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We introduce an interference measure which allows to quantify the amount of interference present in any
physical process that maps an initial density matrix to a final density matrix. In particular, the interference
measure enables one to monitor the amount of interference generated in each step of a quantum algorithm. We
show that a Hadamard gate acting on a single qubit is a basic building block for interference generation and
realizes one bit of interference, an “ibit.” We use the interference measure to quantify interference for various
examples, including Grover’s search algorithm and Shor’s factorization algorithm. We distinguish between
“potentially available” and “actually used” interference, and show that for both algorithms the potentially
available interference is exponentially large. However, the amount of interference actually used in Grover’s
algorithm is only about 3 ibits and asymptotically independent of the number of qubits, while Shor’s algorithm
indeed uses an exponential amount of interference.
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I. INTRODUCTION

Entanglement and interference are believed to be key in-
gredients that distinguish quantum from classical informa-
tion processing �1�. Indeed it has been shown that large
amounts of entanglement must necessarily be generated in a
quantum algorithm that offers an exponential speed-up over
classical computation �2�. Tremendous effort has been spent
to develop methods to detect and quantify entanglement in a
given quantum state �see Refs. �3,4� for recent reviews�.

On the other hand, very little has been done to quantify
“interference.” It seems therefore well worthwhile to analyze
the role of interference in quantum algorithms in more detail.
Note that previous works have used interference to charac-
terize completely positive quantum maps �5,6�.

While entanglement plays an important role in many
quantum information tasks, like, for example, quantum tele-
portation �7�, quantum key distribution �8�, or superdense
coding �9�, large amounts of entanglement may not be the
only requirement to get a speed up with a quantum algorithm
�2,10�. Classical analogues of entanglement exist �11�, for
example, in the context of the propagation of classical phase
space density through Liouville’s equation �12�. Even with-
out talking about dynamics, a formal analogy of pure state
quantum entanglement can be easily defined in the classical
domain, if we replace wave functions in the definition of
quantum entanglement by probability distributions. Arbitrary
large amounts of “classical entanglement” of many-particle
probability distributions �corresponding to classical correla-
tions� can thus be created by a classical stochastic computer.
However, only linear combinations of probability distribu-
tions with real positive coefficients are allowed, and this
makes it impossible to efficiently realize Fourier transforms
with high contrast, a decisive ingredient in many quantum
algorithms �see, e.g., Refs. �13–15��. In general it seems that
interference between many computational paths plays an im-
portant role in quantum computation. It is unclear, however,
how much interference, if any, is needed for a given quantum
speed-up.

As a first step in the direction of answering this question,
we introduce here a general interference measure that applies

to any physical process which maps an initial density matrix
to a final density matrix. It can be used in particular for any
quantum algorithm, measurement processes, or classical
communication. We use the interference measure to quantify
interference in various steps of the well-known quantum al-
gorithms of Shor �13� and Grover �16� as well as other physi-
cal examples, including photons passing through a beam-
splitter or through a Mach-Zehnder interferometer,
decoherence through bit-flip and phase errors, and quantum
teleportation.

II. THE ESSENCE OF INTERFERENCE

The familiar example of a double slit experiment, where
waves with different wave vectors are superimposed at the
slits, propagate and interfere to generate an interference pat-
tern, i.e., a certain probability distribution on the screen in a
position basis, contains the basics of any interference experi-
ment:

�1� Interference needs coherence. An interference mea-
sure must distinguish between coherent and incoherent
propagation. This means first of all that interference is a
property of a propagator of states, not of a state itself, in
contrast to entanglement.

�2� Coherent propagation alone does not amount to inter-
ference, however. For example, a quantum gate which imple-
ments just the unitary identity operation is completely coher-
ent �a pure state remains a pure state�, whereas there is no
interference at all: the probability for each final basis state
depends only on the initial amplitude of the same basis state.
Similarly, there is no interference for a quantum gate that just
permutes in-coming amplitudes. Evidently, at least two states
must be coherently superposed. Generally speaking, the
amount of interference should be linked to how many differ-
ent initial state amplitudes contribute to each final state am-
plitude, and to what extent. An interference measure should
be maximized if each basis state as input state produces an
“equipartitioned” output state, i.e., a state with the same ab-
solute probability amplitude for each basis state.
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�3� Interference is basis dependent. Indeed, no interfer-
ence pattern at all, but a probability distribution just reflect-
ing the initial amplitudes would be observed in the double
slit experiment described above, if the output were observed
in the momentum basis. Also any unitary evolution is given
by a unitary matrix U defined in a specific basis �for ex-
ample, the computational basis for a quantum algorithm�.
This matrix can always be diagonalized, and in the new basis
the propagator then just corresponds to a multiplication with
a phase factor for each input basis state, which does clearly
not amount to interference.

III. THE INTERFERENCE MEASURE

A. General formulation

We start by defining a measure of coherence for a general
propagator P of a density matrix, ��= P�, where P is a su-
peroperator specified in the computational basis, such that,
written in components,

�ij� = �
k,l

Pij,kl�kl. �1�

Further below we will adapt this formalism to the “operator
sum formalism” more familiar in the context of quantum
computation �17�.

Consider a black box which maps an initial density matrix
to a final probability distribution, as is normally the case for
a quantum computer if the read-out process is considered
part of the algorithm. As long as one regards a unique input
state �pure or mixed�, one cannot distinguish between coher-
ent and incoherent propagation. Indeed, the black box might
forget about any initial phase information, keep just the ini-
tial probabilities and then use a stochastic matrix which maps
them to the probability distribution of the desired final state.
The final probabilities are then invariant under arbitrary
phase rotations of the initial amplitudes. To distinguish be-
tween coherent and incoherent propagation, an interference
measure must therefore quantify the dependence of the final
probabilities on the initial phases—a strategy which is in fact
often employed experimentally to show coherence.

Let us therefore start with a pure initial state, �= ������,
with ���=� j=1

N aj�j�. The amplitudes aj with phases � j, aj
= �aj�ei�j, lead to final probabilities

pi� = ��ii�� = �
j,k

Pii,jke
i��j−�k��ajak� . �2�

The dependence of each individual probability on the initial
phases is thus given by

�pi�

��l
= i�

k

�akal��Pii,lke
i��l−�k� − c.c.� . �3�

We define the real phase sensitivity matrix S with matrix
elements Sil=�pi� /��l, and the positive semidefinite matrix
SST, with SST=0 iff �pi� /��l=0 for all i , l=1, . . . ,N. A coher-
ence measure C�P� can be obtained by taking the trace of SST

and averaging it over all initial phases,

C�P� =
1

�2��N	
0

2�

d�1 ¯ d�N tr�SST�

= �
i,k,l,m

�akal
2am�

�
− 	
0

2� d�kd�ld�m

�2��3 Pii,lkPii,lmei�2�l−�k−�m�

+ 	
0

2� d�kd�m

�2��2 Pii,lkPii,mle
i��m−�k�� + c.c. �4�

=2�
i,k

�
l�k

�Pii,lkakal�2. �5�

This measure still depends on the amplitudes of the initial
state. However, coherence should be measured for an input
state with amplitudes on all basis states. We therefore chose
a “democratic” input state with �ai�=1/�N for all i
=1, . . . ,N. We multiply with an additional prefactor N2 /2
and define the coherence measure

I�P� = �
i,k,l

�Pii,kl�2 − �
i,k

�Pii,kk�2. �6�

The quantity I�P� obviously has the desired property to be
zero in the case of a classical stochastic propagation, that is
for Pij,kl=Mik�ij�kl, where Mik is a stochastic matrix which
propagates classical probabilities from initial values pk to
final values pi�, pi�=�kMikpk, and �ik denotes the Kronecker
delta. From the definition it is clear that I�P� is non-
negative. In the case where all eigenvalues of P are smaller
than one, as, for example, for dissipative quantum maps an
upper bound is given by I�P��N2, as can be seen by using
the inequality P�� � with �kl=�k,k0

�l,l0
for all 1�k0 , l0

�N. This bound is probably not optimal, and, as will be
seen, can be improved in the case of unitary propagation.

The propagation of mixed states is in quantum informa-
tion theory generally formulated within the operator sum for-
malism �17�: A set of operators �El� acts on � according to
��=�lEl�El

†= P�. The El’s are known as Kraus operators
�18� and obey �kEk

†Ek=1 for trace-preserving operations.
The connection to the propagator P is given by Pij,km
=�l�El�ik�El

*� jm, and we can reformulate the interference
measure �6� as

I = �
i,k,m

��
l

�El�ik�El
*�im�2

− �
i,k


�
l

��El�ik�2�2
. �7�

We will now show that I�P� is in fact a good measure of
interference, as it also measures the amount of equipartition
in the case of unitary propagation.

B. Unitary propagation

Coherence is, by definition, perfect, if all pure incoming
states remain pure during propagation, i.e. also the final state
can be written as ��= �	��	�, with a state �	� related to ���
by a unitary transformation, �	�=U���. In this case P, which
we shall denote by P�U�, has matrix elements Pii,kl=UikUil

*.
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Profiting further from the fact that �i,k,l=1
N �UilUik�2=N due to

the unitarity of U, we find in this case

I„P�U�… = 
N − �
i,k

�Uik�4� . �8�

In the unitary case the coherence measure �8� has the prop-
erty that 0�I(P�U�)�N−1. The right-hand side of this in-
equality is easily verified using the Cauchy-Schwarz inequal-
ity applied to all vectors ��Ui1�2 , . . . , �UiN�2� �i=1, . . . ,N�, and
�1/�N , . . . ,1 /�N�, and is in fact the optimal bound, as it is
reached for �Uik�=1/�N for all i ,k. The left-hand side fol-
lows from the positivity of SST, or explicitly from �i,k�Uik�4
��i,k�Uik�2=�k1=N, where we have used that 0� �Uik�2�1
due to �i�Uik�2=1.

The term �ik�Uik�4 is nothing but the inverse participation
ratio �IPR� of a column k of the unitary matrix summed over
all columns. The IPR is a well-known measure of “equipar-
tition” of a wave function, used extensively in solid state
physics in order to measure localization �19�. A column of U
with an amplitude on a single basis state, i.e., Uik=�iik

for
column k and some index ik gives �i�Uik�4=1. If all columns
have an entry on just a single basis state we get therefore
�ik�Uik�4=N.

Thus, if Uik=�iPi�k�, where Pi�k� is a permutation, we have
I(P�U�)=0. This reflects just the fact that this kind of coher-
ence is useless—the final probability distribution does not
depend at all on the initial phases and for all possible input
states, the same output could be obtained with a propagation
of probabilities only.

On the other hand, perfectly “equipartitioned” output
states for each computational basis state used as input, �Uik�
=1/�N for all i ,k, give �ik�Uik�4=1. Therefore, I measures
for unitary propagation also the amount of equipartition,
where I(P�U�) varies between 0 for a mere permutation of
all input states and N−1 if all output states corresponding to
computational basis input states are perfectly equipartitioned.
We therefore define I�P� in Eq. (6) as the (dimensionless)
measure of interference in the propagator P. Note that this
definition is very general, and might be applied to any physi-
cal system with finite-dimensional Hilbert space for which
�possibly mixed� input states are propagated to �possibly
mixed� output states. In the case of an infinite dimensional
Hilbert space the interference measure may diverge. For a
continuous basis set the definition of I�P� can be generalized
by replacing sums by integrals with an appropriate density of
states. The interference measure might even be applied to
interference of classical waves governed by the wave equa-
tion 
��x , t�=�2 /�t2��x , t�, after decomposing ��x , t� on
an orthonormal basis set.

C. Properties of the interference measure

1. Invariances

As Eq. �6� contains a double and triple sum over all com-
putational basis states, it is obvious that I is invariant under
a permutation of the computational basis states. This goes
hand in hand with the observation that a pure permutation of
the computational basis states does not generate any interfer-

ence. It is also obvious that I is invariant under arbitrary
phase changes of any matrix element Pij,kl. For unitary
propagation, the inverse propagation U† leads to the same
amount of interference, I�P�U†��=I�P�U��.

2. Equipartition in a subspace

Consider a unitary matrix with �Uik�=1/�M for 1� i ,k
�M for some integer M �N, and �Uik�=�ik for i�M or k
�M. Straightforward evaluation of I(P�U�) from Eq. �8�
gives I(P�U�)=M −1. Thus, I(P�U�) increases indeed lin-
early with the number of coherently superposed states.

3. Adding auxiliary qubits

Another situation, encountered often in quantum comput-
ing, is the addition of auxiliary qubits, or in general a Hilbert
space of dimension M connected by a tensor product to the
original Hilbert space. As long as one acts on the auxiliary
qubits only with the identity operation, their only effect is to
increase the number of coherently superposed states by a
factor M. One should therefore expect the amount of inter-

ference of Ũ=U � 1M to be larger by a factor M compared to
I(P�U�). This is indeed the case. To see this, define the ma-

trix elements of Ũ as Ũnmkl=Unk1ml=Unk�ml. Then we

have from Eq. �8�, I(P�Ũ�)=NM −�n,m,k,l�Unk�4�ml=M�N
−�n,k�Unk�4�=MI(P�U�). The corresponding calculation can
be done for the general nonunitary propagation of a density

matrix �=�A � �B, such that ��= P̃�= �P�A� � �B, and the re-

sult is the same, I�P̃�=MI�P�.

4. The “ibit” and the Hadamard gate

The linear dependence of the interference measure on the
number of coherently superposed states makes it possible to
define a unit of interference. We can define the number nI of
“interference bits” �or “ibits” for short� that measures the
�logarithmic� amount of interference in a propagator P as

nI = log2„I�P� + 1… . �9�

As an immediate consequence we find that a Hadamard gate,
Hij = �−1�ij /�2 for i , j�0,1, generates one bit of interference
as I(P�H�)=1, and this is the maximum possible amount of
interference for the unitary propagation of a single qubit.
Moreover, it is easy to show that for a tensor product of n
Hadamard gates acting in parallel on n qubits, also called the
Walsh-Hadamard transform, W=H � H � ¯ � H, one ob-
tains n ibits, I(P�W�)=2n−1, as the amplitude of each ma-
trix element of the tensor product has an absolute value
1/2n/2. One may thus consider the Hadamard gate as a “cur-
rency” of interference in a quantum algorithm, much as a
singlet measures the amount of entanglement in a bipartite
quantum state. Note, however, that not each Hadamard gate
in a quantum algorithm adds an ibit to the total amount of
interference. If p Hadamard gates act on p different qubits
out of a total number of n qubits, the interference is I=2n

−2n−p.
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D. Potentially available interference versus actually used
interference

Another reason why a Hadamard gate does not necessar-
ily add an ibit of interference to a quantum algorithm lies in
the fact that the amount of interference added in a given step
of the algorithm depends on the transformation built in all
previous steps. This is easily seen from the example of two
Hadamard gates in series, acting on a single qubit, H2=I2,
such that I(P�H2�)=0. We will call “accumulated interfer-
ence” the total interference I�Pm¯P1� of a sequence of
transformations Pm¯P1, which is in general very different
from the sum of interferences of each step Pi. In principle
one can calculate the accumulated interference for an arbi-
trary part of any quantum algorithm, but most interesting is
in general the accumulated interference of the entire algo-
rithm.

It turns out that many quantum algorithms generate a lot
of interference right at the beginning, including Shor’s and
Grover’s algorithms �see below�, as they start out with the
Walsh-Hadamard transform on many qubits. In the end the
desired information �e.g., the period of a function or the label
of a searched state� must be extracted, which is done by a
reduction of the accumulated interference, as the probability
distribution gets concentrated on only very few computa-
tional states. The Fourier transform, which taken by itself
would add even more interference, performs this task in
Shor’s algorithm.

However, not all quantum algorithms actually use all the
interference generated. A tremendous “waste” of interference
can arise when only a single column of the unitary matrix
corresponding to a single initial state �e.g., �0¯0�� is used,
whereas it is completely irrelevant what happens in the other
columns. One might be tempted to calculate the interference
just corresponding to that initial state. Formally this can be
done by including a projection onto the state �0¯0� in the
algorithm, but it is easily shown that then the accumulated
interference of this projection combined with whatever uni-
tary operation follows vanishes. All coherence is destroyed
in the sense that the final probability distribution is indepen-
dent of the single remaining initial phase. An alternative ap-
proach is to calculate the accumulated interference for the

remaining algorithm Ũ after the initial Walsh-Hadamard
transform, i.e., once amplitudes from all computational states
are available in the superposition. This amounts to changing

the initial state. Then all columns of Ũ do contribute, and as

a consequence I(P�Ũ�) is a more realistic measure of the
interference actually used. The interference measures corre-

sponding to U and Ũ therefore give complementary informa-
tion �total “potentially available” interference in the algo-
rithm and “actually used” interference, respectively� and will
be calculated below for Grover’s and Shor’s algorithms.

IV. APPLICATIONS

A. Beam splitter

A beam splitter transforms two photon modes with anni-
hilation �creation� operators a ,b �a† ,b†�, respectively, ac-

cording to the unitary transformation UBS=exp��a†b
−ab†�� �17�. The action of UBS on a state �nm� with m pho-
tons in mode a and n photons in mode b can be easily de-
rived with the help of the relations UBSaUBS

† =a cos 
+b sin  and UBSbUBS

† =b cos −a sin . We exploit the fact
that the total number N of photons in the two modes is con-
served to write the matrix elements of UBS as

�UBS
�N��im � �iN − i�UBS�mN − m�

=� i!�N − i�!
m!�N − m�! �

l=Max�m−i,0�

Min�N−i,m� 
m

l
�
 N − m

N − i − l
�

��− 1�l�cos �m+N−i−2l�sin �i−m+2l. �10�

For example, the dual-rail representation �17� with logical
states �01� and �10� leads to the 2�2 rotation matrix

UBS
�1� = 
cos  − sin 

sin  cos 
� , �11�

with the amount of interference I(P�UBS
�1��)=2�1−cos4 

−sin4 �. Thus a maximum interference of 1 ibit can be
achieved for =� /4, in which case the beam splitter realizes
indeed just a Hadamard gate, up to phase shifts. The function
I(P�UBS

�N����) appears to be periodic with period � /2 for all
N. The maximum amount of interference increases approxi-
matively linearly with N and is reached for sufficiently large
N at =� /4. With increasing N, the maximum is reached
more and more rapidly as function of , and I remains al-
most flat in a broader and broader interval around the maxi-
mum �see Fig. 1�.

B. Mach-Zehnder interferometer

A Mach-Zehnder interferometer consists of two beam
splitters in series, with an additional phase shifter in one of
the two arms �17�. The second beam splitter is inverted rela-
tive to the first one, such that the total unitary propagation
for N photons is given by

UMZ
�N� = UBS

�N�UPUBS
�N�†. �12�

The phase shifter acts on a m photon state in mode a as
UP �nm�=ei�m �nm�. The interference generated by the Mach-
Zehnder interferometer is periodic in  and � with periods
� /2 and 2�, respectively �Fig. 2�. Again, I(P�UMZ

�N� �) be-
comes more and more flat around the maximum with in-
creasing N. The settings =� /2, or =� /4 or 3� /4 and �
=�, lead to a minimum of I in the range of N investigated
�N=1, . . . ,20�. Finally, �=0 never leads to any interference,
as in this case the interferometer just performs the identity
operation.

C. Decoherence: bit flip errors and phase errors

The error operators for a bit flip error in a single qubit are
given by E0=�p12, E1=�1− pX, where X is the Pauli �x
matrix and p the probability for no error to occur. Similarly,
the error operators for a phase error in a single qubit read
F0=�p12, F1=�1− pZ, where Z is the Pauli �Z matrix. One
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easily shows using Eq. �7� that the amount of interference
vanishes for both types of errors, as it should of course be,
due to the fact that these are purely decohering processes.
More interesting is the situation where we first apply a Had-
amard gate and then the errors. That is, the Kraus operators
are now E0H ,E1H for a bit flip error after the Hadamard
gate, and F0H ,F1H for a phase error after the Hadamard
gate. In the first case, we obtain I= �1−2p�2. As it should be,
the interference is completely conserved, I=1, for p=0 or
p=1, i.e., when bit flips either never occur or do occur with
certainty. Even in the latter case the interference is perfect, as
the bit flip just corresponds to a unitary permutation. On the
other hand, in the case of a phase flip after a Hadamard gate,
interference is always conserved, i.e., I=1 independent of p.
While this might be surprising at first, it is in fact a remark-
able property of I to detect that the phase error does not
modify at all an interference pattern obtained by coherently
superposing �0� and �1�. To see this, we start with the initial
state �ei� �0�+ �1�� /�2. After the Hadamard gate this state be-
comes �ei���0�+ �1��+ ��0�− �1��� /2. With probability p the
state remains the same, while with probability 1− p a phase
error flips the sign in front of the �1� states. One obtains thus
the final density matrix � f =cos2�� /2��0��0�+sin2�� /2��1�

��1�+ �1/2− p�i sin ���1��0�− �0��1��. Clearly, the probabili-
ties to find 0 or 1 in the final state are unaffected by the phase
error, and one gets a perfect interference picture for any
value of p, as the phase errors from the bra and the ket
cancel. Note that by just looking at the off-diagonal matrix
elements of � f �as is often done to estimate the amount of
coherence in a state� one concludes that complete decoher-
ence and the reduction to a classical mixture occurs at p
=1/2, whereas for p=0 or p=1 a completely coherent final
state is retained. This is, however, irrelevant for the success
of the interference experiment, and correctly detected by our
interference measure.

More generally, one might consider the action of the
phase error as a measurement of the interference pattern.
Indeed, Z is diagonal in the computational basis, which thus
constitutes the “pointer basis” of Z �20�. The measurement
reveals the interference pattern, but does not destroy it. It is
therefore reasonable to demand that an interference measure
be conserved during the measurement process. The fact that

FIG. 1. �Color online� Amount of interference I �dimensionless�
generated by a beam splitter as function of the angle  �in radians�
and N=1, . . . ,20 photons �top�. The amount of entanglement at 
=� /4 increases approximately linearly with N �bottom�. The full
line is I=N.

FIG. 2. �Color online� Accumulated interference generated in a
Mach-Zehnder interferometer as function of the angles  and � �in
radians� for 1 photon �top� and 20 photons �bottom�. Note the dif-
ferent scale.
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interference can be conserved during measurements is cru-
cial also for quantum teleportation.

If a phase error occurs after the phase shifter in the Mach-
Zehnder interferometer, the interference is reduced. For the
example of one photon the Kraus operators are given by
G0=�pUBS

�1�UPUBS
�1�† and G1=�1− pUBS

�1�ZUPUBS
�1�†. The general

expression for the interference is somewhat cumbersome, but
simplifies for beam splitters with =� /4 to I= �sin ��1
−2p��2. So the interference in the Mach-Zehnder interferom-
eter is clearly completely destroyed for p=1/2, as is to be
expected.

D. Quantum teleportation

Alice can teleport an unknown quantum state of a qubit 1
to Bob, by doing the following �7�: She first prepares two
auxiliary qubits �2,3� in the Bell state ��00�+ �11�� /�2, and
sends qubit 3 to Bob. We will consider the Bell state prepa-
ration as part of the protocol, as it will become clear that
already here a certain amount of interference is used �25�.
Starting from state �00� of qubits �2,3�, Alice can prepare the
Bell state by applying a Hadamard gate H to qubit 3 �H3,
step 1� and then a controlled NOT �CNOT� operation with 3 as
control and 2 as target �C32� to qubits �2,3� �step 2�. Next
Alice applies a CNOT with 1 as control and 2 as target �C12�
to qubits �1,2� �step 3� and a Hadamard operation to qubit 1
�H1, step 4�. She then measures qubits �1,2� in the computa-
tional basis �step 5�, and sends the result m1 ,m2 �where mi
=0 or 1� to Bob through a classical channel. Bob performs
the unitary operation Zm1Xm2 �step 6�. The total propagation
of the density matrix thus reads

�� = �
i,j=0,1

ZjXiEijH1C12C32H3��ZjXiEijH1C12C32H3�†,

�13�

where the Eij are projectors, Eij =1 � �ij��ij�, and the qubits
are numbered from right to left. Figure 3 shows how the
amount of interference used in this protocol evolves step by
step. Obviously already the creation of the initial entangled
state uses interference, through the application of the Had-
amard gate in qubit 3 �step 1�. Qubits 1 and 2 are left alone,
therefore the total amount of interference is I(P�H � 14�)
=4. In fact, interference is only generated by Hadamard gates
in this algorithm, and the largest amount of interference
reached is I=6, or almost three ibits. Remarkably, the inter-
ference is not destroyed in the measurement process.

E. Shor’s algorithm

Shor’s algorithm �13� enables one to factor a large integer
number R into primes using a polynomial number of opera-
tions. The initial state is prepared in two registers of size 2L
and L, where L= �log2 R�+1 ��.� denotes the integer value�,
with a total number of qubits n=3L. The algorithm can be
decomposed into three parts. First, the state �0¯0��0¯01� is
transformed into N−1/2�t=0

N−1�x��1� �where N=22L equals the
dimension of the Hilbert space of 2L qubits� by the use of 2L
Hadamard gates applied to each qubit separately. As men-

tioned in Sec. III C 4, this part generates the amount of in-
terference, I=2n−2L. This value of I corresponds to the
maximum value of I for transformations of the first register
alone. On the other hand, no entanglement is created since
the state remains factorizable. In a second part, the state is
transformed in O�n3� operations into N−1/2�t=0

N−1�x��f�x��
where f�x�=ax�mod R�. This part can be viewed as a permu-
tation matrix: each line and each column has only one non-
zero entry. Therefore the interference measure for this trans-
formation alone gives zero. On the other hand, it creates
entanglement. The third part consists of a quantum Fourier
transform �QFT� on the first register only which allows one
to find the period of the function f . The corresponding op-
erator on the first register can be written as a matrix whose
entries are all of absolute value 1/�N. As such, the QFT
alone maximizes the interference measure �6� on the first
register, corresponding to I=2n−2L, in the same way as the
Walsh-Hadamard transform. In contrast with the latter, the
QFT contains two-qubit gates and creates some entangle-
ment. We note that nevertheless numerical simulations for
small number of qubits seem to indicate that most of the
entanglement is created during the second phase where no
interference is built up or used �21�.

It is interesting to note that various versions of the factor-
ization algorithm have been proposed which aim at minimiz-
ing the number of gates and/or qubits �22,23�. They often use
quantum Fourier transforms to gain efficiency in the process
N−1/2�t=0

N−1�x��0¯01�→N−1/2�t=0
N−1�x��f�x��, for example, us-

ing instances of the Schönhage-Strassen algorithm which is
more efficient than usual multiplication for very large num-
bers. Thus these methods generate some interference in the
second part of the algorithm, where usually only entangle-
ment is produced. In some sense, this “acceleration” of the
factorization algorithm is made by trading interference and
entanglement.

Figure 4 shows the accumulated interference for the fac-
torization of R=15. Shor’s algorithm requires a to be chosen

FIG. 3. �Color online� Accumulated interference during the
quantum teleportation protocol �7�. On the t axis is the step number
�see text�. The interference is plotted for the entire propagator up to
and including step number t. Interference only arises during the
application of the two Hadamard gates and is conserved during all
other steps, including the measurement �step 5�. A maximum
amount of interference of about 2.58 ibits �I=6� is generated.
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coprime to R. We therefore show data for the seven possible
values a=2,4 ,7 ,8 ,11,13,14. The initial Walsh-Hadamard
transform corresponds to the first eight value of time �the
interference measure is calculated after each Hadamard
gate�. As explained in Sec. III C 4, after k Hadamard gates
the value of I is I=2n−2n−k. The whole transform generates
an exponential amount of interference I=2n−2L=4080,
which corresponds to the maximum value possible for a
transformation of the first register alone.

The next eight time values correspond to the construction
of f�x�=ax�mod R� in the second register. Each time value
corresponds to multiplication modulo R of the second regis-
ter by a2i

, controlled by the value of the ith qubit of the first
register. Each operation corresponds to a permutation in the
computational basis, and does not affect the accumulated in-
terference.

The last part �QFT� corresponds to the last eight time
values in Fig. 4. Each time step corresponds to a Hadamard
gate followed by controlled phase transformations, which to-
gether build the QFT. Although the QFT taken alone gener-
ates interference, its net effect is to decrease the total accu-
mulated interference by a small amount which depends on a.
This is actually reasonable, since this last part concentrates

probability on a certain number of states which depend on
the value of a and R. It is interesting to note that the first six
steps give the same values of I for all values of a. Only in
the last two steps �corresponding to the least significant bits
in the first register� does one see a branching. The first one
distinguishes between the two values of the period of f�x�
=ax�mod R� �the period is 2 for a=4, 11, 14, and 4 for a
=2,7 ,8 ,13�, and the last operation distinguishes further be-
tween values of a. Data from a=13 and a=7 are the same, as
are data from a=8 and a=2, which is consistent with the fact
that for these values of a the set of values of ax�mod R� is the
same. Other values of a correspond to different interference
even though the period of f�x� may be the same since the
total interference depends not only on the period of f�x� but
also on the period of yf�x� for all values of �y�. The total
interference which was exponentially large after the first two
parts presumably remains so after the QFT, since for R=15 it
goes down only by up to 7%. Note that it can go down and
up in the last operations of the QFT.

A more realistic picture of the accumulated interference
“actually used” is obtained by calculating the interference
measure for the operator obtained by omitting the initial
Walsh-Hadamard transform �see Sec. III D�. This corre-
sponds to the same algorithm but with initial state
N−1/2�t=0

N−1�x��1�. This is shown in Fig. 5, where the time steps
thus correspond to the last 16 time steps in Fig. 4. The inter-
ference measure is zero after the first part �construction of
f�x�=ax�mod R� in the second register�, which is in accor-
dance with the fact that all eight steps corresponding to this
part can be understood as permutations. On the contrary, the
interference measure grows exponentially in the last �QFT�

FIG. 4. �Color online� Accumulated interference generated dur-
ing Shor’s algorithm for factorization of R=15 �L= �log2 R�+1=4
and in total n=3L=12 qubits�. On the t axis is the step number �see
text�. The interference is plotted for the entire propagator up to and
including step number t. Values of a are a=13 �circles, full red
line�, a=7 �squares, dashed green line�, a=11 �diamonds, full blue
line�, a=8 �triangles up, full black line�, a=14 �triangles down, full
cyan line�, a=4 �crosses, full orange line�, a=2 �stars, dashed violet
line�. Data for different values of a differ only for the last two time
steps. Data from a=13 and a=7 are the same, as are data from a
=8 and a=2. The horizontal dashed red line is the maximum pos-
sible value of interference for an untouched second register, I=2n

−2L=4080. The inset shows the same curves for the last steps on a
different scale. Lines are there to guide the eye only. Massive inter-
ference I=2n−2L �or almost n ibits� is generated during the appli-
cation of the Walsh-Hadamard transform �part 1, first eight points�.
Interference is unchanged in part 2 �next eight points�, and de-
creases during the last part �QFT� �last eight points�.

FIG. 5. Accumulated interference up to and including step num-
ber t generated during Shor’s algorithm, excluding the initial Walsh-
Hadamard transform for factorization of R=15 �n=12 qubits�. The
step number on the t-axis is the same as in Fig. 4 but shifted by 8.
Horizontal dashed red line is maximum possible value of interfer-
ence for transformations of the first register alone I=4080. The
accumulated interference is changed only during the final quantum
Fourier transform, and does not depend on the value of a. The
actually used interference shown here is comparable with the po-
tentially available interference shown in Fig. 4.
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part, and reaches the maximum value 2n−2L �for transforma-
tions of the first register only�. Thus the actually used inter-
ference is clearly exponential for the factorization algorithm.

F. Grover’s algorithm

Grover’s algorithm UG �16� can find a single marked item
in an unstructured database of N items in O��N� quantum
operations, to be compared with O�N� operations for the
classical algorithm. The algorithm starts on a system of n
qubits �Hilbert space of dimension N=2n� with the Walsh-
Hadamard transform W, thus by building a uniform superpo-
sition of the basis states N−1/2�x=0

N−1�x�. Then the algorithm
iterates k times the same operator U=WR2WR1, with an op-
timal value k= �� / �4�� and sin2 =1/N �24�, i.e., UG

= �WR2WR1�kW. As mentioned in Sec. III C 4, W generates,
taken for itself, the maximum possible amount of interfer-
ence �n ibits�. The oracle R1 multiplies the amplitude of the
marked item �the one searched by the algorithm� with a fac-
tor �−1�, and keeps the other amplitudes unchanged. The
corresponding N�N matrix is diagonal, making evident that
its interference measure is zero. The operator R2 multiplies
the amplitude of the state �0¯0� with a factor �−1�, keeping
the others unchanged. By the same argument as for R1, it
generates no interference. Therefore all interference in the
algorithm is generated by the Walsh-Hadamard transforms
W. It is interesting to note that both operators R1 and R2 can
be understood as multicontrolled gates which create en-
tanglement, whereas W cannot create entanglement as it is
composed of one-qubit operations. So Grover’s algorithm
alternates entanglement creation and interference creation
during its evolution. We note that the interference is indepen-
dent of the label of the searched item, as the interference
measure I is invariant under permutation of the computa-
tional basis states.

Figure 6 shows the evolution of the accumulated interfer-
ence during Grover’s algorithm in n qubits. In this figure, to
avoid repetition, we took the Walsh-Hadamard transform as
one single time step, contrary to the preceding section. Thus
step 1 corresponds to the first application of the Walsh-
Hadamard transform, which generates the massive interfer-
ence I=2n−1; step 2 is the first application of the oracle R1,
step 3 is the first application of the diffusion matrix D
=WR2W, step 4 is the second instance of the oracle R2, and
so on up to a total number of 2k+1 steps. As expected, the
oracle does not change the amount of interference, but the
diffusion matrix reduces the accumulated interference in
each step. This is crucial for the functioning of the algorithm,
the probability flow is engineered in such a way that all
probability gets concentrated on the computational basis
state corresponding to the searched item. Therefore, the ac-
cumulated interference must decrease, as the equipartition is
decreased.

As mentioned before, most of the interference built up
during the application of the W gate is “wasted,” as U only
acts on the initial state �0¯0�. Indeed, no particular state is
selected by any other column of U. The accumulated inter-
ference therefore reduces only very slightly, from I=2n−1
down to I�2n−2. The situation is somewhat different for

Shor’s algorithm where the concentration of probability con-
cerns many columns.

As in the case of Shor’s algorithm, it is also interesting to
compute the actually used interference, i.e., the interference

measure for ŨG obtained by omitting the initial W transform,

ŨG= �WR2WR1�k �see Sec. III D�. Figure 7 shows that this
number is much smaller than the potentially available inter-

FIG. 6. �Color online� Accumulated interference in Grover’s
algorithm UG �16� for n=8 qubits. On the t-axis is the step number
�see text�. The interference is plotted for the entire propagator up to
and including step number t. Massive maximum interference Imax

=2n−1=255 �or n=8 ibits� is generated during the application of
the Walsh-Hadamard gate �step 1� and the accumulated interference
decreases subsequently during the iteration of oracle and diffusion
to the value I�2n−2, at which point virtually all probability cor-
responding to the initial state �0¯0� is concentrated on the searched
state.

FIG. 7. �Color online� Accumulated interference up to and in-

cluding step number t generated during Grover’s algorithm ŨG,
excluding the initial Walsh-Hadamard transform �16� for n
=7 qubits. The step number on the t axis is shifted by one compared
to Fig. 6, i.e., step 1 is now the first application of the oracle R1,
which does not lead to interference. The accumulated interference is
changed only during the diffusion steps D=WR2W. The “actually
used” interference shown here is much smaller than the “potentially
available” interference shown in Fig. 6, and the maximum value
I�8 after the first application of D is asymptotically independent
of the number of qubits. This is quite different from what happens
in Shor’s algorithm �compare with Fig. 5�.
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ference. Moreover, it is asymptotically independent of the
number of qubits. Indeed the interference for the first appli-
cation of D is easily calculated analytically using the matrix
elements Dij =2/N−�ij in the computational basis, and gives
I(P�D�)=8–24/N+O�1/N2�. Thus, Grover’s algorithm ac-
tually uses only about three ibits, whatever the number of
qubits on which it runs. After the first application of D, the
interference shows damped oscillations with each application
of the diffusion matrix, whereas the oracle R1 leaves the
interference unchanged. Note that the oscillations would be
undamped without the intermediate R1 steps, as �WR2W�2

=1.
Thus for the Grover algorithm the maximum actually used

interference after the creation of the initial equipartitioned
state is small and basically independent of the number of
qubits. This is in sharp contrast with the results for the Shor
algorithm �preceding section� where the actually used inter-
ference grows exponentially with the number of qubits. One
may speculate if this is the decisive difference that leads to
exponential acceleration of Shor’s algorithm versus the �N
acceleration for Grover’s algorithm compared to the corre-
sponding best classical algorithms known.

V. CONCLUSIONS

We have introduced a general measure of interference,
which allows to quantify interference in any physical situa-
tion which involves the propagation of a density matrix. We
have defined a logarithmic unit of interference, the “ibit” and

have quantified how much interference arises in each step of
the two best known quantum algorithms as well as in other
physical examples, including beam splitter, Mach-Zehnder
interferometer, and quantum teleportation. A beam splitter
and a Mach-Zehnder interferometer generate an amount of
interference proportional to the number of photons, and
quantum teleportation of one qubit needs about 2.58 ibits.
Both Shor’s and Grover’s algorithm build up an exponential
amount of “potentially available” interference. However,
Grover’s algorithm actually uses only about three ibits, as-
ymptotically independent of the number of qubits on which it
runs, whereas Shor’s algorithm indeed uses an exponential
amount of interference. It is therefore tempting to attribute
the respective exponential versus �N acceleration of these
two algorithms to the amount of interference actually used,
but more work will be necessary in this direction. In particu-
lar it should be very interesting to find out if exponentially
large interference is a necessary condition for an exponential
speed up of a quantum algorithm compared to its classical
counterpart, or if the interference measure could be used to
optimize existing algorithms or to conceive new ones.

ACKNOWLEDGMENTS

The authors thank Karol Życzkowski and Mahn-Soo Choi
for discussions and the IDRIS in Orsay and CALMIP in
Toulouse for use of their computers. This work was sup-
ported in part by the EC IST-FET projects EDIQIP and Eu-
roSQIP and by the French Agence Nationale de la Recherche
�ANR� project INFOSYSQQ.

�1� C. H. Bennett and D. P. DiVincenzo, Nature �London� 404,
247 �2000�.

�2� R. Jozsa and N. Linden, Proc. R. Soc. London, Ser. A 459,
2011 �2003�.

�3� D. Bruss, J. Math. Phys. 43, 4237 �2002�.
�4� A. De, U. Sen, M. Lewenstein, and A. Sanpera, e-print

quant-ph/0508032.
�5� D. K. L. Oi, Phys. Rev. Lett. 91, 067902 �2003�.
�6� J. Åberg, Phys. Rev. A 70, 012103 �2004�.
�7� C. H. Bennett, G. Brassard, C. Crepeau, R. Jozsa, A. Peres,

and W. K. Wootters, Phys. Rev. Lett. 70, 1895 �1993�.
�8� C. H. Bennett and G. Brassard, Proceedings of IEEE Interna-

tional Conference on Computers, Systems, and Signal Process-
ing �IEEE, New York, 1984�.

�9� C. H. Bennett and S. J. Wiesner, Phys. Rev. Lett. 69, 2881
�1992�.

�10� R. Cleve, A. Ekert, C. Macchiavello, and M. Mosca, Proc. R.
Soc. London, Ser. A 454, 339 �1998�.

�11� D. Collins and S. Popescu, Phys. Rev. A 65, 032321 �2002�.
�12� A. Lakshminarayan, e-print quant-ph/0107078.
�13� P. W. Shor, in Proceedings of the 35th Annual Symposium

Foundations of Computer Science, edited by S. Goldwasser
�IEEE Computer Society, Los Alamitos, CA, 1994�.

�14� D. S. Abrams and S. Lloyd, Phys. Rev. Lett. 83, 5162 �1999�.
�15� B. Georgeot and D. L. Shepelyansky, Phys. Rev. Lett. 86,

2890 �2001�.
�16� L. K. Grover, Phys. Rev. Lett. 79, 325 �1997�.
�17� M. A. Nielsen and I. L. Chuang, Quantum Computation and

Quantum Information �Cambridge University Press, Cam-
bridge, 2000�.

�18� K. Kraus, States, Effects and Operations, Fundamental No-
tions of Quantum Theory �Academic, Berlin, 1983�.

�19� F. Wegner, Z. Phys. B 36, 209 �1980�.
�20� W. H. Zurek, Phys. Rev. D 24, 1516 �1981�.
�21� V. M. Kendon and W. J. Munro, e-print quant-ph/0412140.
�22� C. Zalka, e-print quant-ph/9806084.
�23� S. Beauregard, Quantum Inf. Comput. 3, 175 �2003�.
�24� M. Boyer, G. Brassard, P. Hoyer, and A. Tapp, Proceedings of

the 4th Workshop on Physics and Computation—
PhysComp’96, 1996.

�25� One might of course argue that if Alice has to send a qubit, she
might as well just send her own qubit 1. Normally the Bell pair
would in fact be prepared by an independent source, which
sends one qubit to Alice and the other to Bob. Nevertheless, it
is instructive to consider the Bell pair creation process as part
of the protocol.

QUANTITATIVE MEASURE OF INTERFERENCE PHYSICAL REVIEW A 73, 022314 �2006�

022314-9


