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According to the Gottesman-Knill theorem, a class of quantum circuits—namely, the so-called stabilizer
circuits—can be simulated efficiently on a classical computer. We introduce an algorithm for this task, which
is based on the graph-state formalism. It shows significant improvement in comparison to an existing algo-
rithm, given by Gottesman and Aaronson, in terms of speed and of the number of qubits the simulator can
handle. We also present an implementation.
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I. INTRODUCTION

Protocols in quantum-information science often use en-
tangled states of a large number of qubits. A major challenge
in the development of such protocols is to actually test them
using a classical computer. This is because a straight-forward
simulation is typically exponentially slow and hence intrac-
table. Fortunately, the Gottesman-Knill theorem �1,2� states
that an important subclass of quantum circuits can be simu-
lated efficiently: namely, so-called stabilizer circuits. These
are circuits that use only gates from a restricted subset, the
so-called Clifford group. Many techniques in quantum infor-
mation use only Clifford gates, most importantly the stan-
dard algorithms for entanglement purification �3–7� and for
quantum error correction �8–11�. Hence, if one wishes to
study such networks, one can simulate them numerically.

The usual proof of the Gottesman-Knill theorem �as
stated, e.g., in �2�� contains an algorithm that can carry out
this task in time O�N3�, where N is the number of qubits.
Especially for the applications just mentioned, one is inter-
ested in a large N: For entanglement purification one might
want to study large ensembles of states and for quantum
error correction concatenations of codes. The cubic scaling
renders this extremely time consuming, and a more efficient
algorithm should be of great use.

Recently, Aaronson and Gottesman presented such an al-
gorithm �and an implementation of it called CHP� in Ref.
�12�, whose time and space requirements scale only quadrati-
cally with the number of qubits. In the present paper, we
further improve on this by presenting an algorithm that for
typical applications only requires time and space of
O�N log N�. While Aaronson and Gottesman’s simulator,
when used on an ordinary desktop computer, can simulate
already systems of several thousands of qubits in a reason-
able time, we have used our simulator for over 106 qubits.
This provides a valuable tool for investigating complex pro-
tocols such as our study of multiparty entanglement purifi-
cation protocols in Ref. �13�.

The crucial new ingredient is the use of so-called graph
states. Graph states have been introduced in �14� for the

study of entanglement properties of certain multiqubit sys-
tems; they were used as starting point for the one-way quan-
tum computer �i.e., measurement-based quantum computing�
�15� and found to be suited to give a graphical description of
Calderbank-Shor-Steane �CSS� codes �for quantum error cor-
rection� �16�. Graph states take their name from the concept
of graphs in mathematics: Each qubit corresponds to a vertex
of the graph, and the graph’s edges indicate which qubits
have interacted �see below for details�.

There is an intimate correspondence between stabilizer
states �the class of states that can appear in a stabilizer cir-
cuit� and graph states: Not only is every graph state a stabi-
lizer state, but also every stabilizer state is equivalent to a
graph state in the following sense: Any stabilizer state can be
transformed to a graph state by applying a tensor product of
local Clifford �LC� operations �17–19�. We shall call these
local Clifford operators the vertex operators �VOp’s�.

To represent a stabilizer state in computer memory, one
stores its tableau of stabilizer operators, which is an N�N
matrix of Pauli operators and hence takes space of order
O�N2� �see below for details�. Gottesman and Aaronson’s
simulator extends this matrix by another matrix of the same
size �which they call the destabilizer tableau�, so that their
simulator has space complexity O�N2�. A graph state, on the
other hand, is described by a mathematical graph, which, for
reasons argued later, only needs space of O�N log N� in typi-
cal applications. Hence, much larger systems can be repre-
sented in memory if one describes them as graph states
supplemented with the list of VOp’s. However, we also need
efficient ways to calculate how this representation changes,
when the represented state is measured or undergoes a
Clifford-gate application. The effect of measurements has
been extensively studied in �20�, and gate application is what
we will study in this paper, so that we can then assemble
both to a simulation algorithm.

This paper is organized as follows: We first review the
stabilizer formalism, the Gottesman-Knill theorem, and the
graph-state formalism in Sec. II. There, we will also explain
our representation in detail. Section III explains how the
state representation changes when Clifford gates are applied.
This is the main result and the most technical part of the
paper. For the simulation of measurements, we can rely on
the studies of Ref. �20�, which are reviewed and applied for*Electronic address: sanders@fs.tum.de
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our purpose in Sec. IV. Having exposed all parts of the simu-
lator algorithm, we continue by presenting our implementa-
tion of it. A reader who only wishes to use our simulator and
is not interested in its internal working may want to read
only this section. Section VI assesses the time requirements
of the algorithm’s components described in Secs. III and IV
in order to prove our claim of superior scaling of perfor-
mance. We finish with a conclusion �Sec. VII�.

II. STABILIZER AND GRAPH STATES

We start by explaining the concepts mentioned in the in-
troduction in a formal manner.

Definition 1. The Clifford group CN on N qubits is defined
as the normalizer of the Pauli group PN:

CN = �U � SU�2N��UPU† � PN " P � PN� ,

PN = �±1, ± i��I,X,Y,Z��N, �1�

where I is the identity and X, Y, and Z are the usual Pauli
matrices.

The Clifford group can be generated by three elementary
gates �see, e.g., �2��: the Hadamard gate H, the � /4 phase
rotation S, and a two-qubit gate, either the controlled NOT
�CNOT� gate �X or the controlled phase gate �Z:

H =
1
�2

	1 1

1 − 1

 S = 	1 0

0 i

 ,

�X =�
1 0 0 0

0 1 0 0

0 0 0 1

0 0 1 0
� �Z =�

1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 − 1
� . �2�

The significance of the Clifford group is due to the
Gottesman-Knill theorem ��1�; see also �2��.

Theorem 1. A quantum circuit using only the following
elements �called a stabilizer circuit� can be simulated effi-
ciently on a classical computer: �a� preparation of qubits in
computational basis states, �b� quantum gates from the Clif-
ford group, and �iii� measurements in the computational ba-
sis.

The proof of the theorem is simple after one introduces
the notion of stabilizer states �21�.

Definition 2. An N-qubit state ��
 is called a stabilizer
state if it is the unique eigenstate with eigenvalue +1 of N
commuting multilocal Pauli operators Pa �called the stabi-
lizer generators�:

Pa��
 = ��
, Pa � PN, a = 1,¼,N .

�These N operators generate an Abelian group, the stabilizer,
of 2N Pauli operators that all satisfy this stabilization equa-
tion.�

Computational basis states are stabilizer states. Further-
more, if a Clifford gate U acts on a stabilizer state ��
, the
new state U��
 is a stabilizer state with generators UPaU†

�PN. Hence, the state in a stabilizer circuit can always be

described by the stabilizer tableau, which is a matrix of N
�N operators from �I ,X ,Y ,Z� �where each row is preceded
by a sign factor�. The effect of an n-qubit gate can then be
determined by updating nN elements of the matrix, which is
an efficient procedure.

Instead of on the stabilizer tableau, we shall base our state
representation on graph states.

Definition 3. An N-qubit graph state �G
 is a quantum state
associated with a mathematical graph G= �V ,E�, whose �V�
=N vertices correspond to the N qubits, while the edges E
describe quantum correlations, in the sense that �G
 is the
unique state satisfying the N eigenvalue equations

KG
�a��G
 = �G
, a � V,

with KG
�a� = �x

�a� �
b�ngbh a

�z
�b�

¬ Xa �
b�ngbh a

Zb,

�3�

where ngbh aª �b � �a ,b��E� is the set of vertices adjacent
to a �14–16�.

The following theorem states that the edges of the graph
can be associated with phase gate interactions between the
corresponding qubits.

Theorem 2. If one starts with the state �+ 
�N

=�a�VHa�00¼0
, one can easily construct �G
 by applying
�Z on all pairs of neighboring qubits:

�G
 = 	 �
�a,b��E

�Zab
	�
a�V

Ha
�0
�N. �4�

�Proof: insert Eq. �4� into Eq. �3� �20�.�
As the operators KG

�a� belong to the Pauli group, all graph
states are stabilizer states, and so are the states which we get
by applying local Clifford operators C�C1 to �G
. For such
states, we introduce the notation

�G;C
 ª �G;C1,C2,¼,CN
 ª �
i=1

N

Ci�G
 . �5�

It has been shown that all stabilizer states can be brought
into this form �17–19�; i.e., any stabilizer state is LC equiva-
lent to a graph state. �We call two states LC equivalent if one
can be transformed into the other by applying a tensor prod-
uct of local Clifford operators.� Finding the graph state that
is LC equivalent to a stabilizer state given by a tableau can
be done by a sort of Gaussian elimination as explained in
�17�.

This is what we shall use to represent the current quantum
state in the memory of our simulator. Figure 1 shows for an
example state the tableau representation that is usually em-
ployed �and also used by Aaronson and Goldesman’s CHP
program, albeit in a modified form� and our representation.
The tableau representation requires space of order O�N2�. We
store the graph in adjacency list form �i.e., for each vertex, a
list of its neighbors is stored�, which needs space of order

O�Nd̄�, where d̄ is the average vertex degree �number of
neighbors� in the graph. We also store a list of the N local
Clifford operators C1 ,¼ ,CN, which transform the graph
state �G
 into the stabilizer state �G ;C
. We call these opera-
tors the vertex operators. As there are only 24 elements in the
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local Clifford group, each VOP is represented as a number in
0,¼, 23. The scheme to enumerate the 24 operators will be
described in �22�. Note that we can disregard global phases
of the VOP’s as they only lead to a global phase of the full
state of the simulator.

As we shall see later, we may typically assume that d̄
=O�log N�. Hence, our representation needs considerably
less space in memory than a tableau—namely, O�N log N�,
including O�N� for the VOP list.

The Gaussian elimination needed to transform a stabilizer
tableau to its graph-state representation is slow �time com-
plexity O�N3��, and so we should better not use it in our
simulator. But usually, one starts with the initial state �0
�N,
and if we write this state already in graph-state form, the
tableau representation is never used at all.

From Eq. �4�, it is clear that the initial state can be written
as a graph with no edges and Hadamard gates acting on all
vertices:

�0
�N = ���1,¼,N�,���;H,¼,H
 .

III. GATES

When the simulator is asked to simulate a Clifford gate,
the current stabilizer state is changed and its graph represen-
tation has to be updated to correctly reflect the action of the
gate. How to do this is the main technical result of this paper.

A. Single-qubit gates

In the graph representation, applying local �single-qubit�
Clifford gates becomes trivial: if C�C1 is applied to qubit a,
we replace this qubit’s VOP Ca by CCa.

B. Two-qubit gates

It is sufficient if the simulator is capable of simulating a
single multi-qubit gate: As the entire Clifford group is gen-
erated, e.g., by H, S, and �Z, all gates can be constructed by
concatenating these. We chose to implement �Z, the phase
gate, as this is �because of its role in Eq. �4�� most natural for
the graph-state formalism.

In the following discussion, the two qubits onto which the
phase gate acts are called the operand vertices and denoted
with a and b. All other qubits are called nonoperand vertices
and denoted c, d,¼ .

To solve the task, we have to distinguish several cases.
Case 1. The VOP’s of both operand vertices are in Z,

where Zª �I ,Z ,S ,S†� denotes the set of those four local
Clifford operators that commute with �Z �the other 20 op-
erators do not�. In this case, applying the phase gate is
simple: We use the fact that �due to Eq. �4�� applying a phase
gate on a graph state just toggles an edge:

�Zab��V,E�
 = ��V,E � ��a,b���
 ,

where � denotes the symmetric set difference A�B
ª �A�B� \ �A�B�; i.e., the edge �a ,b� is added to the graph
if is was not present before; otherwise, it is removed.

FIG. 1. A stabilizer state ��
 represented in
different ways: �a� as stabilizer tableau; i.e., the
state is stabilized by the group of Pauli operators
generated by the operators in the four rows. This
representation needs space O�N2� for N qubits.
�b�, �c� as LC equivalence to a graph state. �b�
shows the graph, with the VOP’s given by their
decomposition into the group generators �H ,S�.
�c� is the data structure that represents �b� in our
algorithm. The VOP’s are now specified using
numbers between 0 and 23 �which enumerate the
�C1�=24 LC operators�. Here, we need space

O�Nd̄�, where d̄ is the average vertex degree—
i.e., the average length of the adjacency lists.
Writing G for the graph in �b�, we can use the
notation of Eq. �5� and write ��

= �G ;H , I ,HS ,S
.
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Case 2. The VOP of at least one of the operand vertices is
not in Z. In this case, just toggling the edge is not allowed
because the �Zab cannot be moved past the non-Z VOP. But
there is a way to change the VOP’s without changing the
state, which works in the following case.

Case 2.2. Both operand vertices have nonoperand neigh-
bors. Here, the following operation will help.

Definition 4. The operation of local complementation
about a vertex a of a graph G= �V ,E�, denoted La, is the
operation that inverts the subgraph induced by the neighbor-
hood of v:

La�V,E� = �V,E � ��b,c��b,c � ngbh a�� .

This operation transforms the state into a local-Clifford
equivalent one, as the following theorem, taken from
�17,20�, asserts.

Theorem 3. Applying the local complementation La onto a
graph G yields a state �LaG
=U�G
, with the multilocal uni-
tary

U = �− iXa �
b�ngbh a

�iZb � �KG
�a�.

Note that the operator �iZ is related to the phase operator
S of Eq. �2�: �iZ=ei�/4S† and

�iX = �− iX† =
1
�2

	 1 − i

− i 1

 .

An obvious consequence of theorem 3 is the following.
Corollary 1. A state �G ;C� 
 is invariant under application

of La to G, followed by an updating of C according to

Cb � �Cb
�iX for b = a ,

Cb
�− iZ for b � ngbh a ,

Cb otherwise.
� �6�

Now note that the local Clifford group is generated not
only by S and H but also by �−iX and �iZ, the Hermitian
adjoints of the operators right multiplied by the VOP’s in Eq.
�6�. Our simulator has a look-up table that spells out every
local Clifford operator as a product of—as it turns out, at
most five—of these two operators times a disregarded global
phase. For example, the table’s line for H reads

H � �− iX�iZ�iZ�iZ�− iX . �7�

This allows us now to reduce the VOP Ca of any noniso-
lated vertex a to the identity I by proceeding as follows: The
decomposition of Ca taken from the look-up table is read
from right to left. When a factor �−iX is read we do a local
complementation about a. This does not change the state if
the correction of Eq. �6� is applied, which right-multiplies a
factor �iX to Ca. This factor �iX cancels with the factor �−iX
at the right-hand end of Ca’s decomposition, so that we now
have a VOP with a shorter decomposition.

If the rightmost operator of the decomposition is �iZ, we
do a local complementation about an arbitrarily chosen
neighbor of a, called a’s “swapping partner.” Now, the cor-
rection operation will lead to a factor S being right multiplied
by Ca, again shortening the decomposition.

Note that a local complementation about a never changes
the edges incident on a and hence, if a was nonisolated in the
beginning of the procedure, it will stay so. This is important,
as only a nonisolated vertex can have a swapping partner.
Hence, the procedure can be iterated, and �as the decompo-
sitions have a maximum length of 5� after at most five itera-
tions, we are left with the identity I as VOP.

We apply the described “VOP reduction procedure” to
both operand vertices. After that, both vertices are the iden-
tity, and we can proceed as in case 1.

One might wonder, however, whether the use of the VOP
reduction procedure on the second operand vertex b spoils
the reduction of the VOP of the first operand a. After all, a
could be a neighbor of b or of the swapping partner c of b.
Then, if a local complementation Lb or Lc is performed, the
compensation according to Eq. �6� changes the neighborhood
of b and c �which include a�. But note that a neighbor of the
inversion center only gets a factor �−iZ�S†. As S† generates
Z, this means that after the reduction of b, the VOP of a
might be no longer the identity but it is still an element of Z,
and we are allowed to go on with case 1.

But what happens if one of the vertices does not have a
nonoperand neighbor that could serve as swapping partner?
This is the next case.

Case 2.2. At least one of the operand vertices is isolated
or only connected to the other operand vertex. We first as-
sume that the other vertex is nonconnected in the same sense.

Case 2.2.1. Both operand vertices are either completely
isolated or only connected with each other. Then, we can
ignore all other vertices and have to study only a finite,
rather small number of possible states.

Let us denote by • • the two-vertex graph with no edges
and by •—• the two-vertex graph with one edge. There are
only very few possible two-qubit stabilizer states: namely,
those in

S2 ª ��G;C1,C2
�G � �• •,• − •�,C1,C2 � C1� . �8�

Of course, many of the assignments on the right-hand side
describe the same state, such that �S2��2�242. Remember
that the phase gate �Z1,2 �being a Clifford operator� maps S2
bijectively onto itself.

The function table of �Z1,2�S2
: �G ;C1 ,C2
� �G� ;C1� ,C2�


can easily be computed in advance �we did it with Math-
ematica� and hard coded into the simulator as a look-up
table. This table contains 2�242 lines such as

�• •,C�13�,C�2�
 � �• − •,C�0�,C�2�
 , �9�

where the C�i��i=0,¼ ,23� are the Clifford operators in the
enumeration detailed in �22� �e.g., C�0�= I, C�2�=Y�.

Note that many of the assignments to C1 and C2 in Eq. �8�
describe the same state. Hence, we have a choice in the op-
erators C1�, C2� with which we represent the results of the
phase gate in the look-up table. It turns out �by inspection of
all the possibilities� that we can always choose the operators
such that the following constraint is fulfilled.

Constraint 1. If C1�C2��Z, choose C1�, C2� such that
again C1��C2���Z.

The use of this will become clear soon.
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Case 2.2.2. We are left with one last case—namely, that
one vertex, let it be a, is connected with nonoperand neigh-
bors, but the other vertex b is not—i.e., has either no neigh-
bors or only a as neighbor. Then, we proceed as follows: We
use iterated local complementations to reduce Ca to I. After

that, we may use the look-up table as in case 2.2.1. That this
is allowed even though a is connected to a nonoperand ver-
tex is shown in the following: First note that the state after
the reduction of Ca to I can be written �following Eq. �5��	
as

�where 
=0,1 indicates whether �a ,b��E�. Observe that Cb

has been moved past the operators �Zcd. This is allowed
because none of the �Zcd acts on b.

We now apply �Zab to this state. �Zab can be moved
through all the phase gates and vertex operators above the
left brace so that it stands right in front of the S2 state ��
ab

which is separated from the rest. Thus, the table �9� from
case 2.2.1 may be used. �This would not be the case if, in the
state above the brace marked with �*�, the two operand ver-
tices were still entangled with other qubits.� The look-up in
the table will give new operators Ca�, Cb� and a new 
�, so that
the new state has the following form:

�Zab��V,E�;C
 = �
c�V\�a,b�

Cc �
�c,d��E\��a,b��

�Zcd

�Ca�Cb���Zab�
�� + + ¯ + 
 . �10�

For this to be a state in our usual �G ;C
 form �5�, the two
operators Ca� and Cb� have to moved to the left, through the
�Zcd. For Cb�, this is no problem, as b was assumed to be
either isolated or connected only to a, so that Cb� commutes
with ��c,d��E\��a,b���Zcd, as the latter operator does not act on
b. The vertex a, however, has connections to nonoperand
neighbors, so that some of the �Zcd act on it. We may move
it only if Ca��Z �as this means that it commutes with �Z�.
Luckily, due to constraint 1 imposed above, we can be sure
that Ca��Z, because Ca= I�Z.

Figure 2 shows as listing in pseudocode how these results
can be used to actually implement the controlled phase gate
�Z.

IV. MEASUREMENTS

In a stabilizer circuit, the simulator may be asked at any
point to simulate the measurement of a qubit in the compu-
tational basis. How the outcome of the measurement is de-
termined and how the graph representation has to be updated
in order to then represent the post-measurement state will be
explained in the following.

To measure a qubit a of a state �G ,C
 in the computa-
tional basis means to measure the qubit in the underlying
graph state �G
 in one of the three Pauli bases. Writing the
measurement outcome as 
, this means

I + �− 1�
Za

2
�G,C
 = 	 �

b�V\�a�
Cb
 I + �− 1�
Za

2
Ca�G


= 	 �
b�V\�a�

Cb
Ca

I + �− 1�
Ca
†ZaCa

2
�G
 .

�11�

As Ca is a Clifford operator, PaªCa
†ZaCa� �Xa ,Ya ,Za ,

−Xa ,−Ya ,−Za�. Thus, in order to measure qubit a of �G ,C
 in
the computational basis, we measure the observable Pa on
�G
. Note that in case that Pa is the negative of a Pauli
operator, the measurement result 
 to be reported by the
simulator is the complement of 
̃, the result given by the X,
Y, or Z measurement on the underlying graph state �G
.

How is the graph G changed and how do the vertex op-
erators have to be modified if the measurement
��I± Pa� /2��G
 is carried out? This has been worked out in
detail in Ref. �20�, which we now briefly review for the
present purpose.

The simplest case is that of P= ±Z. Here, the state
changes as follows:

�12�
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The value of 
̃ is chosen at random �using a pseudo-random-
number generator�. To update the simulator state, the VOP’s
are right multiplied by the underbraced operators �*� and the
edges incident on a are deleted as indicated in the ket.

A measurement of the Y observable �P= ±Y� requires a
complementation of the edges set according to

E � E � ��b,c��b,c � ngbha�

and a change in the VOP’s as follows:

Cb � Cb
�− iZ�†� for b � ngbha � �a� ,

where the dagger in parentheses is to be read only for mea-

surement result 
̃=1.
The most complicated case is the X measurement which

requires an update of edges and VOP’s as follows:

E � E � ��c,d��c � ngbhb,d � ngbha�

� ��c,d��c,d � ngbhb � ngbha�

� ��b,d��d � ngbha \ �b�� ,

Cc ��
CcZ


̃ for c = a ,

Cc
�iY�†� for c = b �read ‘‘ † ’’ only for 
̃ = 1� ,

CcZ for c � �
ngbh a \ ngbh b \ �b�

�for 
̃ = 0� ,

ngbh b \ ngbh a \ �a�

�for 
̃ = 1� ,
�

Cc otherwise.

�
�13�

Here, b is a vertex chosen arbitrarily from ngbh a and

�iY =
1
�2

	1 − 1

1 1

 .

In all these cases the measurement result is chosen at
random. Only in the case of the measurement of Pa= ±X an

isolated vertexis the result always 
̃=0 �which means an ac-
tual result of 
=0 for Pa=X and 
=1 for Pa=−X�.

V. IMPLEMENTATION

The algorithm described above has been implemented in
C�� in object-oriented programming style. We have used
the GNU Compiler Collection �GCC� �24� under Linux, but
it should be easy to compile the program on other platforms
as well �28�. The implementation is done as a library to allow
for easy integration into other projects. We also offer bind-
ings to PYTHON �25�, so that the library can be used by PY-

THON programs as well. �This was achieved using SWIG

�26�.�
The simulator, called “GRAPHSIM,” can be downloaded

from �23�.
A detailed documentation of the library is supplied with it.

To demonstrate the usage here at least briefly, we give Fig. 3

FIG. 2. Pseudocode for controlled phase gate ��Z� acting on
vertices a and b �“cphase”� and for the two auxiliary routines “re-
move VOP” and “local complementation”.
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as a simple toy example. It is written in PYTHON and a com-
plete program.

In the example, we start by loading the GraphSim library
�line 2� and then initialize a register of eight qubits �line 4�,
which are then all in �0
 state. We get an object called “gr” of
class GraphRegister, which represents the register of qubits.
For all following operations, we use the methods of gr to
access its functionality. In our example, we simply build up
an encoded “0” state in the well-known seven-qubit Steane
code, which we then measure.

First, we apply Hadamard and CNOT gates onto the qu-
bits with numbers 0–6 in order to build up the Steane-
encoded “0” �lines 6–17�. To check that we did so, we mea-
sure the encoded qubit, which is done by using CNOT gates
to sum up their parity in the eighth qubit �“qubit 7”� �lines
19, 20�. Measuring qubit 7 then gives “0,” as it should �line
22�.

For further details on using of the GRAPHSIM library from
a C�� or PYTHON program, see the documentation supplied
with the source code �23�.

With approximately 1400 lines, GRAPHSIM is complex
enough that one cannot take for granted that it faithfully
implements the described algorithm without bugs, and test-
ing is necessary. Fortunately, this can be done very conve-
niently by comparing with Aaronson and Gottesman’s “CHP”
simulator. As these two programs use quite different algo-
rithms to do the same task, it is very unlikely that any bugs,
which they might have, produce the same false results.
Hence, if both programs give the same result, they can rea-
sonably be considered both to be correct.

We set up a script to do random gates and measurements
on a set of qubits for millions of iterations. All operations
were performed simultaneously with CHP and GRAPHSIM. For
measurements whose outcome was chosen at random by
CHP, a facility of GRAPHSIM was used that overrides the ran-

dom choice of measurement outcomes and instead uses a
supplied value. For measurements with determined outcome,
however, it was checked whether both programs output the
same result. Also, every 1000 steps, the stabilizer tableau of
GRAPHSIM’s state was calculated from its graph representa-
tion and compared to CHP’s tableau �29�.

After simulation 4�106 operations on 200 qubits in 18 h
and 2�108 operations on 20 qubits in 19.7 h without seeing
discrepancies, we are confident that we have exhausted all
special cases, so that the two programs can be assumed to
always give the same output. As they are based on very
different algorithm, this reasonably allows to conclude that
they both operate correctly.

VI. PERFORMANCE

We now show that our simulator yields the promised
performance—i.e., performs a simulation of M steps in time
of order O�NdM�, where N is the number of qubits and d the
maximum vertex degree that is encountered during the cal-
culation. Let us go through the different possible simulation
steps in order to assess their respective time requirements.

Single-qubit gates are the fastest: they only need one
look-up in the multiplication table of the local Clifford group
�which is hard coded into the simulator� and are hence of
time complexity 
�1�.

Measurements have a complexity depending on the basis
in which they have to be carried out. For a Z measurement,
we have to remove the deg a edges of the measured vertex a.
As d is the maximum vertex degree that is to be expected
within the studied problem, the complexity of a Z measure-
ment is O�d��O�N� �as d�N�.

For a Y and X measurement, we have to do local comple-
mentation, which requires dealing with up to d�d−1� /2
edges, and hence, the overall complexity of measurements is
O�d2�.

For the phase gate, the same holds. Here, we need a fixed
number �up to 5� of local complementations. Thus, measure-
ments and two-qubit gates take O�d2� time.

This would be no improvement to Aaronson and Gottes-
man’s algorithm if we had d=O�N�. The latter is indeed the
case if one applies randomly chosen operations as we did to
demonstrate GRAPHSIM’s correctness. There, we indeed did
not observe any superiority in the run time of GRAPHSIM.

In practice, however, this is quite different. For example,
when simulating quantum error correction, one can reason-
able assume d=O�log N�. This is because all quantum error
correction �QEC� schemes avoid doing many operations on
one and the same qubit in a row, as this would spread errors.
So vertex degrees remain small. The same reasoning applies
to entanglement purification schemes and, more generally, to
all circuits which are designed to be robust against noise.

The space complexity is dominated by the space needed
to store the quantum-state representation. As argued in Sec.

II, this requires only space of O�Nd̄�, where d̄ is the average

vertex degree. As explained above, we may expect d̄ �as d� to
scale sublinearly with N in typical applications, in many ap-
plications as O�N ln N�. This is what allows us to handle

FIG. 3. A simple example in PYTHON.
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substantially more qubits than is possible with the O�N2�
tableau representation.

As a first practical test, we used GRAPHSIM to simulate
entanglement purification of cluster states with the protocol
of Ref. �7�. This has been a starting point of a detailed analy-
sis of the communication costs of establishing multipartite
entanglement states via noisy channels �13�. Figure 4 dem-
onstrates that GRAPHSIM is indeed suitable for this purpose.
Note that for the rightmost data points, the register holds
30 000 qubits.

As we did a Monte Carlo simulation, we had to loop the
calculation very often and still got an output within a few
hours. For simulations involving several millions of qubits
and a large number of runs, we waited about a week for the
results when using eight processors in parallel. We redid
some of these calculations in a more controlled testing envi-
ronment as a benchmark for GRAPHSIM. Figure 5 shows the
results in a log-log plot.

VII. CONCLUSION

To summarize, we have used recent results on graph states
to find a very space-efficient representation of stabilizer

states and determined how this representation changes under
the action of Clifford gates. This can be used to simulate
stabilizer circuits more efficiently than previously possible.
The gain is not only in simulation speed, but also in the
number of manageable qubits. In the latter, at least two or-
ders of magnitude are gained. We have presented an imple-
mentation of our simulation algorithm and will soon publish
results about entanglement purification which makes use of
our technique.
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