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Here we propose an implementation of all possible positive-operator-value measures �POVMs� of two-
photon polarization states. POVMs are the most general class of quantum measurements. Our setup requires
linear optics, Bell state measurements, and an entangled three-photon ancilla state, which can be prepared
separately and in advance �or “off-line”�. As an example we give the detailed settings for a simultaneous
measurement of all four Bell states for an arbitrary two-photon polarization state, which is impossible with
linear optics alone.
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I. INTRODUCTION

Quantum information theory has been a field of increasing
activity over the past two decades �see �1� for a comprehen-
sive overview�. In the wake of this, the area of quantum
measurement has been the subject of research in recent years,
in particular the theory and implementations of generalized
measurement in the form of positive-operator-value mea-
sures �POVMs� �2–4�. The uses of such measurements lie in
quantum state estimation �5� and they are of direct practical
use in quantum cryptography �6–9�.

In earlier work �4� we proposed a setup for performing all
possible positive-operator-value measures of single photon
polarization states. Here we report an important extension to
this work, namely, the implementation of all possible
POVMs of two-photon polarization states. It has been shown
that this cannot be achieved using linear optics alone �3� and
our setup uses measurements and an optical nonlinearity to
achieve its goal. As an example of such a two-photon POVM
we give the details for performing a complete Bell-state mea-
surement of a two-photon polarization state using our setup.
A specific setup achieving this particular measurement with
nonlinear optics was implemented in the teleportation experi-
ment of Kim et al. �10�.

In general our method works by teleporting a bipartite
photon polarization state onto the path-polarization state of a
single photon. Linear optics then allows for any POVM to be
performed in the Hilbert space of the two degrees of freedom
of this third photon. Path-polarization states were used in
teleportation experiments �11� which included a full Bell-
state measurement in this basis. An extension of this concept
are states with entanglement in all degrees of freedom, which
are termed hyperentangled states and which have been the
subject of research in recent years �12–14�.

II. TELEPORTATION

Since its conception by Bennett et al. �15� the concept of
teleportation has been generalized into continuous variables
�16,17�, N-dimensional quantum systems �18�, and bipartite
quantum systems �19–21�. In our case however we do not
want to simply teleport the polarization state of two photons
to another two photons elsewhere, but our aim is to transfer
a bipartite polarization state such as

��� = a�HH� + b�HV� + c�VH� + d�VV� �1�

�with H and V denoting horizontal and vertical polarizations,
respectively� onto a quantum state of a single photon in the
Hilbert space of its polarization and path states, i.e.,

��� = a�Hs1� + b�Hs2� + c�Vs1� + d�Vs2� , �2�

where �s1� and �s2� are path states of the photon. As shown in
�20� teleportation of a two-qubit state such as a bipartite
polarization state requires the two parties Alice and Bob to
share one of 16 possible four particle states, for example, the
state

�g1� =
1

2
��HHHH� + �HVHV� + �VHVH� + �VVVV�� .

In the standard bipartite teleportation setup, the first two pho-
tons would be with Alice and the third and fourth would be
with Bob. Alice would then perform a generalized Bell mea-
surement on her two photons of the shared state as well as
the two photons of the state to be teleported. She would then
transmit four classical bits to Bob, telling him which of the
16 possible generalized Bell states she had measured, allow-
ing him to apply the appropriate corrections to his two-
particle state.

Instead of the state �g1� we will use a state of three pho-
tons in the Hilbert space of the polarization degrees of free-
dom of all three photons as well as the spatial degree of
freedom of one of the photons, i.e.,

�g̃1� =
1

2
��HHHs1� + �HVHs2� + �VHVs1� + �VVVs2�� ,

where the path state identifier refers to the path state of the
third photon �the polarization identifier immediately preced-
ing it�. We can create such a state by sending the state

��� =
1
�2

��H1H3� + �V1V3�� �
1
�2

��H2� + �V2��

through a Fredkin �controlled-swap� gate such that photon 2
controls the swap of photon 3 and a vacuum state. Single-
photon implementations of this gate have been suggested and
discussed in �22–24�. It should be noted that the state �g̃1�
can be prepared separately and in advance, or “off line.” This
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means that in terms of “on-line” resources—those needed
when an actual POVM is to be realized on a given state—our
method for implementing bipartite POVMs of two-photon
polarization states requires only linear optics, Bell state mea-
surements and the ancilla state �g̃1�.

In order to teleport a general bipartite state ��� as given in
Eq. �1� we can rewrite the combined state of the photon pair
to be measured and the three photon state �g̃1� as

����g̃1� =
1

4�
j=1

16

�gj��� j� ,

where �gj� are the 16 generalized Bell states of the polariza-
tions of four photons �given in �20�� and �� j� are 16
variations of the state ��� of Eq. �2�, premultiplied by all
16 possibilities of the operator �pol,x

a1 �path,x
a2 �pol,z

a3 �path,z
a4 with

ai� 	0,1
" i. One particularly convenient state is �g16� in
�20�, which in polarization notation reads

�g16� =
1

2
��HHVV� − �HVVH� − �VHHV� + �VVHH�� .

This can be rewritten as

�g16� =
1

2
��H1V3� − �V1H3�� � ��H2V4� − �V2H4�� ,

i.e., a tensor product of two singlet states of photons 1 and 3,
and 2 and 4, respectively.

By combining each of these photon pairs in a conven-
tional beamsplitter we can, upon detecting a photon each in
all four of the possible outputs, conclude that the third pho-
ton of �g̃1� has been projected into the state

��16� = �pol,x�path,x�pol,z�path,z���

= d�Hs1� − c�Hs2� − b�Vs1� + a�Vs2� . �3�

With this knowledge it is a trivial matter to create from this
the state ��� by using mirrors, polarization rotators, and po-
larizing beamsplitters. It is on this state ��� in the Hilbert
space of path and polarization states that we can perform any
four-dimensional POVM using linear optics alone. The suc-
cess probability of the teleportation and therefore of our
method is 1 � 16 if we only use �g16�. This can be raised at
least to 1 � 4, as all of the generalized Bell states �gi� in �20�
can be written as tensor products of Bell states for photons 1
and 3, and for photons 2 and 4, respectively. Since conven-
tional Bell state measurements on photon polarization states
are successful with probability 1 � 2, the probability that two
such measurements are, is 1 � 4.

III. IMPLEMENTING ALL FOUR-DIMENSIONAL
UNITARY OPERATORS

While it is very difficult to perform arbitrary unitary op-
erations on bipartite photon polarization states, doing the
same on the equally sized four-dimensional Hilbert space of
the path and polarization states of a single photon is by com-
parison trivial. Let us consider first a “rotator” in path state
space �Fig. 1�.

The superposition path state incident on the entrances of
the polarizing beamsplitter at the bottom left of Fig. 1
evolves as follows:

��� = a�Hs1� + b�Vs1� + c�Hs2� + d�Vs2�

→�a cos � + c sin ���Hs1� + �d sin �

+ b cos ���Vs1�

+ �− a sin � + c cos ���Hs2� + �d cos �

− b sin ���Vs2� �4�

or, in matrix notation

�
a

b

c

d
�→�

cos � 0 sin� 0

0 cos � 0 sin �

− sin � 0 cos � 0

0 − sin � 0 cos �
��

a

b

c

d
�

= 
 1 cos � 1 sin �

− 1 sin � 1 cos �
���� = Rpath������ , �5�

where 1 denotes the 2	2 unit matrix. Thus the setup in Fig.
1 performs rotations in the path state basis. To turn this into
a general unitary operation on the path state space we intro-
duce phase shifters at both entrances and both exits, obtain-
ing the matrix


ei�
+��/21 0

0 e−i�
+��/21
�Rpath���
ei�
−��/21 0

0 e−i�
−��/21
�

= 
 ei
1 cos � ei�1 sin �

− e−i�1 sin � e−i
1 cos �
� = Upath��,
,����� �6�

If we now consider unitary operations in each of the path

FIG. 1. Rotator in path state space utilizing two polarizing
beamsplitters �PBS� and four polarization rotators �� , �

2 ,− �

2
�. A

single photon path-polarization state ��� incident on the two en-
trances at the bottom left will be rotated in the path-state basis
	�s1� , �s2�
 by angle �.
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states before �V1 ,V2� and after �U1 ,U2� the setup of Fig. 1,

we arrive at a general rotation matrix Ũ


U1 0

0 U2
�Upath���
V1 0

0 V2
�

= 
 U1V1ei
 cos � U1V2ei� sin �

− U2V1e−i� sin � U2V2e−i
 cos �
� = Ũ . �7�

This matrix represents SU�4�, as we can write any four-
dimensional state vector in Hilbert space as

�s
� =�
cos�
1�cos�
2�ei�
3+
4�

cos�
1�sin�
2�ei�
3−
4�

sin�
1�cos�
5�ei�−
3+
6�

sin�
1�sin�
5�ei�−
3−
6�
�

and thus to perform a unitary transformation from this vector
to another arbitrary state vector �s
��, we choose �=
1�−
1,

=
3�−
3, �=
3�+
3, U1=U�−
2 ,−
4 ,
4�, U2=U�−
5 ,
−
6 ,
6�, V1=U�
2� ,
4� ,−
4��, and V2=U�
5� ,
6� ,−
6��, where

U�
i,
 j,
k� = 
 ei
j cos 
i − ei
k sin 
i

e−i
k sin 
i e−i
j cos 
i
� ,

which is a general 2	2 unitary matrix.

IV. SINGLE PHOTON POVM MODULE

The positive-operator-value measure �POVM� is the most
general formulation of quantum measurement �25�. Math-
ematically it corresponds to a positive-definite partition of
unity in the space of operators on a given Hilbert space. A
POVM is given by a set of positive definite Hermitian op-
erators 	Fi
, which in turn can be expressed in terms of a set
of so-called Kraus operators 	Mi
, such that Fi=Mi

†Mi and
for a POVM with n operators �i=1

n Mi
†Mi=�i=1

n Fi= I, where I
is the unit matrix. After a POVM measurement is performed
on a quantum state represented by a density matrix �, the
state becomes ��= �Mi�Mi

†� / �tr�Mi�Mi
†�� with probability

pi=tr�Mi�Mi
†�.

In previous work �4� we introduced an implementation of
all possible single photon POVMs. Using the module de-
picted in Fig. 2 one can achieve any bipartition of unity in
the form of an arbitrary pair of Kraus operators on the Hil-
bert space of the single photon polarization state. Using this
module iteratively it is then possible to implement any set of
Kraus operators.

As discussed in �4� this module implements the general
two-operator POVM given by the operators F1 and F2

F1 = M1
†M1 = Us†D1

2Us, �8�

where D1
2�D1

†V1
s†V1

sD1=D1
†D1, and

D1 = 
ei� cos 
 0

0 cos �
� �9�

so that

F2 = I − F1 = I − Us†D1
2Us = Us†Us − Us†D1

2Us

= Us†�I − D1
2�Us = Us†D2

2Us, �10�

where D2
2�D2

†V2
s†V2

sD2=D2
†D2, and

D2 = 
ei� sin 
 0

0 sin �
� . �11�

Placing one of these single-photon modules with Us=V1
s

=V2
s = I into each of the two paths associated with the states

�s1� and �s2�, and combining this with the SU�4� prerotation

matrix Ũ gives rise to a general set of four-dimensional
POVM operators

F1 = Ũ†
D1
2�
1,�1� 0

0 0
�Ũ

F2 = Ũ†
D2
2�
1,�1� 0

0 0
�Ũ

F3 = Ũ†
0 0

0 D1
2�
2,�2�

�Ũ

F4 = Ũ†
0 0

0 D2
2�
2,�2�

�Ũ . �12�

This in fact is an implementation of the most general four-
dimensional bipartition of unity, into the operators F1+F3
and F2+F4 �or we could alternatively choose F1+F4 and
F2+F3�. In order to implement the most general pair of
POVM operators this is enough. For the most general pair of
Kraus operators we would have to apply SU�4� rotations of

FIG. 2. Module implementing any single photon two-operator
POVM. The photon enters in state ��� at the bottom left corner and
exits either at E1 or E2, where it can be detected. All beamsplitters
are polarizing beamsplitters with the same polarization basis and
transmit photons in the �H� state, while reflecting photons in the �V�
state. The angles 
, �, �� 2, and � of the polarization rotators are
measured relative to this basis. Us, V1

s and V2
s are unitary operators,

and ei� and ei� signify phase shifters.
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the type Ũ to the pairs of exits 1 and 3, and 2 and 4, respec-
tively, in order to implement what in the single particle case
were the operators V1

s and V2
s .

The generalization of the two-photon setup to larger num-
bers of POVM operators is straightforward, similar to that
for one photon as seen in �4�. To form a further general
partition of one of the operators F1+F3 or F2+F4, a SU�4�
rotation is applied to the two exits of the given operator,
followed by an additional two single photon POVM mod-
ules.

The complete setup for implementation of every math-
ematically possible POVM on a two-photon polarization
state is shown in Fig. 3.

V. EXAMPLE

Our setup allows us to perform a simultaneous measure-
ment of all four Bell states for a two-photon polarization
state. This task is impossible when using only linear optics
on a conventional two-photon Bell state, but has been shown
to be possible for Bell states in path-polarization space �11�.

The parameters in Ũ and the diagonal matrix are: �= �� 4,
U1=U2=V1= I and V2=A, 
=�=0, 
1=0, �1= �� 2, 
2=0,
and �2= �� 2, where

A = 
 0 1

− 1 0
� .

This gives rise to

F1 =
1
�2


 1 − 1

A† A† �

	�
1 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0
� 1

�2

 1 A

− 1 A
�

=
1

2�
1 0 0 1

0 0 0 0

0 0 0 0

1 0 0 1
� = ��+���+� �13�

and similarly

F2 = ��−���−�

F3 = ��−���−� ,

F4 = ��+���+� �14�

where ��±�= 1��2 ��HV�± �VH�� and ��±�
= 1��2 ��HH�± �VV�� are the four Bell states. Thus, F1 to F4

are the four Bell-state projectors, as required.

VI. CONCLUSION

We have presented an implementation of all possible
POVMs of two-photon polarization states which can be re-
alized using existing technologies. As an example we list the
settings for a simultaneous Bell state measurement. The cru-
cial step in our setup is the teleportation of the bipartite pho-
ton polarization state to the Hilbert space of path and polar-
ization states of one photon. This allows us to overcome
many of the restrictions usually in place when manipulating
and measuring bipartite systems using linear optics.
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FIG. 3. Complete setup for implementing all possible POVMs
of two-photon polarization states. The state ��� to be measured �of
the form given in Eq. �1�� is teleported onto the Hilbert space of the
path and polarization states of photon 3 of the state �g̃1� �created by
passing photons 2 and 3 of state ��� as well as a vacuum ancilla �v�
through a Fredkin �F� gate�. The teleportation is successful if the
detectors D1 to D4 all register one photon and the operator
�path,z�pol,z�path,x�pol,x �denoted by �� is applied to the path and
polarization state space of photon 3. The resulting state is ��� which
is then operated on by the SU�4� operator implemented by the uni-
tary operators U1, U2, V1, V2, and Upath. A module of the type
shown in Fig. 2 with Us=V1

s =V2
s = I is placed in each of the path

state arms �M1 and M2� and all four possible outcomes are moni-
tored by detectors D5 to D8.
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