n3,n4,n5,n6� =� d3r1

4

� d3r2

4

� d3r3

4

e−w1r1−w2r2−w3r3

�r23
n1−1r31

n2−1r12
n3−1r1

n4−1r2
n5−1r3

n6−1, �7�

with non-negative integers ni. These are performed analyti-
cally for n1 ,n2 ,n3=0 ,1 �14� and by recursion relations for
larger ni using formulas derived in Ref. �12�.

The total wave function is generated from all � in Eq. �3�
with ni satisfying the condition

�
i=1

6

ni � 
 , �8�

for 
 between 3 and 12. For each 
 we minimize energy
with respect to the free parameters wi in Eq. �3�. We noticed
that the use of only one set of wi’s does not lead to accurate
results, therefore, following Yan and Drake �7�, we divide the
whole basis set into five sectors, each one with its own set of
wi’s. This division goes as follows �7�:

sector 1: all n3, n1 = 0, n2 = 0;

sector 2: all n3, n1 = 0, n2 � 0;

sector 3: all n3, n1 � 0, n2 = 0;

sector 4: n3 = 0, n1 � 0, n2 � 0;

sector 5: n3 � 0, n1 � 0, n2 � 0;

To avoid numerical instabilities, within each sector we drop
the terms with n4	n5 �or n4�n5� and for n4=n5 drop terms
with n1	n2 �or n1�n2�. This division allows for a signifi-
cant improvements of nonrelativistic energies by optimiza-
tion of all five sets of wi’s. These nonlinear parameters are
obtained by Newton’s method of searching zeros using ana-
lytic derivatives

�E

�w
= 2��
H
 ��

�w
� − 2E��
 ��

�w
� . �9�

In the numerical calculations, we use sextuple precision
for recursion relations and quadruple precision for all other
arithmetics to obtain the wave function and the energy up to

=12. The results obtained for the ground-state energies are
presented in Table I. The next-to-last row is a result of ex-
trapolation to infinite length of the basis set, and the last row
shows previous results of Yan and Drake �7�. The result for
the nonrelativistic energy is significantly below the previous
estimate �7� and indicates that extrapolation to infinite basis
length does not always give the right result. In the same table
we present results for the Dirac � functions, which also differ
from previous results in Ref. �15�. We observe that the num-
ber of significant digits for Dirac � is increased by using
Drachman formulas �16�, namely

4
��	�3�rab�	�
 = 2��
 1

rab
�E� − V�
��

− �
c
��� c�
 1

rab

�� c�� , �10�

TABLE I. Ground-state nonrelativistic energies and expectation values of Dirac � functions obtained
using Drachman formulas �16� for various basis lengths.


 No. of terms E�
� �
a

�3�ra� �
a	b

�3�rab�

3 50 �7.477 981 524 089 7 13.843 446 803 98 0.544 164 351 92

4 120 �7.478 052 334 642 2 13.842 288 641 67 0.544 331 564 16

5 256 �7.478 059 463 915 8 13.842 509 174 63 0.544 327 870 45

6 512 �7.478 060 208 663 7 13.842 637 966 67 0.544 325 260 63

7 918 �7.478 060 310 362 9 13.842 606 662 38 0.544 324 788 85

8 1589 �7.478 060 320 507 6 13.842 608 240 76 0.544 324 697 02

9 2625 �7.478 060 323 450 1 13.842 610 098 57 0.544 324 629 45

10 4172 �7.478 060 323 775 0 13.842 610 698 67 0.544 324 627 57

11 6412 �7.478 060 323 861 0 13.842 610 779 19 0.544 324 631 50

12 9576 �7.478 060 323 889 7 13.842 610 781 06 0.544 324 632 05

� � −7.478 060 323 904 1�−50
+10� 13.842 610 783 46�100� 0.544 324 633 96�50�

Refs. �7,15� � �7.478 060 323 650 3�71� 13.842 609 642 �55� 0.544 329 79�31�
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4
��	�3�ra�	�
 = 4��
 1

ra
�E� − V�
��

− 2�
c
��� c�
 1

ra

�� c�� , �11�

where V is a total potential energy in Eq. �5�.

III. LEADING RELATIVISTIC CORRECTION TO
BINDING ENERGY

The leading relativistic corrections to energy levels are
given by the expectation values of the Breit-Pauli Hamil-
tonian H�4�,

H�4� = �
a
�−

p�a
4

8m3 +

Z�

2m2 �3�ra� +
Z�

4m2�� a ·
r�a

ra
3 � p�a�

+ �
a	b

�
b
�−


�

m2 �3�rab� −
�

2m2 pa
i � �ij

rab
+

rab
i rab

j

rab
3 �pb

j

−
2
�

3m2 �� a · �� b�3�rab� +
�

4m2

�a
i �b

j

rab
3 ��ij − 3

rab
i rab

j

rab
2 �

+
�

4m2rab
3 �2��� a · r�ab � p�b − �� b · r�ab � p�a�

+ ��� b · r�ab � p�b − �� a · r�ab � p�a��� . �12�

For states with vanishing angular momentum L and spin S
=1/2, the expectation value is simplified to the form

E�4� = ��	H�4�	�
 =��
a
�−

p�a
4

8m3 +

Z�

2m2 �3�ra��
+ �

a	b
�

b
�
�

m2 �3�rab� −
�

2m2 pa
i � �ij

rab
+

rab
i rab

j

rab
3 �pb

j�� .

�13�

E�4� has already been obtained in Refs. �15,17�. Calculations
of these matrix elements involves the usual Hylleraas inte-
grals with all ni non-negative and extended integrals, namely
with one parameter ni equal to −1. The direct numerical
method to calculate these integrals was presented in Refs.
�8,9�. Here we apply the analytic approach. Recursion rela-
tions for the case of n1 or n2 or n3 equal to −1 have been
obtained in Ref. �13�. Hylleraas integrals involving n4 or n5
or n6 equal to −1 can in principle be obtained by the integra-
tion of the usual Hylleraas integral with respect to the corre-
sponding parameter wi �13�. However, some recursion rela-
tions may become unstable, for example in the case of n4=
−1 the recursion in n1is numerically unstable for large w1. To
avoid this problem we derive in the next section stable re-
cursion relations for extended Hylleraas integrals with ni=
−1 for i=4,5 ,6. Numerical results for matrix elements of the
Breit Hamiltonian using these recursion relations has been
presented in Tables I and II. One observes that the lowest
convergence is for the −p4 /8 term, and in spite of the differ-
ences for separate matrix elements, the total relativistic
correction is in good agreement with the former result in
Ref. �15�.

IV. RECURSION RELATIONS FOR THREE-ELECTRON
EXTENDED HYLLERAAS INTEGRAL WITH 1/r1

2

In the former section we calculated relativistic correc-
tions. For this we needed various extended Hylleraas inte-
grals, among them, integrals with 1/ri

2, which are being de-

TABLE II. Matrix elements of the Breit-Pauli Hamiltonian H�4� in atomic units.


 �
a

−
1

8
�a

4 �
a	b

1

2
�a

i��ij

rab
+

rab
i rab

j

rab
3 ��b

j H�4�

3 �78.587 286 690 90 �0.438 632 545 84 �12.080 670 336 80

4 �78.557 331 859 61 �0.436 096 586 40 �12.053 111 944 61

5 �78.556 355 905 97 �0.435 697 344 91 �12.050 709 116 55

6 �78.556 714 503 43 �0.435 616 426 50 �12.050 388 076 38

7 �78.556 195 780 85 �0.435 602 362 02 �12.050 004 294 51

8 �78.556 162 642 13 �0.435 599 523 90 �12.049 961 162 16

9 �78.556 137 477 61 �0.435 598 217 44 �12.049 926 149 76

10 �78.556 135 734 01 �0.435 598 047 58 �12.049 921 414 27

11 �78.556 131 596 34 �0.435 597 963 57 �12.049 916 800 81

12 �78.556 128 632 10 �0.435 597 910 50 �12.049 913 772 96

� �78.556 112 88�200� �0.435 597 765�50� �12.049 897 86�200�
Ref. �15� �78.556 135 55�148� �0.435 598 001�137� �12.049 909 94�180�
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rived here. To obtain recursion relations for the three-
electron Hylleraas integral in Eq. �7�, one first considers the
integral G,

G�m1,m2,m3;m4,m5,m6� =
1

8
6 � d3k1� d3k2� d3k3

��k1
2 + u1

2�−m1�k2
2 + u2

2�−m2

��k3
2 + u3

2�−m3�k32
2 + w1

2�−m4

��k13
2 + w2

2�−m5�k21
2 + w3

2�−m6,

�14�

which is related to f by: f�0,0 ,0 ,0 ,0 ,0�
=G�1,1 ,1 ,1 ,1 ,1�	u1=u2=u3=0. The following nine integration
by part identities are valid because the integral of the deriva-
tive of a function vanishing at infinity vanishes,

0 � id�i, j� =� d3k1� d3k2� d3k3
�

�k�i

��k� j�k1
2 + u1

2�−1�k2
2 + u2

2�−1�k3
2 + u3

2�−1�k32
2 + w1

2�−1

��k13
2 + w2

2�−1�k21
2 + w3

2�−1� , �15�

where i , j=1,2 ,3. The reduction of the scalar products from
the numerator leads to the identities for the linear combina-
tion of the G functions. If any of the arguments is equal to 0,
then G becomes a known two-electron Hylleraas-type inte-
gral. These identities are used to derive various recursion
relations. Here, we derive a set of recursions for the case

when n4 , n5, or n6 is equal to −1. Let us assume that n4=
−1. The analytic expression for f�0,0 ,0 ,−1 ,n5 ,n6� involves
powers of w2−w3 in the denominator, which is not very con-
venient in high precision numerical calculations. Instead, we
use recursions for f�0,0 ,0 ,0 ,n5 ,n6� and numerically inte-
grate with respect to w1, namely

f�0,0,0,− 1,n5,n6� = �
w1

�

dw1f�0,0,0,0,n5,n6� . �16�

These recursions are derived as follows. We take id�i , i� with
i=1,2 ,3 and put ui=0. Resulting three equations are
solved against three unknowns: G�1,1 ,1 ,2 ,1 ,1� ,
G�1,1 ,1 ,1 ,2 ,1�, and G�1,1 ,1 ,1 ,1 ,2�. The solution for the
last two G functions is the following:

G�1,1,1,1,2,1� =
1

w2
2 �G�0,1,1,1,1,2� − G�1,0,1,1,1,2�

− G�1,0,1,2,1,1� + G�1,1,0,2,1,1�

+ G�1,1,1,1,1,1�/2� , �17�

G�1,1,1,1,1,2� =
1

w3
2 �G�0,1,1,1,2,1� + G�1,0,1,2,1,1�

− G�1,1,0,1,2,1� − G�1,1,0,2,1,1�

+ G�1,1,1,1,1,1�/2� . �18�

By differentiation with respect to w2 and w3 one obtains the
following recursion relations:

f�0,0,0,0,n5 + 1,n6� =
1

w1w2w3
��n5 + 1�f�0,0,0,0,n5,n6�w1w3 − �n5 + 1�n6f�0,0,0,0,n5,n6 − 1�w1 + n6f�0,0,0,0,n5 + 1,n6 − 1�

�w1w2 − n6��n5,n6 − 1,− 1,w1 + w2,w3,0� + n6��n6 − 1,n5,− 1,w1 + w3,w2,0� − ��n6,n5,− 1,w1

+ w3,w2,0�w1 + ��n5 + n6,0,− 1,w2 + w3,w1,0�w1 + ��n5,n6,− 1,w1 + w2,w3,0�

�w3 − ��n6,n5,− 1,w1 + w3,w2,0�w3� , �19�

f�0,0,0,0,n5,n6 + 1� =
1

w1w2w3
��n6 + 1�f�0,0,0,0,n5,n6�w1w2 − n5�n6 + 1�f�0,0,0,0,n5 − 1,n6�

�w1 + n5f�0,0,0,0,n5 − 1,n6 + 1�w1w3 + n5��n5 − 1,n6,− 1,w1 + w2,w3,0� − n5��n6,n5 − 1,− 1,w1

+ w3,w2,0� − ��n5,n6,− 1,w1 + w2,w3,0�w1 + ��n5 + n6,0,− 1,w2 + w3,w1,0�w1 − ��n5,n6,− 1,w1

+ w2,w3,0�w2 + ��n6,n5,− 1,w1 + w3,w2,0�w2� , �20�

where � is a known �18–20� two-electron integral,

��n1,n2,n3,�1,�2,�3� =� d3r1

4

� d3r2

4

e−�1r1−�2r2−�3r12r1

n1−1r2
n2−1r12

n3−1. �21�

The integration in Eq. �16� is performed numerically using points and weights adapted to the function, which has logarithmic
end-point singularity, namely
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�
0

1

dx�W1�x� + W2�x�ln�x�� , �22�

where Wi are functions without any singularities. The method to obtain n adapted points and weights is presented in the
Appendix , and this integral is exact for Wi, being polynomials up to the order n−1. In the actual calculations we achieved at
least 48-digit precision with only 100 points. Having obtained f�0,0 ,0 ,−1 ,n5 ,n6� we construct recursion relations in n1 , n2,
and n3. This is achieved in two steps. In the first step we use integration by parts in momentum representation Eq. �15�, to form
the following linear combination:

id�2,2� + id�3,3� − id�1,1� = 2�G�0,1,1,1,1,2� + G�0,1,1,1,2,1� − G�1,0,1,1,1,2� − G�1,1,0,1,2,1� − G�1,1,1,1,1,1�/2

− G�2,1,1,1,1,1�u1
2 − G�1,1,1,1,1,2��u1

2 − u2
2� + G�1,2,1,1,1,1�u2

2 − G�1,1,1,1,2,1��u1
2 − u3

2�

+ G�1,1,2,1,1,1�u3
2 + G�1,1,1,2,1,1�w1

2� = 0. �23�

We integrate with respect to w1 and differentiate over u1 , u2 , u3 , w2, and w3 to obtain the main formula,

f�n1,n2,n3,− 1,n5,n6� =
1

�n2 + n3 − n1�w2w3
��n1 − 1�n1n5f�n1 − 2,n2,n3,− 1,n5 − 1,n6 + 1� + �n1 − 1�n1n6f�n1 − 2,n2,n3,

− 1,n5 + 1,n6 − 1� − �n2 − 1�n2n5f�n1,n2 − 2,n3,− 1,n5 − 1,n6 + 1� − �n3 − 1�n3n6f�n1,n2,n3 − 2,

− 1,n5 + 1,n6 − 1� + �n1 − n2 − n3�n5n6f�n1,n2,n3,− 1,n5 − 1,n6 − 1� + n5n6f�n1,n2,n3,0,n5 − 1,n6

− 1�w1 − �n1 − 1�n1f�n1 − 2,n2,n3,− 1,n5,n6 + 1�w2 + �n2 − 1�n2f�n1,n2 − 2,n3,− 1,n5,n6 + 1�w2

− �n1 − n2 − n3�n6f�n1,n2,n3,− 1,n5,n6 − 1�w2 − n6f�n1,n2,n3,0,n5,n6 − 1�w1w2 − �n1 − 1�n1f�n1

− 2,n2,n3,− 1,n5 + 1,n6�w3 + �n3 − 1�n3f�n1,n2,n3 − 2,− 1,n5 + 1,n6�w3 − �n1 − n2

− n3�n5f�n1,n2,n3,− 1,n5 − 1,n6�w3 − n5f�n1,n2,n3,0,n5 − 1,n6�w1w3 + f�n1,n2,n3,0,n5,n6�w1w2w3

+ n6��n3���n5 − 1,n6 − 1,n1 + n2 − 1,w1 + w2,w3,0� + n5��n2���n6 − 1,n5 − 1,n1 + n3 − 1,w1

+ w3,w2,0� − n5��n1���n5 + n6 − 1,− 1,n2 + n3 − 1,w2 + w3,w1,0� − n6��n1���n5 + n6 − 1,− 1,n2

+ n3 − 1,w2 + w3,w1,0� − ��n2���n6,n5 − 1,n1 + n3 − 1,w1 + w3,w2,0�w2 + ��n1���n5 + n6,− 1,n2

+ n3 − 1,w2 + w3,w1,0�w2 − ��n3���n5,n6 − 1,n1 + n2 − 1,w1 + w2,w3,0�w3 + ��n1���n5 + n6,

− 1,n2 + n3 − 1,w2 + w3,w1,0�w3� . �24�

This general formula does not work in the case n1=n2+n3. In the second step we use integration by part identities in the
coordinate space to fill this hole. We limit ourselves only to a special case of these identities in the form

0 = id�i� � � d3r1� d3r2� d3r3�g�i
2h − h�i

2g� , �25�

where

g = e−w1r1−w2r2−w3r3r1
n4−1r2

n5−1r3
n6−1,

h = r23
n1−1r31

n2−1r12
n3−1. �26�

The identities id�2� and id�3�,

f�n1,n2,n3,− 1,n5,n6� = ��n1 − 1��n1 + n3 − 1�f�n1 − 2,n2,n3,− 1,n5,n6� − �n1 − 1��n3 − 1�f�n1 − 2,n2 + 2,n3 − 2,− 1,n5,n6�

+ �n3 − 1��n1 + n3 − 1�f�n1,n2,n3 − 2,− 1,n5,n6� − �n5 − 1�n5f�n1,n2,n3,− 1,n5 − 2,n6� + 2n5f�n1,n2,n3,

− 1,n5 − 1,n6�w2 + ��n5���n1 + n6 − 1,n3 − 2,n2,w3,w1,0��/w2
2, �27�

f�n1,n2,n3,− 1,n5,n6� = �− �n1 − 1��n2 − 1�f�n1 − 2,n2 − 2,n3 + 2,− 1,n5,n6� + �n1 − 1��n1 + n2 − 1�f�n1 − 2,n2,n3,− 1,n5,n6�

+ �n2 − 1��n1 + n2 − 1�f�n1,n2 − 2,n3,− 1,n5,n6� − �n6 − 1�n6f�n1,n2,n3,− 1,n5,n6 − 2� + 2n6f�n1,n2,n3,

− 1,n5,n6 − 1�w3 + ��n6���n2 − 2,n1 + n5 − 1,n3,w1,w2,0��/w3
2, �28�

GROUND-STATE WAVE FUNCTION AND ENERGY OF… PHYSICAL REVIEW A 73, 022503 �2006�

022503-5



replace the main recursion in Eq. �24� for the case n1=n2
+n3 and can be used also for all other ni under conditions
that n1	0, n3	0 or n1	0, n2	0, respectively.

V. SUMMARY

We have demonstrated the advantages of the analytic ap-
proach to three-electron Hylleraas integrals by the calcula-
tion of nonrelativistic energy of the ground-state lithium
atom and the leading relativistic corrections. The achieved
accuracy is mainly due to the use of much larger basis sets.
In fact it is possible to perform a calculation with 
	12 by
using sextuple precision arithmetics. The typical evaluation
time in sextuple precision for 
=12 is 24 h on a 2.4-GHz
Opteron, and most of the time is devoted to LU decomposi-
tion.

Having precise wave functions, we have calculated lead-
ing relativistic corrections and the results only partially agree
with that of Yan and Drake �15� and of King �17�. We are
now in a position to calculate higher-order, namely m�6,
relativistic and QED corrections, for example to the lithium
ground-state hyperfine splitting �21�. However, this involves
more complicated Hylleraas integrals containing two factors
among 1/ri

2 and 1/rij
2 , which have not yet been worked out

by the recursion method of the authors.
Even more interesting is the possible extension of this

analytic method to beryllium and berylliumlike ions, the
four-electron systems. The use of a large Hylleraas basis set
will allow for a high precision calculation of the wave func-
tion, energies, and transition rates. For example, knowing the
isotope shifts, one can obtain charge radii as for the lithium
isotope �22�. General Hylleraas integrals for four-electron
systems has not yet been worked out �23,24�. The so-called
double linked basis set, the functions with at most two odd
powers of rij, have been used by Büsse et al. in Ref. �25� to
obtain an accurate nonrelativistic energy, but still less accu-
rate than the result of Komasa in Ref. �10�. It has not yet
been attempted to calculate relativistic corrections with Hyl-
leraas functions as they involve even more difficult integrals.
We think the integration by part technique should allow for
the derivation of compact formulas for all four-electron Hyl-
leraas integrals.

Our primary motivation for developing the Hylleraas ba-
sis set is the calculation of higher-order relativistic and QED
effects, and to demonstrate that standard techniques used in
relativistic quantum chemistry, which are based on a multi-
electron Dirac-Coulomb Hamiltonian, are not correct for
these principal reasons. This Hamiltonian does not include
properly negative energy states. The correct treatment has to
be based on quantum electrodynamics and several very ac-
curate results for few electron ions have already been ob-
tained within the so-called 1/Z expansion �26–28�. Never-
theless, there is no formalism yet that allows for systematic
inclusion of negative energy states and QED effects for
many-electron atoms.
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APPENDIX: QUADRATURE WITH LOGARITHMIC
END-POINT SINGULARITY

Consider the integral

I = �
0

1

dx�W1�x� + ln�x�W2�x�� , �A1�

where Wi are arbitrary polynomials of maximal degree n−1.
We would like to find n nodes xi and n weights wi such that

I = �
i=1

n

wi�W1�xi� + ln�xi�W2�xi�� . �A2�

In general it is a difficult numerical problem to find a solu-
tion of corresponding 2n nonlinear equations with j=1,n,

�
0

1

dxxj−1 =
1

j
= �

i=1

n

wixi
j , �A3�

�
0

1

dxxj−1ln x = −
1

j2 = �
i=1

n

wixi
jln xj . �A4�

The work �29� solves this problem and proves that wi are all
positive. The solution is as follows. One defines 2n functions
�i,

�k�x� = xk−1, for k = 1,n , �A5�

�k�x� = xk−1ln x, for k = n + 1,2n . �A6�

Consider n points xi, which are not necessarily the solution
of Eqs. �A3� and �A4� but are close to them, and construct
another set of functions �i, �i, for i=1,n,

�i�x� = �
j=1

2n

�ij� j�x� , �A7�

�i�x� = �
j=1

2n

�ij� j�x� , �A8�

such that

�i�xk� = 0,

�i��xk� = �ik,

�i�xk� = �ik,

�i��xk� = 0. �A9�

The set of conditions �A9� uniquely determines the matrices
�ij and �ij. If xk are nodes, then
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�
0

1

dx�i�x� = 0,

�
0

1

dx�i�x� = wi. �A10�

If xk are not exactly the nodes, but are sufficiently close, then
according to Ref. �29�, the iteration xi→ x̃i,

x̃i = xi +

�
0

1

dx�i�x�

�
0

1

dx�i�x�
, �A11�

converges to nodes, the solution of Eqs. �A3� and �A4�. The
only problem now is to find a sufficiently good initial value
for xi. For this one constructs a homotopy �k�x , t� such that

�k�x,t� = xk−1 for k = 1,n ,

�k�x,t� = �1 − t��x + txk−1−nln�x� for k = n + 1,2n .

�A12�

At t=0, ��x ,0� are polynomials in �x. Therefore one ob-
tains xi=yi

2 where yi are nodes for Gauss-Legendre quadra-
ture. By slowly changing t from 0 one finds the solution at
t=1. In the actual numerical calculations we found that the
steps ti= i /100 were sufficiently small for the above iteration
to converge. This generalized Gaussian quadrature can also
be constructed for other types of functions including various,
even nonintegrable, singularities.
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