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We address the problem of implementing high-fidelity one-qubit operations subject to time-dependent noise
in the qubit energy splitting. We show with explicit numerical results that high-fidelity bit flip operations may
be generated by imposing bounded control fields. For noise correlation times shorter than the time for a �

pulse, the time-optimal � pulse itself yields the highest fidelity. For very long correlation times, fidelity loss is
approximately due to systematic error, which is efficiently tackled by compensation for off resonance with a
pulse sequence �CORPSE�. For intermediate ranges of the noise correlation time, we find that short CORPSE,
which is less accurate than CORPSE in correcting systematic errors, yields higher fidelities. Numerical optimi-
zation of the pulse sequences using gradient ascent pulse engineering results in noticeable improvement of the
fidelity for a bit flip operation on the computational basis states and a small but still positive fidelity enhance-
ment for the NOT gate.
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I. INTRODUCTION

In physical implementations of quantum computers, one
of the most challenging tasks is to find an efficient and ex-
perimentally feasible way to overcome the problems caused
by undesired interactions between the quantum bits, qubits,
and their surrounding environment. These interactions,
which destroy the quantum interference between qubit states,
lead to errors and loss of fidelity, a phenomenon generally
referred to as decoherence.

A variety of methods to fight decoherence have been pro-
posed in the literature. These include error-correcting codes
�1,2�, decoherence free subspace coding �3,4�, noiseless sub-
system coding �5�, dynamical decoupling �6–8�, quantum
feedback control �9–11�, quantum reservoir engineering �12�,
numerical design of pulse sequences robust to experimental
inhomogeneities �13�, and optimal control based on Markov-
ian master equation descriptions �14�. Most of these schemes
are not efficient in making full use of all the physical re-
sources, or are restricted in their applicability. For example,
encoding schemes employing decoherence free subspaces or
error-correcting codes store the quantum information in a
specific portion of the whole Hilbert space, or encode several
physical qubits into one logical qubit. Design and applicabil-
ity of such codes depends on the nature of the decoherence
sources and imposes additional requirements on encoding
and decoding. Dynamical decoupling schemes possess the
attractive feature that they require no ancillary qubits, since
the interactions between the qubits and the environment are
effectively averaged out by applying external control fields.
It has also been shown that such decoupling can be realized
using finite energy soft pulses �8� and that it is possible to
carry out qubit rotations without disturbing the decoupling
process �7�. However, dynamical decoupling is based on
stroboscopic pulsing of the qubit, at a rate significantly faster

than the usual characteristic frequency of environmental
fluctuations. This kind of pulsing requires strong control
fields, which might be problematic to realize experimentally.
For example, it has been pointed out that the high-energy
deposition needed for dynamical decoupling of nuclear spins
is incompatible with the low-temperature requirement in
some qubit implementations �15�.

In this paper, we consider the design of fidelity-optimized
one-qubit operations in a noisy environment. The errors on a
single qubit can be put into two categories, namely, phase
and flip errors corresponding to the Pauli matrices �z and �x
in the system Hamiltonian, respectively. The methods we
present here are general and applicable to both types of er-
rors, as well as to a combination of the two. To illustrate the
approach, we restrict our attention to only the phase errors
specified by a stochastic time-varying amplitude. This study
is motivated by experiments on superconducting solid-state
qubits �16,17� for which random telegraph noise �RTN� �18�
in the qubit energy splitting is thought to provide an appro-
priate phenomenological model for the effect of environmen-
tal fluctuations due to a localized defect �19–21�. Whereas an
ensemble of RTN fluctuators models the ubiquitous 1/ f
noise in electronic circuits �22�, solid-state devices on the
nanoscale are often found to be affected by a single RTN
source �23,24� that is characterized by its correlation time �c.
The methods demonstrated here to suppress the errors due to
RTN on the qubit energy splitting are also applicable to gen-
eral one-qubit errors, including systematic errors in the rota-
tion angle �25,26�, and can also be extended to multiqubit
systems.

Composite pulse sequences are known to provide an effi-
cient way to reduce errors due to time-independent off-
resonant perturbations �13,27�, e.g., compensation for off-
resonance with a pulse sequence �CORPSE� �28,29�. Here we
focus on the situation in which the perturbation of a qubit is
fluctuating in time and seek to suppress the decoherence aris-
ing from this time-dependent noise by imposition of a
bounded control field. The typical time scale for qubit ma-
nipulation is of the order of �� /amax, where amax is the*Electronic address: mikko.mottonen@tkk.fi
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maximum energy amplitude of the control field. We provide
an analysis of coherence control for variable noise correla-
tion times �c, ranging from short noise-correlation times sat-
isfying �camax/��1 to the long correlation time regime,
�camax/��1. In the former case, the decoherence is well
described by the standard methods based on Markovian mas-
ter equations �30�. In the limit �c→�, the fidelity loss is due
to systematic time-independent errors, for which high-
fidelity qubit rotations can be achieved using the composite-
pulse approach �27–29�. For large but finite values of �c,
coherent control of the qubit for times much longer than the
characteristic time � /amax can be achieved using dynamical
decoupling through the sequential application of control
pulses at time intervals much less than �c �6�. Consequently,
each control pulse must be implemented within an even
shorter time scale than the characteristic time � /amax, leading
to the condition �camax/��10–100 for achieving substantial
coherence enhancement by such a decoupling approach.
Here we are particularly interested in the intermediate regime
given by �camax/��1. This regime is important since it is
outside the range of validity of both dynamical decoupling
and control methods based on Markovian master equations.
Moreover, recent experiments probing decoherence of super-
conducting qubits �16,17� suggest that this regime may be
important in some experimental realizations of qubits.

It was stated in Ref. �29� that CORPSE is the shortest se-
quence in the family of composite pulse sequences correct-
ing systematic errors as efficiently as possible and composed
of up to three pulses. Therefore, it was considered to be the
most useful one. However, a composite pulse sequence re-
ferred to as short CORPSE �SCORPSE� �29� is shorter than
CORPSE in time, and hence, it may still be of some interest,
depending on the physical scenario. We illustrate this fact
here by showing that SCORPSE actually yields higher fideli-
ties than CORPSE in the regime of intermediate noise correla-
tion time, �camax/��1, for the one-qubit example studied
here. The optimal performance of CORPSE is, in fact, seen to
be limited to just the long correlation time limit, �c→�. We
also go beyond these standard composite pulse sequences to
obtain fidelity-optimized pulses consisting of large numbers
of pulse amplitudes that are numerically derived using an
adaptation of the method of gradient ascent pulse engineer-
ing �GRAPE� �31�. We find that in the range �camax/��1 such
an optimized pulse profile can increase the fidelity of quan-
tum operations by up to 30% in comparison to the standard
composite pulse sequences, such as CORPSE and SCORPSE.

The GRAPE algorithm was originally developed for finding
control pulses in closed quantum systems �31�. In this paper,
we adapt GRAPE to yield fidelity-optimized bounded control
pulses in a noisy quantum system. We represent the density
matrix as a sum over trajectories of controlled unitary dy-
namics, in which each trajectory describes the unitary evolu-
tion of the system under the same control field but a different
sample path of RTN. We refer to this representation as the
unitary quantum trajectory approach. The fidelity for a quan-
tum operation is optimized using the gradient method as in
the original GRAPE algorithm. We study the fidelity improve-
ments arising from this optimization by analyzing bit flip
operations on a single qubit. In particular, the fidelity en-
hancement for bit flips on the computational basis states is

observed to be significant. We define an average fidelity for
the one-qubit NOT gate by averaging the fidelity of the bit flip
state transformation over all pure initial states, which is ap-
propriate in the absence of specific knowledge about initial
conditions for a given application. This average fidelity ob-
tained from GRAPE is also higher than the corresponding val-
ues obtained from the standard composite pulse sequences,
but to a lesser extent than for the specific instance on the
computational basis states. More extensive numerical studies
will therefore be useful for determination of fidelity-optimal
pulse sequences for specific applications, e.g., algorithms,
where input states for the NOT gate are restricted to a subset
of the whole Hilbert space.

The remainder of this paper is organized as follows. In
Sec. II, we characterize the system Hamiltonian, the noise
model, and the fidelity measures employed here. Section III
introduces the pulse sequence-generation methods we use for
the noisy qubit systems. Section IV presents the results ob-
tained for high-fidelity implementation of two quantum op-
erations. The first is a single quantum state transformation
corresponding to bit flips on the computational basis states.
The second is the one-qubit NOT gate, which is independent
of the state of the qubit. Finally, Sec. V concludes the paper
with a discussion of ramifications and possible extensions of
this work.

II. SYSTEM CHARACTERIZATION

We consider a single qubit described by the effective
Hamiltonian

H = �
i��x,y,z�

1
2 �ai�t� + 	i�t���i, �1�

where the symbols ��i� denote the Pauli spin matrices �32�,
�	i�t�� are the amplitudes of the environmental noise, and
�ai�t�� are the external control fields. Note that the latter are
parametrized here by their corresponding energy amplitudes,
rather than the actual physical control fields, e.g., electric-
field amplitudes. We assume that the strength of the control
fields is finite and denote their maximum possible value by
amax. To simplify the discussion, we consider here only the
case where there is no control in the y or z directions and no
noise in the x and y directions. Under these assumptions, the
Hamiltonian becomes

H = 1
2a�t��x + 1

2	�t��z, �2�

where the control field aªax� �−amax,amax� and we have
used the notation 	�t�ª	z�t�.

For RTN, the amplitude of the noise 	 changes randomly
in time between two values −
 and 
. The quantity 
 de-
scribes the strength of the noise, and the frequency of the
jumps between values −
 and 
 is determined by the corre-
lation time �c. Specifically, the probability of the noise to
jump in an infinitesimal time interval of length dt is given by
dt /�c. Hence, the probability of no jumps taking place in a
time interval of length t is
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p0�t� = e−t/�c. �3�

In generating sample trajectories of RTN, Eq. �3� can also be
inverted to yield the sojourn time before a jump takes place.
Thus, we get a sample trajectory of RTN by taking random
numbers pi� �0,1� and then, deriving the corresponding
jump time instants,

ti = �
j=1

i

− �c ln�pj� . �4�

Using the values of these jump times, we can express the
noise process 	�t� as

	�t� = �− 1��i��t−ti�	�0� , �5�

where ��t� is the Heaviside step function.
In the limit �c→0 and 
→� such that 
2�c /2	�2� re-

mains finite, this RTN model reduces to white noise, i.e., the
noise correlation function becomes


	�t�	�t��� = 
2e−2�t−t��/�c �6�

→


→�

�c→0

�2�
�t − t�� . �7�

In this limit, one may apply the Markovian master equation
formalism, which leads to a decoherence time of the order of
�−1 �30�. In this work, we do not apply a master equation
approach but instead simulate the RTN numerically and ex-
press the density matrix of the system by a unitary quantum
trajectory approach that is valid for all values of the correla-
tion time �c.

Since we use an effective Hamiltonian operating solely on
the qubit rather than treating the full quantum dynamics of
both the qubit and the environment, we need to average over
different noise trajectories in order to obtain the system dy-
namics under the influence of RTN. Therefore, the dynamics
of the system density matrix � can be written as

��t� = lim
N→�

1

N�
k=1

N

Uk�0Uk
†, �8�

where �0=��0� is the initial state of the system and the op-
erators �Uk� refer to unitary time evolution of the system
under a certain trajectory 	k�t�. Formally, the operator Uk is
written as

Uk = Te−�i/2�
0
t d��a����x+	k����z�/�, �9�

where T is the time-ordering operator.
Let �f be the desired final state of the system. Following

Ref. �31�, we define a fidelity function for the corresponding
state transformation in the presence of noise as

� = tr��f
†�T� , �10�

where �Tª��T� is the actual state of the system at the final
time instant T. Substituting Eq. �8� into Eq. �10�, we obtain
the fidelity for the desired quantum state transformation from
�0 to �f as

���f,�0� = lim
N→�

1

N�
k=1

N

tr��f
†Uk�0Uk

†� . �11�

Equation �11� shows that this fidelity function can be viewed
as an average over fidelity functions corresponding to indi-
vidual unitary time developments in noiseless quantum sys-
tems that are each characterized by different noise-dependent
evolution operators �Uk�.

Equation �11� defines the fidelity for a state transforma-
tion between specified initial and final states. However, we
also want to obtain a measure of the performance of a quan-
tum gate Uf, i.e., a fidelity function that is independent of the
initial state is required. In order to obtain such a fidelity, we
choose �0 and �f such that �f=Uf�0Uf

†, and perform averag-
ing over the initial state �0. In general, there may be some
nontrivial dependence of the fidelity ���f ,�0� on the initial
state, which can be utilized for some applications, e.g., algo-
rithms in which the gate Uf is always applied to a specific set
of input states. Since we consider here a general formulation
of the fidelity for quantum gates without prior knowledge of
the states the gate Uf is to be applied, we average over a
uniform distribution of initial states �0 on the Bloch sphere.
Thus, we parametrize the state �0 as

�0 =
�I + cx�x + cy�y + cz�z�

2
, �12�

where ci are real numbers satisfying c1
2+c2

2+c3
3=1. The gate

fidelity function is defined as

��Uf� =
1

4�
�

cx
2+cy

2+cz
2=1

d����f,�0� , �13�

where d� is an infinitesimal solid angle on the Bloch sphere.
Substitution of Eq. �11� into Eq. �13� yields

��Uf� =
1

2
+ lim

N→�

1

12N�
k=1

N

�
j=1

3

tr�Uf � jUf
†Uk� jUk

†� . �14�

The average fidelity ��Uf� for quantum gate optimization
may be computed efficiently from Eq. �14� and provides a
useful assessment of the gate performance independent of the
specifics of any individual application. We note that there
may be some input states yielding much lower fidelities than
this average, which could be further explored by replacing
the average over the initial states �0 in Eq. �13� with a mini-
mization of ���f ,�0� with respect to a set of prescribed initial
input states or, indeed, with respect to all input states. Such a
minimization provides a useful worst-case estimation, i.e.,
independent of the initial state within a given set, a certain
level of fidelity is always achieved. These issues require
more intensive computational analysis but will be useful to
explore in future work, particularly if specific applications
restrict the range of input states. For the purpose of this
study, we shall analyze only the gate fidelity obtained from
an unbiased average as defined in Eq. �14�.

III. PULSE SEQUENCES FOR NOISY SYSTEMS

In this section, we introduce the pulse sequences that will
be used for suppression of decoherence. Our reference pulse
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sequence is the time-optimal � pulse given by

a��t� = amax, for t � �0,��/amax� . �15�

In the absence of noise, i.e., for 
=0, the � pulse is the most
efficient way of achieving a NOT gate. We consider here the
two composite pulse sequences CORPSE and SCORPSE

�27–29�, which were originally designed to correct system-
atic errors in the implementation of one-qubit quantum gates.
The control field corresponding to the CORPSE pulse se-
quence is

aC�t� =� amax, for 0 � t� �
�

3

− amax, for �/3 � t� � 2�

amax, for 2� � t� �
13�

3
,� �16�

where the time t is related to the dimensionless time t� by
t�=amaxt /�. For the SCORPSE pulse sequence, the control
field is

aSC�t� =�− amax, for 0 � t� �
�

3

amax, for �/3 � t� � 2�

− amax, for 2� � t� �
7�

3
.� �17�

In the absence of noise, the CORPSE and SCORPSE pulse se-
quences also generate the NOT gate, but their operation time
is longer than that of the time-optimal � pulse. To demon-
strate the accuracy of CORPSE and SCORPSE in the presence of
systematic error, i.e., �c→� implying 	�t�		�0�, we con-
sider a bit flip state transformation, from the south pole to the
north pole of the Bloch sphere. For 	�t�	
 in Eq. �2�, the
fidelities from Eq. �10� are of the form

�� = 1 − � 


amax
�2

+ 0.38 � � 


amax
�4

+ O� 


amax
�6

, �18�

�C = 1 − 0.0065 � � 


amax
�4

+ O� 


amax
�6

, �19�

�SC = 1 − 2.7 � � 


amax
�4

+ O� 


amax
�6

, �20�

for the � pulse, CORPSE, and SCORPSE, respectively. Note that
the deviation from unity of the �-pulse fidelity is second
order in 
 /amax, in contrast to the deviations for the CORPSE

and SCORPSE fidelities, which are only fourth order in

 /amax. Moreover, the coefficients of the fourth-order term
in the two composite pulse sequences differ by almost a fac-
tor of 400, implying that CORPSE is much more efficient than
SCORPSE in correcting systematic error.

An alternative to these composite pulse sequences is pro-
vided by numerical construction of pulse sequences opti-
mized for maximum fidelity. Such fidelity-optimized se-
quences may be constructed by an adaptation of the GRAPE

algorithm �31�, which was originally designed to steer the

dynamics of coupled nuclear spins. No noise effects or
bounds on control fields are included in the original imple-
mentation. For full details of the GRAPE algorithm for closed
quantum systems, see Ref. �31�.

The key feature of the GRAPE algorithm is to approximate
the continuous pulse shape on a time interval �0,T� by a
function that is constant on n small time intervals of length

t=T /n and then to derive the corresponding gradients of the
fidelity function with respect to these constant values. Let Uk

m

be the unitary time-evolution operator corresponding to the
time interval ��m−1�
t ,m
t� and to the noise trajectory 	k.
In this interval, the control field is approximated by a con-
stant am. Since the fidelity function ���f ,�0� is an average of
the fidelity functions used in Ref. �31�, the gradient of
���f ,�0� is obtained as an average of the gradients derived in
Ref. �31�. Thus,

����f,�0�
�am = −

i
t

2�
lim
N→�

1

N�
k=1

N

tr���k
m�†��x,�k

m�� , �21�

where

�k
m = �Uk

nUk
n−1

¯ Uk
m+1�†�fUk

nUk
n−1

¯ Uk
m+1 �22�

and

�k
m = Uk

mUk
m−1

¯ Uk
1�0�Uk

mUk
m−1

¯ Uk
1�†. �23�

In the case that there exist other control terms �ak
c�t�Hk

c� in
the Hamiltonian, the corresponding gradients can be ob-
tained from Eq. �21� by substituting a by ak

c and �x by 2Hk
c.

We note that for noise strength 
=0, all the individual
RTN trajectories are identical and, consequently, the averag-
ing and limiting procedures in Eq. �21� can be omitted. In
this case, Eq. �21� reduces to the equation for noiseless sys-
tems derived in Ref. �31�.

To derive the gradient of the average fidelity �, we apply
the identity

��Uf� =
1

2
+

1

12�
j=1

3

��Uf� jUf
†,� j� . �24�

Hence, the gradient of Eq. �24� can be obtained from
Eq. �21� as

���Uf�
�am =

1

12�
j=1

3
���Uf� jUf

†,� j�
�am . �25�

In the GRAPE algorithm, we calculate the gradient of the
desired fidelity function using Eq. �21� or �25� and update the
control fields by moving along the direction of the gradient
with the restriction a� �−amax,amax�. This procedure results
in an optimized pulse sequence for a given operation time T.
Moreover, the fidelity is also optimized with respect to the
operation time.

We note that the pulse sequences yielding the optimal
fidelity for each set of system parameters are not unique. In
order to find as smooth and as simple a sequence as possible,
we therefore start from a constant control field and use the
gradient method to maximize the fidelity. To ascertain
whether our solution achieves a local or the global maximum
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in fidelity, we repeated the procedure for several different,
uncorrelated initial values of the control field. This resulted
in different pulse sequences with equal fidelities, suggesting
that we have, indeed, found the global maximum, though this
cannot be conclusively claimed. Thus, when we refer to the
results of the GRAPE algorithm, we shall describe the corre-
sponding pulse sequences as optimized rather than optimal.

IV. HIGH-FIDELITY ONE-QUBIT OPERATIONS

In this section, we present numerical results of the imple-
mentation of high-fidelity one-qubit operations, which were
obtained using the GRAPE algorithm, and compare the fideli-
ties to those obtained from the �-pulse, CORPSE, and
SCORPSE sequences. We restrict out attention to two quantum
operations on the one-qubit system, namely, the state trans-
formation corresponding to a bit flip on the computational
basis states and the one-qubit NOT gate.

A. Bit flip on computational basis states

We consider the flipping of a one-qubit state from one of
the two poles of the Bloch sphere to the other. This is a
specific application of the NOT gate to the computational ba-
sis states and constitutes a single quantum state transforma-
tion. This specific transformation may arise, for example,
when some qubits of a multiqubit register need to be flipped
to reach a nontrivial state after a collective initialization. The
initial and final states are taken as the pure state density
matrices

�0 = �0 0

0 1
� and �f = �1 0

0 0
� . �26�

corresponding to the state vectors �0� and �1� at the south and
north poles of the Bloch sphere, respectively. We first con-
sider the performance of the reference � pulse, CORPSE, and
SCORPSE for a fixed noise strength 
 in two limiting cases:
vanishing noise correlation time, and infinite noise correla-
tion time.

Case 1. �c→0. In this case, RTN averages out due to the
well-known phenomenon of motional narrowing �33� since
the noise changes its sign so rapidly that there is no time for
the qubit to drift into the direction of the noise. Therefore, all
composite pulse sequences as well as the reference � pulse
will give unit fidelity in this limit and, for practical purposes,
the time optimal � pulse will be preferred. Furthermore, as
�c approaches zero, the time optimal � pulse is expected to
have the highest fidelity because of its short operation time.

Case 2. �c→�. In this case, RTN reduces to a constant
drift. For large but finite �c the drift may be treated as ap-
proximately constant. In comparison to a � pulse, pulse se-
quences such as CORPSE and SCORPSE, which are specifically
designed to correct time-independent systematic errors will
clearly improve the fidelity of the desired quantum operation.
The asymptotic fidelities for each of these pulse sequences
are given in Eqs. �18�–�20�.

In Fig. 1, the fidelities obtained from �-pulse, CORPSE,
and SCORPSE pulse sequences for a bit flip are plotted
as functions of the correlation time �c and compared to the

corresponding fidelity obtained from the optimized GRAPE

pulse sequence. The noise strength 
 is chosen to be
0.125�amax in this example. As expected, GRAPE yields the
highest fidelities for all values of noise correlation time �c
since it enforces optimization of the pulse sequence at every
�c. Note that the fidelity curve of GRAPE has a global mini-
mum. For this particular bit flip from the south to north pole
of the Bloch sphere, the minimum lies near the correlation
time �c�3� /amax. The existence of a minimum is due to the
fact that since the GRAPE pulse sequences are optimized
for each value of �c, they will not only yield perfect unit
fidelity in the zero-correlation time limit �c→0, where
GRAPE must reduce to the time optimal � pulse, but they will
also yield unit fidelity in the long correlation time limit
�c→�. The latter argument is true provided that the applica-
tion of GRAPE does indeed find the global maximum of the
fidelity, since small systematic errors can be corrected to
arbitrary accuracy �34�. Consequently, there must be a mini-
mum at a finite value of �c in the fidelity curve generated by
GRAPE. The corresponding fidelity curves of the CORPSE and
SCORPSE pulse sequences also show minima, reflecting the
fact that these sequences also give unit fidelity in the limit
�c→0 and are specifically designed to correct to a high order
the systematic errors in the limit �c→�. On the other hand,
the fidelity curve for the � pulse is a monotonically decreas-
ing function of the correlation time, reflecting the fact that
this basic pulse does not provide any correction for system-
atic errors.

Figure 1 also provides a good example of the general
result that for intermediate noise correlation times, SCORPSE

is more favorable than CORPSE. This is a consequence of the
shorter operation time of SCORPSE than that of CORPSE,
which appears to be more significant than the fact that
CORPSE is more efficient than SCORPSE in correcting system-
atic errors. This balance between the length of the operation
time and the accuracy in correcting systematic errors results

FIG. 1. Fidelities ���f ,�0� for bit flip on computational basis
states as functions of the noise correlation time �c, for a � pulse
�Eq. �15�, dotted line�, CORPSE �Eq. �16�, solid line�, and SCORPSE

�Eq. �17�, dash-dotted line�. The optimized fidelity found using
GRAPE is shown as the dashed line. The strength of the RTN in this
example is 
=0.125�amax.
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in a crossover between the fidelity curves of SCORPSE

and CORPSE at very long correlation times, as required by
the asymptotic fidelity expressions in Eqs. �19� and �20�.
This crossover occurs at larger values of �c than are shown
in Fig. 1.

As discussed in Sec. III, the GRAPE algorithm for finding
optimal pulse sequences involves optimization of the opera-
tion time T. However, the RTN used in this work does not
have any dynamical effect on the initial density matrix �0.
Moreover, the probability of the noise amplitude to change
its sign in any time interval of length 
t does not depend on
the earlier values of the noise amplitude and, hence, any
pulse a��t� with operation time T��T may be extended to an
operation time T without change of fidelity by setting

a�t� = � 0, for 0 � t � T − T�

a��t − T + T�� , for T − T� � t � T .
� �27�

Thus, the fidelity is a monotonically increasing function of
the operation time T. In fact, it is found that the fidelity
saturates at a maximum value for rather short operation
times, see, for example, Fig. 2.

Figure 3 shows the error ���f ,�0�=1−���f ,�0� of the
GRAPE optimized result as a function of the correlation time
�c, for several different noise strengths. A quadratic de-
pendence of the error on the noise strength, ��
2, is ob-
served over the parameter ranges 
� �amax/16,amax/4� and
�c� �0,30� /amax�.

B. One-qubit NOT gate

We now analyze the implementation of the one-qubit NOT

gate under RTN, i.e., the bit flip state transformation for all
initial states. The bit flip considered in Sec. IV A is a special
case of the NOT gate, which is generally given as a � rotation
about the x axis on the Bloch sphere. To assess the perfor-
mance of the full quantum gate, we use the fidelity function
� defined in Eq. �13� as a uniform average over pure initial
states.

The �-pulse, CORPSE, and SCORPSE sequences are all spe-
cifically designed to implement a NOT gate and thus are the
same here as in the previous section. However, the GRAPE

pulse sequences for the bit flip on the computational basis
states and for the full NOT gate differ, since the opti-
mized fidelity functions are different for these two opera-
tions, compare Eqs. �11� and �13�. Figure 4 shows the gate
fidelities obtained with the �-pulse, CORPSE, SCORPSE, and
GRAPE pulse sequences, as functions of the noise correlation
time �c. The noise strength is chosen to be 
=0.125�amax,
as in Fig. 1.

In comparison to the fidelities for the bit flip on compu-
tational basis states shown in Fig. 1, the fidelities for the NOT

gate obtained with the CORPSE and SCORPSE pulse sequences
are lower, whereas the fidelity obtained with the � pulse is

FIG. 2. Fidelity ���f ,�0� of the GRAPE pulse sequence as a func-
tion of the operation time T, for noise correlation time �c

=5� /amax and noise strength 
=0.25�amax.

FIG. 3. Error ���f ,�0�=1−���f ,�0� of the GRAPE optimized
pulse sequence, shown as a function of the correlation time �c for
noise strengths 
=0.25�amax �dotted line�, 
=0.125�amax �solid
line�, and 
=0.0625�amax �dash-dotted line�.

FIG. 4. Fidelities � for the NOT gate, shown as functions of the
correlation time �c for a � pulse �dotted line�, CORPSE �solid line�,
and SCORPSE �dash-dotted line�. The figure also shows the opti-
mized fidelity found using the GRAPE algorithm �circles�. The RTN
strength 
 is set at 0.125�amax.
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higher. Nevertheless, Figs. 1 and 4 show, qualitatively, the
same phenomena, namely, motional narrowing in the short
correlation time limit �c→0, where the � pulse is optimal,
and the best correction of systematic errors at intermediate
correlation times by the SCORPSE pulse sequence. In the long
correlation time limit, there is again a crossover for the
CORPSE sequence to yield the highest fidelity of these three
pulse sequences.

Comparison of Figs. 4 and 1 show that the difference
between the performance of GRAPE and the composite pulse
sequences is less pronounced in the case of the NOT gate than
for the bit flip on computational basis states. This observa-
tion is explained by the fact that the GRAPE algorithm
searches a single pulse sequence, which is required to yield
high fidelity for a large number of initial states for the NOT
gate, whereas there is only one initial state in the bit flip on
computational basis states. A remarkable aspect of Fig. 4 is
that the GRAPE algorithm yields a fidelity very close to that of
SCORPSE at values �c�30� /amax. However, this similarity in
the fidelities does not imply a convergence of the GRAPE
sequence to SCORPSE for any values of �c. Not only do the
asymptotic limits for these two sequences differ as discussed
above, but also the operation times are different, see below.

Since we employ the averaged gradient in Eq. �25�, which
requires the same amount of computation as three gradients
for fixed initial conditions, one might conclude that finding
the optimized pulse sequences for quantum gates will require
approximately three times as much computational time as for
the bit flip on the computational basis states. However, as
noted above, the GRAPE algorithm finds the optimal operation
time. This task is straightforward in the case of a bit flip on
the computational basis states analyzed above, where the fi-
delity is a monotonically increasing function of the operation
time. For the NOT gate, however, this optimization is non-
trivial. In fact, because of the averaging over initial condi-
tions, the optimal fidelity does not necessarily increase
monotonically with T, as is illustrated in Fig. 5. Finding the
optimal operation time for a quantum gate independent of the
initial conditions, thus, clearly increases the complexity of
the problem.

Additional insight into the efficiency of the GRAPE pulse
sequence may be obtained by examining the behavior of the
optimal operation time as a function of the correlation time.
As shown in Fig. 6, the optimal operation time of GRAPE

increases sharply to values close to the operation time of the
SCORPSE pulse sequence at a value �̃c�18� /amax. For longer
correlation times than �̃c, the fidelity obtained with GRAPE

is only marginally above that obtained with SCORPSE, see
Fig. 4. It appears from Fig. 4 that errors due to RTN cannot
be efficiently corrected with bounded controls for correlation
times shorter than �̃c, and therefore, the optimal operation
time of GRAPE reduces to that of a � pulse in this regime.

V. SUMMARY AND CONCLUSIONS

In this work, we have shown how to perform high-fidelity
quantum operations using bounded control fields on a one-
qubit system that is subject to random telegraph noise acting
on the qubit energy splitting. We considered examples of two
types of quantum operations, namely, a state transformation
and a quantum gate. For the state transformation, we chose a
bit flip on the computational basis states, in which the one-
qubit state is flipped from the south pole of the Bloch sphere
to the north pole. As the quantum gate, we used the one-qubit
NOT gate, which generates a complete � rotation on the
Bloch sphere about the x axis independent of the initial state
of the system.

In both cases, we compared the fidelities obtained from
the � pulse to the fidelities obtained from the CORPSE and
SCORPSE composite pulse sequences. In the limit of vanish-
ing noise correlation time �c, motional narrowing occurs.
This effect renders the � pulse to be the most accurate se-
quence since it is time optimal in implementing a bit flip on
almost all states. On the other hand, the CORPSE sequence
yields the highest fidelity in the long correlation time limit
�c→�, since it is designed to be the most accurate three-
pulse sequence for correction of systematic errors. Over a
rather wide intermediate range of values of correlation time

FIG. 5. Optimized fidelity � for the NOT gate obtained from
GRAPE, shown as a function of the operation time T for noise cor-
relation time �c=30� /amax and noise strength 
=0.125�amax.

FIG. 6. Optimal operation time of pulse sequences obtained nu-
merically with the GRAPE algorithm, shown as a function of the
correlation time �c for noise strength 
=0.125�amax.
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�c, it is found that SCORPSE yields the highest fidelity among
the three standard pulse sequences, suggesting that this may
be a useful approach to suppress environmental noise in
physical realizations of quantum computers.

We also calculated pulse sequences numerically to opti-
mize the fidelities, using a modification of the gradient as-
cent pulse engineering method and compared the results of
this numerical approach to the standard composite pulse se-
quences. The combination of the original GRAPE algorithm
with a unitary quantum trajectory approach that is imple-
mented here provides an adaptive way of generating pulse
sequences that optimizes gate and state transformation fideli-
ties in the presence of noise. One key feature that emerges
from this work is that the fidelity optimized pulse sequences
obtained using the GRAPE algorithm were always found to
yield higher fidelities than the most accurate composite pulse
sequence. Furthermore, our method is applicable to noise
with arbitrary correlation time, allowing generation of deco-
herence suppressing pulse sequences in all dynamic regimes
of noise. This property is particularly useful in the interme-
diate regime where neither dynamical decoupling nor control
methods based on Markovian master-equation descriptions
can be used.

In this work, we employed an unbiased average over ini-
tial states to obtain the fidelity measure � for a quantum
gate. A useful extension of this approach would be to com-
bine the same methodology with an optimization of the
quantum state fidelity function ���f ,�0� to locate its mini-
mum with respect to the initial state. Although involving a
considerably greater numerical effort, this could be particu-
larly useful for determination of more specific lower bounds
on the gate fidelity.

The results of this paper provide useful average bounds
for the implementation of high-fidelity one-qubit operations

in a noisy system without ancillary qubits. Although a simple
RTN noise model is used in this paper, we expect that the
qualitative dependency of the fidelity on noise strength and
correlation time will also be present in a general qubit-bath
system. In particular, it will be of interest to apply the meth-
ods presented here to the study of different noise models,
e.g., Gaussian noise with a 1/ f spectrum and noise in both �z
and �x directions in the Hamiltonian of Eq. �1�. Other pos-
sible extensions of this work include high-fidelity control of
multiqubit systems. Recent work has addressed optimal con-
trol of noiseless coupled superconducting qubits �35�. For
these systems, the environmental noise may act on each qu-
bit in either a correlated or uncorrelated fashion, introducing
additional noise variables. These may be treated in exactly
the same way as done here, without any formal modification.
Coupling qubits will introduce entanglement and require that
the density-matrix dynamics be analyzed for a higher-
dimensional system. There do not appear to be any formal
limitations to extending the analysis to this expanded set of
questions for noisy multiqubit systems, although a reformu-
lation of the equations for the fidelity and its gradient will be
required. One important open issue that would be address-
able by this approach is to find a control sequence for the
interqubit coupling term that implements a controlled NOT

gate with high fidelity in the presence of noise.
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