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We examine the problem of simulating lattice gauge theories on a universal quantum computer. The basic
strategy of our approach is to transcribe lattice gauge theories in the Hamiltonian formulation into a Hamil-
tonian involving only Pauli spin operators such that the simulation can be performed on a quantum computer
using only one- and two-qubit manipulations. We examine three models, the U(1), SU(2), and SU(3) lattice
gauge theories, which are transcribed into a spin Hamiltonian up to a cutoff in the Hilbert space of the gauge
fields on the lattice. The number of qubits required for storing a particular state is found to have a linear
dependence on the total number of lattice sites. The number of qubit operations required for performing the
time evolution corresponding to the Hamiltonian is found to be between a linear to quadratic function of the
number of lattice sites, depending on the arrangement of qubits in the quantum computer. We remark that our

results may also be easily generalized to higher SU(N) gauge theories.
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I. INTRODUCTION

The efficient simulation of quantum many-body problems
is today of vital importance to many fields of physics,
stretching from condensed matter physics, atomic physics,
molecular and optical physics, nuclear physics, quantum
chemistry, and high-energy physics. Despite advances in
various numerical techniques, a truly reliable, accurate, and
efficient method for extracting physical quantities for such
problems does not exist in general. For example, quantum
Monte Carlo methods suffer from the “minus-sign problem,”
and the more recent density matrix renormalization group
(DMRG) method possesses difficulties in dimensions greater
than 1 [1]. The impact of a method that is free from such
difficulties would undoubtedly offer new insights into the
physics of quantum many-body systems.

Quantum computers are hoped to offer an alternative to
such methods. The exponential parallelism that is employed
by quantum computers is believed to overcome the problems
associated with the exponential explosion of Hilbert-space
size inherent to quantum many-body problems [2]. It has
been shown that an efficient simulation is indeed possible for
a large class of spin, fermionic, and bosonic Hamiltonians
[3,4]. For example, fermionic Hamiltonians are implemented
via an algebraic mapping of operators via the Jordan-Wigner
transformation. This allows fermion operators appearing in
the Hamiltonian to be written entirely in terms of spin op-
erators. As discussed in Ref. [3], this approach is free of the
“minus-sign problem” that is present in Monte Carlo meth-
ods. The simulation is then performed by evolving the sys-
tem according to the time-evolution operator by a series of
gates which evolve the system according to the system
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Hamiltonian. A phase estimation algorithm using the quan-
tum Fourier transform or a similar algorithm is then per-
formed to calculate the eigenenergies of a given system [5].
We assume implicitly here the standard model of quantum
computation with two-level spin qubits and unitary opera-
tions. For bosonic operators, there is no exact algebraic map-
ping of operators onto spin operators, as can be simply un-
derstood [6] by the disparate sizes of the Hilbert spaces—a
single boson has an infinite-dimensional Hilbert space,
whereas a spin has only two dimensions. However, it is still
possible to map the bosonic Hamiltonian onto a spin Hamil-
tonian via a transcription of the operator mappings [4].
Clearly, due to the mismatch in the system dimensions of the
bosons and spins, there must be some truncation in the Hil-
bert space. However, this truncation can have little or no
effect in terms of the Hamiltonian if performed in the correct
way. For example, Hamiltonians that conserve particle num-
ber have a maximum of the total number of particles on a
given site and therefore have an effective cutoff equal to the
number of particles.

One problem that has received little attention is the prob-
lem of the quantum simulation of lattice gauge theories [7,8].
Arguably this is the most computationally intensive quantum
many-body problem of all, due to the large numbers of de-
grees of freedom per site and the necessity of simulating in
three spatial dimensions. Since the first Monte Carlo simula-
tions over 25 years ago [9], the lattice gauge theory program
has steadily advanced with increases in computer speed and
improvements in simulation techniques. For the first time in
the last few years it has become possible to perform a real-
istic simulation full QCD (i.e., with fermions) without
quenching [10]. However, should a method become available
that could give accurate results while being computationally
less expensive, this could offer a valuable alternative to the
methods being employed today.
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In this paper we study the problem of whether it is pos-
sible to implement lattice gauge theories on a universal quan-
tum computer efficiently. Before commencing we must make
several choices in how we formulate the problem. First, we
assume that a quantum computer with individually address-
able qubits and controllable local (nearest-neighbor) two-
qubit interactions is available. In particular, we assume that
our quantum computer consists of two-level qubits, so that it
is operated on by Pauli spin operators. This is simply for
convenience as most of the literature is formulated in this
way. Second, we choose to concentrate on pure gauge field
theories alone, as an extension to include fermions should
involve only a small modification to the results presented
here. For example, fermion fields may be implemented in a
similar way to that described in Ref. [3]. The third regards
the formulation of the lattice gauge theory. To take advantage
of the quantum parallelism of the quantum computer we
choose a Hamiltonian formulation of lattice gauge theory, in
contrast to the Euclidean formulation that is more common-
place in present-day simulations. The basic strategy is then to
rewrite the operators appearing in the lattice gauge Hamil-
tonian into terms of spin operators. As is the case for bosons,
no algebraic mapping of operators to spin operators is avail-
able for gauge operators due to different Hilbert-space sizes.
Analogously to boson operators, we will show that it is pos-
sible to preserve the operator mappings of the gauge opera-
tors. After this is done, one can implement the methods de-
scribed in Refs. [3,11,12] to perform the evolution. The
Hamiltonian formulation has also the advantage that the lat-
tice dimension for a simulation of real-world QCD (for ex-
ample) is 3 rather than 4 for the Euclidean formulation,
which reduces the space and time requirements for the cal-
culation.

We consider three models in this paper. First we consider
compact U(1) lattice gauge theory. Although the transcription
is particularly simple in this case, this will serve to introduce
the basic strategy that is employed. We then move onto the
next most complicated case of SU(2) lattice gauge theory.
This contains all the elements that are required in order to
transcribe any Hamiltonian for SU(N). We finally consider
the transcription of the SU(3) Hamiltonian, which is the clos-
est relation to QCD. Although it is crucial that the time-
evolution operator can be implemented efficiently, it is also
important that other steps in the simulation can be carried out
efficiently. To show that this is possible, in Sec. IV we dis-
cuss methods for initializing the qubit states, suitable for
extracting quantities such as the eigenenergies and expecta-
tion values of the low-lying eigenstates. This is again carried
out for the U(1), SU(2), and SU(3) lattice gauge theories.

This paper is organized as follows. In Sec. II we give a
brief review of the simulation of spin Hamiltonians (Sec.
I A) and lattice gauge theory (Sec. II B). In Sec. III, we
transcribe the compact U(1) lattice gauge theory (Sec. III A),
SU(2) lattice gauge theory (Sec. III B), and finally the SU(3)
lattice gauge theory (Sec. III C) Hamiltonians. Section IV
discusses the initialization of qubits, and Sec. V discusses
how observables may be extracted. Section VI gives a sum-
mary of our findings and conclusions.
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II. PRELIMINARIES

A. Simulating spin Hamiltonians

We now give a brief review of the method of simulating
spin Hamiltonians following Refs. [3,12]. The various meth-
ods of extracting eigenstates, eigenenergies, and expectation
values for a given Hamiltonian in these references rely upon
the ability of performing the time evolution corresponding to
U(r)=exp(-iHt) where H is the Hamiltonian under investi-
gation [3,5,11-13]. We cannot directly perform the evolution
U(r) since we assume that only one- and two-qubit manipu-
lations are available on our quantum computer. We therefore
decompose the evolution operator using the Trotter formula

[11]

—iHlt/me—int/m ..

e—th = lim (e e—iHNHt/m)m , (1 )

m—oo
where the Hamiltonian is a sum of Ny terms, H=S\"H,.
Assuming that the Hamiltonian under consideration here is
entirely composed of Pauli spin operators, each term on the
right-hand side (RHS) of Eq. (1) will consist of the exponen-
tial of a product of a number of spin operators:

Ui(t) = exp(— g a;“f), 2)

where v; is a constant involving coupling constants and the
time of evolution, j is an operator label (e.g., labeling the site
number, etc.), and a;=x,y,z. Operators such as Eq. (2) may
be decomposed entirely into one- and two-qubit terms. De-
note single-qubit manipulations by

Rj(e,n) — ei(00j~n+6)’ (3)

where 6 is a global phase shift. Denote two-qubit manipula-
tions by Rj(w). For example, a two-qubit manipulation that
is available may be

Ry(@) = e77)%, (4)

The precise form of the two-qubit interaction is not impor-
tant, as long as one is present. Terms that involve only one
spin operator in the exponent in Eq. (2) may be directly
constructed from Eq. (3). Terms involving a product of two
or more spin operators in the exponent of Eq. (2) can be
written by an appropriate combination of one- and two-qubit
operations. For example, say we need to construct the opera-

tor 79172, This may be decomposed into the product
™% = RY(71/4,) R} (7/4,9)R 5 (1)R (71/4,y) Ry (/4,x),

where we assumed the two-qubit manipulation (4) and used
the identity UTeMU=eV"™MU, where U is an unitary operator
and M is an arbitrary operator. Longer products of spin op-
erators may be constructed by successive products of two-
qubit operators [3].

The simulation then proceeds in the following way. The
initial state of the qubits is first prepared, the precise form of
which depends on the quantity that is being calculated. This
initial state is then evolved according to the particular algo-
rithm to be performed, which implements the time evolution
operator U(f)=e. The time evolution is performed accord-
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FIG. 1. An elementary plaquette. Each link is labeled by the
coordinate r of one of the sites that it connects and the direction of
the link wu,v.

ing to the method described above. Finally a measurement is
performed on the system to extract the desired results. For
example, in order to measure the eigenvalue spectrum, the
qubits are prepared in a state with a nonzero overlap with the
eigenstate of interest. This is typically the ground or low-
lying eigenstates of the system. A suitable initial state is for
example the mean-field ground state of the Hamiltonian.
This initial state is then evolved forwards using the time
evolution operator U(¢), using a phase estimation algorithm
[13]. The estimated phases then recover the eigenspectrum of
the Hamiltonian. Further details of the extraction of observ-
ables may be found in Refs. [3,5,11-13].

B. Lattice gauge theory

Let us define the d-dimensional SU(N) lattice gauge
theory in the Hamiltonian formulation [14] (an excellent re-
view of lattice gauge theory in the Hamiltonian formulation
may be found in Ref. [15]). Label the sites of the lattice by a
coordinate r. Each site has 2d links emanating from it. Label
each of these links according to the site it is attached to and
the direction that the link points (see Fig. 1 for the labeling
conventions). On each link of the lattice define an
(N?=1)-component operator A%, with canonically conjugate
operators E“. These are the gauge field operators of the lat-
tice gauge theory. Define an N X N unitary matrix involving
the gauge fields

| N1
U(r,,U«)EeXp(izgaE PAYr, ) |, (5)
a=1

where 7 (a=1,...,N*~1) are the fundamental generators of
SU(N), g is the coupling constant, and « is the lattice spac-
ing. The generators of SU(N) obey

Tr(77%) = 3 6% (6)
and
[, 7] = if P77, )

where 67 is the Kronecker delta and f*#” are the structure
constants of the group. The following commutation relations
then follow:

N
1
[Ea:Uij] = EE Tﬁ(Ukj, (®)
k=1
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N
. 1
[E*U}]=~ Ez U, 9)
[E*,EF]=if*PE", (10)

where the indices i,j on U; refer to the matrix elements of
the N X N matrix. We denote all quantities which contain the
operators E* or A in bold font. The SU(N) pure gauge
Hamiltonian is written

_g_2 a 2
H= > 2 [EXr,w)]
a

ruoa

+x

p e{plaquettes}

(zN—[Z(p>+zT<p>])], (11)

where
Z(p) =T U(r, )U(r + p, U (r + v, w,)U' (r,v)] (12)

and x=2/g*. The trace in the Z(p) operator is taken after
matrix multiplication of the four U matrices. The first sum-
mation in the Hamiltonian (11) sums over all links in the
lattice, and the summation involving the Z(p) operator sums
over all plaquettes in the lattice. The arrangement of links in
a plaquette operator is shown in Fig. 1. The overall constant
of g>/2a and the constant term 2N in the plaquette summa-
tion merely rescale and shift the energies, respectively, and
will be omitted for the rest of this paper.

III. FORMULATING LATTICE GAUGE THEORIES VIA
SPIN OPERATORS
A. Hamiltonian for U(1) lattice gauge theory

We first start with one of the simplest lattice gauge theo-
ries: compact U(1) lattice gauge theory (compact quantum
electrodynamics with no fermions). The transcription of the
operators is particularly simple in this case and will therefore
serve to introduce the basic method that will be employed for
the SU(2) and SU(3) cases. The U(1) Hamiltonian is [14]

Hy =2 E(rnw-x 2 [Zp)+Z'(p)], (13)
ru p e{plaquettes}
where
Z(p) — ei0(r,p,)ei0(r+/.L,V)e—i0(r+v,/4)e—50(r,v)’ (14)
where we have defined #=gaA according to standard nota-
tion. The generator of U(1) is a scalar, and therefore all the

U=¢'? commute with each other. The U are 1X 1 matrices.
The E obey the commutation relations

[E,U]=U, (15)

[E,U=-U". (16)

The Hilbert space for the Hamiltonian may be generated by
successive applications of Z(p)+Z'(p) on the state |0) which
is defined to be an eigenstate of the E operator satisfying

E(r,w)[0)=0 (17)
for all r and u [14].
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FIG. 2. A single-plaquette excitation for U(1) lattice gauge
theory. All unlabeled links have /=0.

Let us first consider the Hilbert space of a single link. A
link where E has been applied / times is an eigenstate of E>
with eigenvalue /2:

E*(U)'|0)y=*(U)'|0). (18)
We can therefore identify the orthogonal states
)= (U)|0), (19)
which satisfy
E*) =11y, (20)
uly=1+1), U'DH=i-1). (21)

The plaquette operator then shifts the |I) eigenstates on links
arranged on all squares of the lattice (see Fig. 2).

This space of states may be easily rewritten in the spin
language in the following way. On a given link, a quantum
register of D qubits keeps track of the |I) state that the link is
in. Denote the state that the register is in by |l)reg, where
“reg” serves as a reminder that this is a state of the register.
Clearly, since [ e{-=,...,%} and D qubits can only keep
track of a maximum of 2° values /, some truncation is
involved. This truncation is performed such that

l€{~lnaxs---+lmax}. D qubits will then give an [, of (2P
-1)/2.
Now define operators that act on these registers:
E2|l>reg = 12|l>reg’ (22)
Li|l>reg = |l + 1>reg’ (23)
L+|lmax>reg =0, (24)
L_|_ lmax>reg =0. (25)

A simple implementation of these operators is given in Ap-
pendix A. It is then a simple matter to rewrite the U(1)
Hamiltonian as

HU(1)=EE2(V7M)_X >
o p e{plaquettes}

[Z(p) +Z'(p)]. (26)

where

Z(p) =L*(r,u)L*(r + p,v)L~(r + v, ) L~ (r,v),
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FIG. 3. Log-log plot of the relative error of the ground-state
energy versus x for three values of /,, on a single-plaquette lattice
for U(1) lattice gauge theory. Ef)m“" is the ground-state energy ob-
tained using the /,, truncation, while E is the true ground-state
energy.

Z'(p) =L (r, )L™ (r + p, ) L*(r + v, ) L*(r, v).

A similar Hamiltonian was given in Refs. [6,16].

The /.« used in the registers needs to be chosen carefully
depending on the size of the lattice, the dimension of the
system, and the magnitude of the parameter x. Figure 3
shows the relative error of the ground-state energy due to a
trunction to [, for the Hamiltonian (13) on a single-
plaquette lattice. We see that for large values of x, a large /.,
is necessary as would be expected due to the larger magni-
tude of the perturbative term in Eq. (13). Past studies indi-
cate that higher-dimensional systems require a larger cutoff
than lower-dimensional systems, although larger lattices re-
quire a smaller [, for a given accuracy [17]. In one-
dimensional systems, for example, a relatively modest /,,,,
(Ihax=3 in the case of Ref. [18]) is enough for full conver-
gence to [,,,— % without extrapolation. In general, some
extrapolation procedure is necessary, so that the calculation
is repeated for several values of [, and the results are ex-
trapolated to [,,,, — [17].

Let us now consider the number of qubits and number of
operations required to implement the Hamiltonian (26). For a
total of M lattice sites, this requires a total of ~MdD qubits
and is therefore linear in space requirements. Let us estimate
the dependence of the total number of operations required for
a particular time evolution U(z) with respect to the number of
lattice sites, M. By a judicious arrangement of qubits, it is
clear that the M dependence can be made linear. In Fig. 4,
the qubits associated with an |I) register for a particular link
are grouped spatially in the same location, with the same
units repeating in the same configuration as the links on the
original lattice. As each term in the Hamiltonian (26) only
acts between nearest neighbors, there is no dependence on M
for each term. The total number of operations is therefore
proportional to the number of terms in the Hamiltonian,
which is «Md. A less ideal situation will have a qubit ar-
rangement which involves manipulations between qubits
which are spatially separated by distances of the order of the
number of qubits required for the simulation. In the worst
case, every term in the Hamiltonian will involve qubit opera-
tions between very distant qubits. The number of
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FIG. 4. An optimal arrangement of qubits for lattice gauge theo-
ries. The qubits associated with a particular link are shown in boxes.
Registers keeping track of the state of a particular link are spatially
arranged in the same way as the links of the original lattice.

operations—i.e., the sequence of swap operations—required
for executing such a long-range term is of the order of the
total number of qubits, ~MdD. Therefore, the total number
of operations will grow «M?d’D. This is quadratic with the
lattice size. The best-case and worst-case scenarios presented
here are both probably rather unrealistic; we expect that the
true dependence will fall somewhere in between.

B. Hamiltonian for SU(2) lattice gauge theory
We now examine SU(2) lattice gauge theory. The Hamil-
tonian is [14]

Hgy) = > 2 ErwP-2x X

e a p e{plaquettes}

Z(p), (27)

where Z(p) was defined in Eq. (12). A simplification oc-
curred in the above Hamiltonian due to Z'(p)=Z(p) for
SU(2). The U operators appearing in the plaquette operator
Z(p) are now 2 X 2 matrices. The generators 7 in Eq. (5) are
the 2 X2 Pauli matrices. The commutation relations of the
E“ with the U obey relations (8)—(10).

The Hilbert space of the Hamiltonian is generated by suc-
cessive applications of Z(p) on all possible locations on the
lattice starting from the state satisfying E*(r, )| 0)=0 for all
r and u. Consider a state such as that shown in Fig. 5, where
two plaquette operators Z(p) operate on the same plaquette.
Concentrating on one of the four links, this creates terms
such as

Uﬂ'lLﬂ'lRUnLl‘lR|O>7 (28)

where there is no matrix multiplication between the U’s as
all indices have been contracted in the trace of each Z(p)

PHYSICAL REVIEW A 73, 022328 (2006)

[Z(p)} 10>= >

FIG. 5. A double-plaquette excitation. All unlabeled links have
E“(r,n)|0)=0.

operator. We distinguish between the left and right matrix
element labels using the subscripts L and R on the matrix
element labels. Such terms may be simplified using the
group-theoretic identity [19,20]

j+i'
Upp (DU (B)= 2 (LM jngsj my)
J=lj-j"|
X(J,Mp janR;j,7mR>U£/1LMR(¢)7
(29)
where

3
Ul @) = [exp(z‘E rj‘dfﬂ (30)
a=1

mn

and 7" is the generator for the irreducible representation of
SU(2) corresponding to angular momentum j [74 is a (2j
+1) X (2j+1) matrix]. The (J,M|j,n;j’,m) denote Clebsch-
Gordan coefficients for SU(2). We may now evaluate (28).
Let us generalize this a little by taking U,,LnR—> U{;LnR. Since
the U operators appearing in Z(p) are all in the j=1/2 rep-
resentation, this corresponds to j'=1/2 in Eq. (29) and thus
there are only two terms in the summation: J=j+1/2 (unless
j=0). It is also convenient to define [21]

jonpng) =N2j+ 10U, [0), (31)

where the factor of V2j+1 necessary so that the states are
correctly normalized:

<j ’mL’ij’nL’nR>= (sj/"aanLémRnR' (32)
We then have
j+1/2 -
2j+1 1
v'? [,y Np) = JM,\jn ;—.m
mymph/>TUL R j=|§1/2‘ 2+ 1 L|J-nL 2 L

1
><<J,MR j,nR;E,mR>

XJ,MLsz+I’LL,MR=mR+nR>. (33)

The difference to the analogous result for the U(1) case [see
Eq. (21)] is that there are now two terms and Clebsch-
Gordan coefficients are present.
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TABLE 1. Formulas for Clebsch-Gordan coefficients <]=j+ Aj,M=m;+Am j,mi;%,Am>, where i=L, R
is put in as appropriate. The Wigner operators corresponding to the shifts are also listed for comparison with

Refs. [23,24].

Wigner
Coefficient operator Aj Am Formula
1
. 10 firmitl
chy 1/2 1/2 2j+1
1
1 - 1
_ j—m;+
¢ 1o 172 ~1/2 2+ 1
0
0 .
. j—m;
5 1o -1/2 1/2 - 2j+1
1
0 .
. Jj+m;
chy 1o -1/2 -1/2 2+ 1
0

Let us also find the effect of operating the first term in the
Hamiltonian (27) on the state |j,n;,ng). Using the commu-
tation relation

3
) 1 ) .
[g <Ea>2,U;L,,R] =32 DVl =16 + DV,
we have
2 (Ea)zjanvnR>=j(j+ l)jan’nR>' (34)

Our problem is then to rewrite Egs. (33) and (34) in a spin
language. A similar problem was examined by Bacon,
Chuang, and Harrow [22], where an algorithm was presented
to perform the transformation

1
—,Am>
2 reg

j’m>reg

12
1
S <J,M j,m;—,Am>|J,M=m+Am>reg.
J=|j-1/2| 2
(35)
The Clebsch-Gordan coefficients (J M | j ,m;%,Am> may be

calculated using the formulas presented in Table I. A com-
pletely general way of calculating such coefficients for
SU(N) is presented in Refs. [23,24]. The circuit of Bacon,

Chuang, and Harrow may be rewritten in operator form, de-
fining the operators

P =i £ 5)rege (36)
M*|m)yeg = m3), .. (37)

For the two cases Am=+% and Am=—%, we have
V(Am= 1/2)=M+(J+CA]1+J_CA21), (38)

where the ¢, are diagonal operator versions of the c¢,,, co-
efficients that extract the coefficients from |j,m),., using the
formulas presented in Table I. An example of how such an
operator may be constructed is shown in Appendix A. One
may verify that this is equivalent to the transformation (35)
by applying the V(Am) operators to the state |/, 7).

It is now clear how to write an operation corresponding to
Eq. (33). For each link, we require three registers corre-
sponding to the state |j,n; ,mp). Denote this by |j,m; ,mp)eo.
As for the U(1) case, a maximum cutoff must be imposed on
these registers to keep the number of qubits finite. For j
={0, %, .- ,jmax}, the m; and my registers will be in the range

_jmax’_jmax'l'fv ’jmax .

We may then write the operator corresponding to Eq. (33)

as
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U2 v, =MEMRLIeE R Ny +a7ek X N1, (40)

n

where we defined

1
j,nL+2,nR , m=1,
L. _ 4 reg
Mm ]7nL7nR>reg - 1 (41)
jsng R , m=2,
\ 2 reg
and
.
1
Jsnp,ng+ < , m=1,
R|: _ 4 2 reg
Mm ]9nL9nR>reg - 1 (42)
Jnp,ng— = , m=2,
q 2 reg
and also
2j+1
LT k=1,
2j+2

Nk= (43)
[2j+1
L’ k=2.
2j

The diagonal operators Nk recover the normalization factors
from the registers |j,n;,ng), according to Eq. (43).

We may now write the full Hamiltonian for SU(2) using
these operators. It is first convenient to rewrite Eq. (12) using
the identity for SU(2) [21],

Uf:m = (_ 1)m_nU—m—n’ (44)

which gives

Zp)= X

m|m2m3m4

(_ l)ml_m3Umlm2(rv /-L)

X Um2m3(r + M, ) U_m3_m4(r + v, ) U_m4_ml(r, V).

(45)
Let us also define the operator
E2 j’mL’mR>reg=j(j + 1) j’mL’mR>reg' (46)
We thus have
Hgyoy =2 EX(rw)-2x 2 Z(p),  (47)
I p e{plaquettes}
where
Z(p) = E (_ l)ml_m3vm1m2(r’ Iu/)
m|m2m3m4
X Vm2m3(r + U, V) V—m3—m4(r +7, /'L)
X V_m4_ml (r,v). (48)

This is the final result for SU(2). The Hermiticity of this
Hamiltonian is guaranteed from the property

ann = (_ 1 )m—n V—m—n . (49)

Let us now estimate the number of qubits and the number
of operations required for this Hamiltonian. Three registers

PHYSICAL REVIEW A 73, 022328 (2006)

are required per lattice link, and therefore the number of
qubits is ~3MDd, where D is the number of qubits in a
single register. This is linear with the number of sites M. As
for the U(1) case, with a judicious arrangement of qubits (see
Fig. 4), the local nature of the Hamiltonian may be preserved
in the transcribed version of the Hamiltonian. This makes the
total number of operations «Md as for the U(1) case. The
proportionality constant will be larger in this case, as each
lattice link requires a larger number of qubits. There is also
the added complexity in calculating the Clebsch-Gordan co-
efficients ¢;;, which may be performed in ~poly(j,x) opera-
tions. Again the worst-case estimate may be obtained by as-
suming that each term in the Trotter expansion is a product
of operators with a length of the order of the number of
qubits. We therefore obtain the same result as the U(1) case,
such that the total number of operations is «M?d’D.

C. Hamiltonian for SU(3) lattice gauge theory

The last case we consider is SU(3) lattice gauge theory,
which is the theory of principal interest as it is closest to
QCD. The Hamiltonian is

8
Hgyp =2 2 [E(npP-x 2 [Z(p)+Z(p)],

ru a=1 p e{plaquettes}
(50)

where Z(p) was defined in Eq. (12). The U operators appear-
ing in the Z(p) operators are 3 X 3 matrices. There are eight
terms in the « summation in Eq. (5) corresponding to the
eight generators of SU(3). The commutation relations of the
E“ with the U obey relations (8)—(10).

The basic strategy is identical to the SU(2) case, albeit
with the added complexity of the SU(3) group. Let us again
consider what kind of states will be generated by successive
applications of the plaquette terms in Eq. (50) on the state
satisfying E%(r, u)|0)=0 for all r and u. Consider again the
double-plaquette excitation shown in Fig. 5. We again obtain
terms such as U, 7RU)‘L)‘R|O>’ which may be simplified using
the SU(3) version of the identity (29) [19,20]:

Ul';);yR((b) U;}\)L)\R(QS) = QFEF QT |0,y
L*R

X{(Q,I'x

w,\g; ', 7R>U?LFR(¢),
(51)

where

8
Un(¢) = [GXP(iE Tf)d’a” (52)
a=1 10N

and 79 are the generators of SU(3) for the irreducible repre-
sentation w. The notation in Eq. (51) requires some explana-
tion. First recall that every state in SU(3) can be labeled by
five numbers

p.q.T,T,Y), (53)

where p and ¢ label the irreducible representation, 7" and 7¢
label the T spin, and Y labels the hypercharge [25]. The label
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w in Eq. (52) then corresponds to (p,q), and the labels \;
and A, then label two sets of (T,7%,Y). For example, the
states of the w=3 representation (i.e., p=1, g=0) are labeled
[in the notation of Eq. (53)]

i) e h=1

1,0,1

X

ez,

1,0,0,0,— 2) &\ =3.
The states of w=3" are

0,1,2,1 -

5152900

%><—>)\=l,
0.1.3.-3.-3) = A =2,

0,1,0,0,2) >\ =3.

The (Q.T'|w,\;®',7y) thus denote Clebsch-Gordan coeffi-
cients for SU(3). We may therefore define

Tr+ty Trttg
3 : ,
U'yL'yR TL’T‘Z’ YL’ TR’ 71173, YR>: 2 2 2
(") T =T 17| Tp=|Tg—tgl
X{p'.q" Tp, TR . Y
where the (p’, ¢') summation is over the three terms {(p

+1,9).(p—1,9+1),(p,q—1)} and the (7;,£;,y;) are the corre-
sponding 7-spin and hypercharge values corresponding to
the index 7y; (i=L,R). The hypercharge and the T¢ spin sim-
ply add together as

T =T;+1, (59)
for i=L,R. We also require the rule for operating U since

YL VR
the analogous identity to Eq. (44) does not hold for SU(3)

This is given by replacing 3— 3" in Eq. (57) and summing
over{(p,q+1),(p+1,q-1),(p—1,q)} inthe (p’,q') summa-
tion.

The first term in Eq. (50) corresponds to operating the
Casimir operator for SU(3). We thus have [25]

> (

1
_3[p

where we have omitted the 7-spin and Y labels for brevity.

We may now write the SU(3) Hamiltonian in a spin lan-
guage. The basic strategy is the same as for SU(2), where we
use a modification of the circuit of Bacon, Chuang, and
Harrow [22]. In Ref. [22] it is suggested that qudit registers
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T e
TL, Ti, YL? TR? 7—?2’ YR> = lem(p’ q) U)\L}\R|0>’
(54)

Ag) =

where the factor under the square root is the dimension of the
irreducible representation (p,q):

dim(p,q)=(1+p)(1+q)<1+’%>. (55)

This factor is necessary in order to normalize the states:

(@' N Mglw N, hp) = 5ww’5)\L)\I"5)\R)\1'e' (56)
The U, operators appearing in the Hamiltonian (50) are
all in the fundamental representation of SU(3)—i.e., the 3
representation (p=1, g=0). The UIL)\R operators, on the other
hand, are in the 3" representation (p=0, g=1). Terms such as

U";LVRU}\LAR|O> may then be explicitly written

| dim(p,q)
N ,3 ,,T,’Ta,9
dim(p’,q’)<p q Lt L

Ty, T}ze’ YR;3JRJ§Q»)’R>|P',‘]',T£, Ter, Yi, TI,Q’T%,’ Y;e>,

Ty, T7.Y:3.0.17.50)

(57)

are used to keep track of the states for SU(N). We follow a
slightly different approach, where the same qubit registers
are used. Therefore all operators acting on the registers that
we discuss in the following may be built from standard
SU(2) Pauli matrices.

For each link associate eight registers according to Eq.
Ti’ YL’TR’T%’ YR)reg' As
in the U(1) and SU(2) cases we must impose a cutoff on
these registers to keep the number of qubits finite. If the
highest representation that is stored is (Ppax>Gmax)s then we
have registers in the range p={0,1,...,pn. and ¢

={0,1,...,gmax}- The other registers will then be in the range
T,={0.3.....5(p+ )}, (60)
Ti={-3(p+ 9.~ 3+ +5. ...500+9)},  (61)

2(p+29)}, (62)

for i=L,R. Define operators that shift the registers as fol-
lows:

Yi={_ 3@ +2p).—5(g+2p) + 75, ...

Pi|p>reg = |p + 1>reg’ Qi|CI>reg = |C] + 1>reg’

Tt|T>reg | |Tz>reg | %)reg’

+3)
— 2/reg’
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TABLE II. Clebsch- Gordan coefficients for R®3 for SU(3). The tabulated formulas give the values for (p+Ap,q+Aq,T;+AT,T;

+AT Y +AY|p.q,T;,T;
put in as appropriate.

,Y:;1,0,AT, AT, AY). Formulas may be obtained by combining the results from Tables I and III, where i=L, R is

Coefficient Ap Ag AT AT® AY Formula
¢ 1 0 1/2 172 1/3 Icly
i 1 0 -1/2 1/2 1/3 Ik,
i@ 1 0 1/2 -1/2 1/3 I\ci,
c 1 0 “1/2 -1/2 1/3 Iixch,

0 1 0 0 0 =2/3 Iy
i 1 1 12 1/2 1/3 Iyci,
i -1 1 ~1/2 1/2 1/3 Lhych,
¢l . 1 172 -1/2 1/3 Iy,
cb 1 1 “1/2 -1/2 1/3 Iych,

2 -1 1 0 0 -2/3 by
i@ 0 -1 12 172 1/3 e,
i 0 -1 -1/2 1/2 1/3 Iych,
¢ 0 -1 12 -1/2 13 Iy
¢ 0 -1 “172 -1/2 1/3 Iych
ci 0 -1 0 0 -2/3 I3

Yii|Yi>reg: |Yl.4_r %)reg, (63) factors defined in Eq. (67). The operator corresponding to

for i=L,R. Using Eq. (57) we may write the operator corre-

sponding to U3,
U3, <V, = MEMEPHCE
+0Q7C5,CHNs],

where we have defined the operators

and

for i=L,R. The normalization factors are
| _dim(p,q)
dim(p +1,q9)°
| dim(p,q)
dim(p-1,g+1)’
| _dim(p,q)
dim(p,g—1)’

113}\](] |+ P _Q+C%VC§)\N 2

(64)

(65)

(66)

(67)

The C’w,, are operators that recover the Clebsch-Gordan co-
efficients as defined in Table II. These were calculated using
the “pattern calculus” of Biedenharn and Louck [23] (see

Appendix B). Similarly, the ]Q’w recover the normalization

Ui: may be found using the identity [19]

U, = (= DR, )", (68)

where
Q=T +5Yi+3 (69)
and —v;=(T;,-T5,-Y;). The phase factor follows from the

standard choice of phase factors between states of 3 and 3"
[25]. The desired operator is then
U3+ PN ( I)QL+QRV

VLVR

(70)

VLVR®
where the dagger (f) refers to Hermitian conjugation with
respect  to the spin operators [e.g., (PH)'=P* (T7)7
=T7,(C. )'=C! ....]. This result may be checked by di-
rectly constructing the operators in the same way as Eq. (64)
with the proper 3" Clebsch-Gordan coefficients and verifying
that (70) holds.
The SU(3) Hamiltonian may be written

Hyyay= 2 EXrw-x 2 [Z0)+Z'(p)], (71)

ru p e{plaquettes}
where
Zp)= 2 (=D)ABY,, (nw)V,, (r+mv)
v a3y
XV (4 Vi, (120)
and

reg = %(p2
This is the final result for SU(3).

reg*
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Let us again find the required number of qubits and the
dependence of the number of operations for a lattice size
with M sites. The total number of qubits is ~8MDd, due to
the eight registers required for each link each with approxi-
mately D qubits. With a similar arrangement of qubits as in
Fig. 4 we have a linear dependence of the number of opera-
tions with Md. The analysis for the worst case is identical to
the SU(2) case, and thus we obtain a worst-case number of
operations increasing as «M?d’D.

IV. PREPARATION OF THE INITIAL STATE

In this section we discuss how the qubits should be ini-
tialized in order to extract observables with respect to the
low-lying eigenstates of the Hamiltonians. In particular, we
have in mind the method of extracting the energies of the
Hamiltonians as discussed in Refs. [12,13]. In both of these
methods, the qubits are prepared in an initial state with a
nonzero overlap to the state of interest, assumed to be the
ground state in this case. In the method given by Abrams and
Lloyd, a sequence of operations in the spirit of phase estima-
tion is performed on the qubits to extract the eigenvalues of
the time-evolution operator U(f). In the method given by
Somma er al., the expectation value of U(r) is taken with
respect to the prepared state; then, a Fourier transform of
measurement is performed on a classical computer to extract
eigenvalues. The method of operating the time-evolution op-
erator was discussed at length in Sec. III. However, it is clear
that the initial-state preparation must also be done efficiently.

One potential choice of initial state is the strong-coupling
ground state—i.e., E(r,u)|0y=0 for all r and w. This is a
good approximation for small values of x; however, for large
x the overlap with the true ground state becomes increasingly
small. Since it is the weak-coupling limit (x— ) that is
generally of interest, it is clear that a better choice is neces-
sary. In the following, we shall consider how this is done for
the U(1), SU(2), and SU(3) lattice gauge theories.

A. Initialization for U(1) lattice gauge theory

A popular choice of trial state for U(1) lattice gauge
theory takes the form [26]

wjoy= ][]
reip

laquettes}

\/LJT/ exp{C()[Z(p) + Z"(p)]}0),

(72)

where the plaquette operator Z(p) was defined in Eq. (14),
|0) is the state defined by Eq. (17), and N is a suitable nor-
malization factor. C(x) is a variational parameter to be opti-
mized with respect to the coupling x. This may be performed
straightforwardly according to the method given in Ref. [27].

Since the exponential operator appearing in Eq. (72) is
nonunitary, one cannot simply write down the operator that
prepares this state from the strong-coupling ground state |0).
It is still possible to prepare the state given in Eq. (72) by the
following procedure. Concentrating on a single plaquette in
the lattice, expanding the exponential we obtain

PHYSICAL REVIEW A 73, 022328 (2006)

1
W(p)= \/—X/{éo +4[Z(p) +Z' (p)]

+ OIZ(p)*+Z7(p)*]+ -+ ). (73)

For the U(1) case the expansion coefficients may be easily
evaluated:

n

g=3 el _necw). (04

1

n! 2(n 0)
where [; denotes the modified Bessel function of the first
kind. The coefficients ¢; are kept until most of the dominant
terms are found. For C(x)=1, we find that the most of the
dominant terms are contained in the range O0</</[_, =5.

Now let us see how we may prepare the state (73) using
the formulation given in Sec. III A. There, we defined opera-
tors L* that increase and decrease the |I) register by +1. Let
us introduce a similar operator acting on a register with the
following properties:

L= e 1120 75)
e o, otherwise.
The Hermitian conjugate operator to this is
X |0)yeq, ifI=1",
LI Dyep = ¢ 76
( )l >reg {0, otherwise. (76)

These operators are restricted versions of the operators L*,
which are specialized to shifting between the states |0) and
|I). An example of these operators is given in Appendix A.
We may construct the restricted versions of the plaquette
operator as follows:

Z(p)=L({) L) L')L'(),
N e ——
(r,m) (r+p,v) (r+v, ) (r,v) (77)

where we have labeled the links that each of the operators
apply underneath each operator. Now consider the operator

U = exp{ @ Z/(p) - Z] ()1} = expl~ i¢[iZ/(p) - iZ] (p) 1},
(78)

which is a unitary operator. The advantage of working with
these restricted versions of operators is that the result of act-
ing these operators may be written in closed form:

cos ¢|0) +sin ¢|O), if I'=0,
U0y = cos ¢|0) —sin ¢[0), if I'=1, (79)
|DZ'), otherwise,

which is easily verified by expanding with respect to ¢. In
Eq. (79) we defined

|Dl> = Zl(p)|0>reg- (80)

The initial-state preparation is then performed by the opera-
tion
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lmax

[T IIU2P(e)UA(¢-)|0)req-

pe{plaquettes} /=1

(81)

The values of the ¢, are fixed by the {; calculated previously.
For example, on a single plaquette with [, =1,

UTP () UPP(¢-1)]0) = cos ¢, cos ¢_,|0) +sin |07
+sin ¢, cos ¢_,|O1), (82)

and thus cos ¢ cos ¢p_1={,/ \/W and sin ¢_;
=sin ¢ cos ¢_;=¢;/N. This is then repeated for every
plaquette in the lattice, which completes the initialization
procedure.

B. Initialization for SU(2) lattice gauge theory

A suitable trial wave function for SU(2) lattice gauge
theory is [28]

o= [ ——exlc@zeloy. (83

p e{plaquettes} \

Concentrating on a particular plaquette, we may again ex-
pand the exponential to obtain

1
W(p)= _/K/Igo +0Z1pp)+ LHZ(p)+ -1, (84)
\’

where

Z(p) =T U (r, U/ (r + p, ) U7 (r + v, 0) U (r, v)]
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Z,y(P)Zi(p)=Z;_1p(p)+Zj1n(p). (86)

In analogy to the U(1) case, let us define restricted versions
of the J* and M,, operators as follows:

|j”mLst>reg» lf] = 07

0, otherwise,

JG')

J,my, mR>reg = {

. ’ .
J,m ’mR>reg, if mp = 0,

ML(m/)|j, mL,mR>reg = {0 otherwise

. , . _
MR(m/) J,mp,m >reg’ if mR—O,

.’m ’m > = .
>, MR reg {0, otherwise.

The restricted plaquette operator is then defined as

Zim,mymm,(P) = JDM (m) MR (my) I ()M () MR (m3)

(r,p) (r+u.v)
X J()M s MR(m ) GYMm )M (),
(r+v,pu) (r,v)

(87)

where we have again labeled the links that each operator acts
on underneath each operator. We now define the unitary op-
erator

Z _ G
(85) Ujrfqpl)m2m3m4 = exp{ ¢[ij1m2m3m4(p) - ijlm2m3m4(p)]}’
and j labels the representation of the U operator. The terms (88)
in the expansion (84) may be calculated with the help of the
identity which has the operation
J
Ccos ¢|0> +sin ¢|Djmlm2m3m4>’ lf]I = ml, =0,
U/Zritli)mzmgm4|mj’mfmém§mi> =) cos ¢|Djm1'"zm3m4> = sin ¢|O>’ if j' =j.m{ =m;, (89)
|Dj’mim£m Z">, otherwise,
|
where we defined ¢jm|m2m3,,,4 are fixed using the {; coefficients in a similar
way to the initialization for U(1) lattice gauge theory. This
|Djm1'112m3m4> Ezjmlm2m3m4(p)|0>reg' (90) initialization is then carried out on each plaquette of the

The initial state is then prepared by a product of these op-
erators on the strong-coupling ground state:

J max

[I II 11

p e{plaquettes} j=1/2 mymymsmy

UZP)

Jin1m2M3M4( ¢jm|mzm3m4) |O>reg s
1)

where each of the m; summations run from —j, .« t0 j.x- The

lattice.

C. Initialization for SU(3) lattice gauge theory

The initialization procedure for the SU(3) case is very
similar to the U(1) and SU(2) cases. We will therefore only
show a sketch of the results. A suitable trial wave function
for SU(3) is [29]
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W= T1 — explCIZp)+Z1(p)H0).

pe{plaquettes}
(92)

In analogy to the U(1) and SU(2) cases, we define restricted
plaquette operators Zionn Ay Wthh creates the state associ-

ated with the term UA . U;” )\3U Aok U)\ », in the plaquette op-
erator Z(p). The 1n1t1a11zat1on is then performed by a product
of unitary operators defined using the restricted plaquette
operators:

11 I1

ZI
U o (Bor porn ) Oreg. (93)
17%273%4 1727374 g
p e{plaquettes} X |Ay\3Ny

D. Efficiency of the initialization procedure

Let us now estimate the dependence of the number of
operations of the initialization procedure with the lattice size
M. The total number of times the U%")(¢) operator must be
applied is clearly proportional to the number of plaquettes in
the lattice «dM. Therefore, with a layout of qubits that pre-
serves the local nature of the operation, the number of op-
erations will be «Md. However, an unfavorable layout of
qubits can increase the number of operations required for
each U”P)(¢) by a factor of the number of qubits used,
which is equal to DdM. At worst, we therefore find that the
total number of operations is proportional to Dd>M?.

E. Other choice of initialization

The quality of the trial wave functions used in the previ-
ous sections is highly dependent on the value of the coupling
x chosen. For example, in the U(1) case an indication of the
quality of the wave function may be inferred from the energy
expectation value per plaquette ey*'=(W|H|W). In the
strong-coupling limit x— 0 [30],

2 4

twial x° Ix 6
=——+_——+0 94
0 2 128 ), (04)

while in the weak-coupling limit x — oo,

trial

- 1
€ =—2x+2Vx— n +0(x71?). (95)

Comparing these to the ground-state energies of the Hamil-
tonian (13) obtained from a strong-coupling expansion for an
M X M X M lattice [30],

x2 4

3x
=— =+ ——+ 00" 96
€=="7* 30t OO (96)

and a weak-coupling expansion,
-1, ~1/2
60=—2x+2cy’x—Zc +0(x™"), 97)

where ¢=0.796 for M —», we see that in the strong-
coupling limit x— 0, the trial wave function has a similar
energy dependence with x, whereas in the weak-coupling
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limit x— o the energy is too high. One reason for this dis-
crepancy is that the plaquette terms in the trial state |W) are
uncorrelated. One way the trial wave function may be im-
proved is by including a correlated plaquette term [31].
These trial wave functions may also be constructed using the
methods given in this section. Inclusion of states that have
long-distance correlations over the lattice will naturally in-
crease the complexity of the initialization procedure by a
factor proportional to the size (e.g., the length of the perim-
eter of the Wilson loop operator) of the state being created.
Since this is bounded by the size of the lattice, the total
number of operations will still be ~poly(M).

V. MEASUREMENTS

To obtain results from the simulation, one must be able to
extract quantities such as the expectation value of operators
and the spectrum of the Hamiltonian operator. The energy
spectrum of the Hamiltonian may be obtained following the
method outlined in the beginning of Sec. IV. The most inter-
esting expectation values to be evaluated are of the Wilson
loop operators, defined as

We=Tr [[ UG p), (98)
rouel

where I denotes the contour in the lattice that the Wilson
loop follows and U(r, ) denotes the unitary operator defined
for the link labeled by (r,u) for SU(N). We may immedi-
ately transcribe these operators into those using spin opera-
tors using the results of Sec. III. For example, for SU(2),

Wr= 2
my,my,....my
X VmNm (erU’N)- (99)
Analogous results follow for the U(1) and SU(3) cases. Ex-
pectation values of this operator may be found, for example,

by the general phase estimation method [3]. This involves
performing the operation

mlmz(rl’/-l’l) m2m3(r2’/-l“2) T

U() =e™'r, (100)

which may be performed in a similar way to the methods
explained in Sec. III.

VI. SUMMARY AND CONCLUSIONS

We have reformulated the U(1), SU(2), and SU(3) lattice
gauge theories into a form that can be simulated using spin
qubit manipulations on a universal quantum computer. This
was done by constructing spin operator versions of the link
operators E and U appearing in the Hamiltonian versions of
the theories. Each link on the lattice is represented by a set of
registers that keep track of the state of the link. In all cases,
a cutoff corresponding to the maximum representation of the
group was found to be necessary to keep the total number of
qubits required for the simulation finite. This is necessary as
even a single link has an infinite-dimensional Hilbert space.
These high-representation states have an energy that grows
as the square of the index that labels the representation [e.g.,
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j(j+1) for SU(2)], and thus the impact of truncating these
states can be carefully controlled, as has been found in past
studies. For the SU(2) and SU(3) cases, a calculation of
Clebsch-Gordan coefficients is required for every application
of the plaquette operator Z(p). Explicit formulas were given
for the Clebsch-Gordan coefficients for SU(2) and SU(3),
which are precalculated on a classical computer for a given
Jmax O Pmax>9max respectively. This is then written in opera-
tor form which requires an overhead corresponding to
~pOoly(Jmax) OF ~POlY(Prmax>Gmax)> Tespectively, during the
simulation. The number of qubits necessary to keep track of
a lattice with M lattice sites and dimension d was found to be
~dDM, where D is the number of qubits required to keep
track of a single-link state. The number of operations re-
quired to perform the Hamiltonian evolution of the system
was found to be proportional to between a linear and qua-
dratic function of the total number of lattice sites. This is
dependent on the architecture of the quantum computer that
is available. The simulation may therefore be said to be ef-
ficiently implementable in this sense. Other aspects of the
simulation, such as the initialization of the qubits into a suit-
able configuration for extracting low-energy properties of the
system, were also considered and were found to have a simi-
lar dependence with lattice size, and therefore does not spoil
the efficiency of the whole procedure.

With the current technology available, the kind of simu-
lation that we suggest in this paper is clearly still a long way
off. For example, a typical size of the lattice for a QCD
simulation today has the order of 10* lattice sites. By our
scheme for SU(3), we would require ~10°D qubits, where D
is the size of the register dependent on the cutoff that is
employed. Note that this does not include any quantum error
correction, and therefore the real figure will be larger than
this. However, the method here has the advantage that it is
virtually an exact calculation, up to the cutoff on each link
which is controllable such that its impact is negligible. All
the states associated with the low-lying excitations are in-
cluded. With the inclusion of the fermion fields, which adds
a further ~M qubits to the total, this would allow a direct
and exact simulation of QCD itself—an unthinkable prospect
on a classical computer. Although significant advances have
been made in the lattice QCD program in the past few years
[10], such an “exact” simulation may be a useful check on
the results of the classical simulations and may even offer
new insights into the physics of QCD and related models.

We have restricted our focus in this paper to pure gauge
Hamiltonians—i.e., no fermions. For a realistic simulation of
QCD, we also require fermions in addition to the gauge de-
grees of freedom that were examined in this paper. One way
that fermions may be included in the formulation is to trans-
form the fermion operators to spin operators via a Jordan-
Wigner transformation [3]. This involves long strings of op-
erators that are of the order of the size of the lattice, M. The
space required for including the fermion adds M more qubits
to the entire lattice, which far less than the number required
for the gauge fields. This should therefore not affect the main
results of this work.

We note that the same methods as that given here may be
straightforwardly generalized to SU(N) lattice gauge theo-
ries, and we expect that these may also be efficiently imple-
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mented. One vital ingredient that makes this possible is due
to the Clebsch-Gordan coefficients for the product of the
fundamental representation of the group to an arbitrary rep-
resentation of the group according to the “pattern calculus”
of Biedenharn and Louck [23].

There are many ways that the implementation that we
describe in this paper may be improved, particularly with
respect to the total number of qubits. In particular, there are
many wasted states on a particular link associated with states
that do not exist. For example, for the SU(2) case, unphysical
states such as |j,m; > j,mg> j), are included, as far as the
qubit implementation is concerned. Likewise, unphysical
gauge-variant states are also included. We chose to ignore
such inefficiencies as this would introduce further complexi-
ties that are unnecessary for the main goals of this paper,
although these should be possible, if necessary.
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APPENDIX A: SOME SIMPLE REGISTER OPERATORS

To illustrate the methods used in Sec. 111, let us consider a
simple example of the operators that could be used to ma-
nipulate the registers. Considering the U(1) Hamiltonian
(26), we see that this consists of operators L* and E” that are
defined according to Egs. (22)-(25). A simple, but qubit-
inefficient way that this could be implemented is as follows:

l 1

max—

L= X o/oh, (A1)
]=_lmax
Imax_1
L= > 07071, (A2)
l:_lmax
]max
E= > Po+1)2, (A3)

I=—1

where the o® and ¢¢ are Pauli spin operators. These operators
are designed to act on states with a single up spin:
|L1-+-T-+-]). The location of the up spin keeps track of the
register:

|l>reg=0-;—|ll'“i>- (Ad)

A similar type of register was considered in Ref. [4]. Similar
operators are used in the SU(2) and SU(3) Hamiltonians.

The operators that recover the Clebsch-Gordan coeffi-
cients may be constructed by a linear combination of diago-
nal operators that act on the registers. Considering the SU(2)
case, let us construct the operator associated with the coeffi-
cients ¢,,,. We may write

CAmn=a0+a]JZ+a2MZ+a3(JZ)2+ Tt (AS)

where

Jz|j>reg = j|j>reg’
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TABLE III. Isoscalar factors for R®3. Isoscalar formulas are obtained by substituting Q7=4p
+2g+6T;—3Y+9+3, O5=2p-2q+6T;+3Y;—-3%3, O3=2p+4q+6T;+3Y;+3£3, I'=(1+p)2+p+q), I,
=(1+p)(1+q), I's5=(1+q)2+p+q), Y ,=432(1+T;), Y,=432T;, and Y5=36 into the tabulated formulas. The
label i=L, R is put in as appropriate. The reduced Wigner operators used to calculate the formulas are also

shown.
Symbol Reduced Wigner operator Formula
1
o Q7(Q5+6)(Q3 +6)
I, oo \/ 1 2F1Y1 :
10
L 1 -
1
10 — -
s
10
L. 0 -
1
10 oo
Iy Hoo FiY;
00
- 0 -
0
Ho (6 -Q7)05(Q% +6)
i 100 - Y,
10
1
0
o Q7 -6)Q3(Q5+6)
10
L 0 -
0
10 OO
s 100 LY,
00
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TABLE III.
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(Continued.)

Symbol

Reduced Wigner operator

Formula

00

i 100
I3

i
132

100

Ii
33 00

B J(n;—émy 6)0;
I,Y,

\/_ (Q-6)(©; +6)01
IsY,

0305
F3Y3

Mz|m>reg = m|m>reg’

and the a; are coefficients to be determined. The number of
terms in Eq. (A5) is determined by the number of distinct
(j,m) combinations. For a j,.=1, there are three (j,m)
states, and thus there are three terms in Eq. (A5). In this case,
the coefficients for ¢;; will be ay=1, a1=1+1/\5, and a,
=1-1/:2.

Restricted versions of the operators considered in Sec. IV
[i.e., Egs. (75) and (76)] may be constructed as follows:

L(l) = o507, (A6)

L(l) = 007 (A7)

APPENDIX B: CALCULATION OF CLEBSCH-GORDAN
COEFFICIENT FORMULAS

The Clebsch-Gordan coefficients in Tables I-III are cal-
culated using the “pattern calculus” method developed by
Biedenharn and Louck [23,24]. The method allows the cal-
culation of Clebsch-Gordan coefficients for the combination
of an arbitrary state of SU(N) with the fundamental repre-
sentation of the group. For example, Clebsch-Gordan coeffi-
cients for j ®% in SU(2) or R®3 in SU(3) may be found.

Each finite-dimensional irreducible representation is
specified by a set of N ordered integers (positive, zero, or
negative):

(B1)

[m]zv = [mle2N e mzwv],

where my=m,y= -+ =myy. A state in this irreducible rep-
resentation is represented by a triangular array called a Gel-
fand pattern:

my Moy My-1N myN
miN-1 My-1N-1
mp my;
myy
(B2)
The integers m;; satisfy the “betweenness” conditions
Mijpy = My = Mgy - (B3)

The corresponding state in the |J,M) or |p,q,T,T¢,Y) nota-
tion for a particular Gelfand pattern may be found by the
following correspondences for SU(2) [24]:

J= %(mu - my,), (B4)
M =myy = 5(myy+my). (BS)
For SU(3) we use the relations
P =ny3—ny3, (B6)
q =Mmp3—ms3, (B7)

022328-15
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T=3(my,—my), (BS)
T =m, —%(m12+m22), (B9)

Y=m12+m22—%(m13+m23+m33)- (B10)

Using the above relations, the method given in Sec. III
of Ref. [23] may be used to generate the matrix elements

PHYSICAL REVIEW A 73, 022328 (2006)

of reduced Wigner operators. For SU(2), matrix elements of
the reduced Wigner operators are equal to the Clebsch-
Gordan coefficients for SU(2). For SU(3), the matrix ele-
ments of the reduced Wigner operators are the isoscalar
factors for SU(3). The formulas can be calculated up to a
* sign. The sign is fixed by comparison to tables of
Clebsch-Gordan and isoscalar factors (see, for example, Ref.

[32]).
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