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We present two strategies to enhance the dynamical entanglement transfer from continuous-variable �CV� to
finite-dimensional systems by employing multiple qubits. First, we consider the entanglement transfer to a
composite finite-dimensional system of many qubits simultaneously interacting with a bipartite CV field. We
show that, considering realistic conditions in the generation of CV entanglement, a small number of qubits
resonantly coupled to the CV system are sufficient for an almost complete dynamical transfer of the entangle-
ment. Our analysis also sheds further light on the transition between the microscopic and macroscopic behav-
iors of composite finite-dimensional systems coupled to bosonic fields �like atomic clouds interacting with
light�. Furthermore, we present a protocol based on sequential interactions of the CV system with some
ancillary qubit systems and on subsequent measurements, allowing us to probabilistically convert CV entangle-
ment into “almost-perfect” Bell pairs of two qubits. Our proposals are suited for realizations in various
experimental settings, ranging from cavity-QED to cavity-integrated superconducting devices.
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I. INTRODUCTION

Due to the infinite dimension of their Hilbert space,
continuous-variable �CV� systems allow one, in principle, to
store an infinite amount of entanglement. Even in realistic
settings, the entanglement of two-mode squeezed states gen-
erated in parametric amplification processes with present
technology can be much more than one ebit, thereby largely
exceeding the maximum amount of entanglement between a
pair of qubits. Nonetheless, discrete variable systems—and,
most notably, qubits—are naturally privileged for the imple-
mentation of many quantum-information tasks, with the
prominent example of quantum computation. In this respect,
it is of interest to investigate the efficiency at which en-
tanglement can be transferred from continuous- to discrete-
variable systems �by realistic coherent interactions� and to
envisage strategies to improve such efficiency. This is rel-
evant in view of the relative ease with which highly en-
tangled CV states can be currently generated �1,2�. With ef-
ficient transfer procedures, such entanglement could be
distributed to separate discrete-variable systems and em-
ployed for general quantum-information processing pur-
poses.

Internal levels of atoms coherently interacting with
bosonic light fields are natural candidates as discrete-variable
receivers of CV entanglement. In fact, the entanglement
transfer between two radiation modes and a pair of two-level
atoms through coherent interactions has already been inves-
tigated �3–5�. Also, the state transfer between macroscopic
atomic clouds and light has been theoretically considered
recently �6� and important steps have been made towards its
experimental demonstration �7�, relying on measurements
and coherent interactions. In the limit of a macroscopic num-
ber of polarized atoms, the atomic component of such sys-
tems behaves as a CV system, so that the entanglement trans-
fer relates, actually, two CV systems of different nature. For
a resonant Jaynes-Cummings coupling �8�, the interaction
reduces to the action of a beam splitter between the two

systems, allowing, in principle, perfect state �and thus en-
tanglement� transfer. However, if the receiving system is re-
ally a discrete variable one, like a small number of atoms
�i.e., a “microscopic” cloud� would be, then the transfer is no
longer perfect. Some questions of fundamental and practical
interest arise in this instance: How many atoms are actually
needed in order to realize an “essentially perfect” transfer,
thus exhausting the resources of the CV system? How does
the transition between microscopic and macroscopic en-
tanglement transfers behave?

The purpose of this paper is twofold. On the one hand, we
aim to study the entanglement transfer from two light modes
to a pair of atomic ensembles made up of a small number of
two-level atoms �or, equivalently, to systems with Hilbert
spaces of small dimension d�2�. We will show that, for
two-mode squeezed states realistically achievable in labora-
tories, all the entanglement can be extracted by a few atoms,
in an essentially microscopic regime. Moreover, we will shed
further light on the transition from the finite-dimensional re-
gime to the CV behavior displayed by macroscopic en-
sembles, explicitly elucidating the algebraic reasons lying
behind this transition and the physical conditions allowing
one to treat macroscopic ensembles as CV systems. On the
other hand, we propose a method to increase the entangle-
ment transfer to a pair of two-level atoms �qubits� by letting
further pairs interact successively with the same entangled
light field and then by postselecting the local measurements
on such pairs. We will show that, following this route, the
entanglement transferred to the first pair of qubits increases
considerably with respect to the strategy pursued in Refs.
�3,4�. Remarkably, we demonstrate that such an “extraction”
procedure, aiming at achieving a Bell state of the first two
atoms, can be made “arbitrarily perfect” by repeated itera-
tions of the probabilistic protocol.

Both schemes we suggest in this work are naturally
implemented in the context of cavity-quantum electrodynam-
ics �cavity-QED�. In this scenario, the qubits would be em-
bodied by two-level atoms interacting with the field modes
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of two optical cavities externally fed by the two-mode CV
system. The feeding process can be accurately described by
the effective mixing of the external CV state with vacuum at
a beam splitter �represented by the cavity lossy mirror�, as
detailed in Refs. �3,4,9�. The trade-off between a cavity
which can be externally fed and a sufficiently long coherence
time of any intracavity photon can be accomplished by ex-
ploiting the nonlinear effects of the intracavity atomic me-
dium as described in Ref. �10� �see also Ref. �4��. Concern-
ing the simultaneous presence of a multiqubit system in a
cavity, we recall that an efficient scheme able to infer the
actual number of atoms inside an optical resonator has been
recently realized, allowing for the exact preparation of up to
three atoms inside a single cavity �with the envisaged possi-
bility of extending this number to �10�, over a time three
orders of magnitude shorter than the effective trapping time
�11�. Because of the generality of our protocols, other physi-
cal systems may be considered in order to implement them.
For instance, the postselction scheme can be suitably realized
by considering systems of superconducting qubits integrated
in quasi-unidimensional cavity structures �12�, as will be
more explicitly described in Sec. III.

This paper is organized as follows. In Sec. II, after having
introduced the system at hand and the concept of entangle-
ment transfer, we analyze in detail the extension of this pro-
tocol to multiple qubits simultaneously interacting with the
CV modes. In Sec. III, we address the case of sequential
interactions of indipendent pairs of qubits with the CV
modes, followed by proper postselection events �occurring
from the second pair on�. Finally, in Sec. IV, we summarize
our results.

II. MULTIPLE QUBITS INTERACTING
SIMULTANEOUSLY

Throughout the paper, we will consider two ensembles of
N two-level systems at two separate sites �we will indiffer-
ently refer to them as “atoms” or “qubits”� interacting with a
CV system made up of two modes of the radiation field �the
distributor�, previously prepared in an entangled two-mode
squeezed state ��r�, reading

��r� =
1

cosh�r��n=0

�

�tanh�r��n�n,n� , �1�

where �n ,n� stands for the tensor product of two number
states �n� in each mode, while r is the two-mode squeezing
parameter. The entanglement of this state increases with in-
creasing r, with a logarithmic negativity EN given by EN
=2r / ln�2� �see the following for the definition of EN�. For
simplicity, we consider ensembles of two-level atoms, each
interacting with the field through a Jaynes-Cummings Hamil-
tonian with the same coupling strength �“Tavis-Cummings”
model �13��. The total interaction Hamiltonian of such a sys-
tem is given, taking into account both sites �labeled by 1 and
2�, by Hint=H1+H2, with

Hk = �
j=1

N

g��kj
+ ak + H.c.� , �2�

where �kj for k=1,2 and j=1, . . . ,N is the ladder operator
referring to atom j in site k �2�k

+=�x+ i�y in term of the
Pauli matrices �x and �y�, while ak stands for the annihila-
tion operator of the radiation mode in site k. Note that the
calculations can be easily generalized to the case of asym-
metric interaction which, however, would not significantly
affect our main results. Furthermore, we will restrict our-
selves to the case of a pure state of the CV system. A mixed
state can be easily taken into account and would simply re-
sult in the shrinking of the peak values of the transferred
entanglement �4�, with no substantial changes in the qualita-
tive behavior of the transfer.

We also assume that all the atoms are initialized in the
ground state at the beginning of the interaction—i.e., adopt-
ing the spin terminology—that they are perfectly “polar-
ized.” Note that this assumption, besides being practically
satisfiable by the application of a strong polarizing field, is
also reasonable, as has already been shown that, for N=1,
such an initial atomic configuration allows for an optimal
entanglement transfer �3�. Because of this hypothesis, the
global state of the atoms �each of which can be seen as a
pseudospin 1/2� will stay within the symmetric
�N+1�-dimensional subspace with total spin j=N /2 during
the evolution. The dynamics at each site thus reduces to the
interaction of one mode of the field with a spin j initially
prepared in the ground state �j ,m=−j� �m being the value of
the projection of the total angular momentum vector along
the quantization axis�, with raising operator �k

+. The action of
�k

+ on an atomic state is determined by the Clebsch-Gordan
coefficients according to �k

+= �j ,m�k=	�j−m��j+m+1��j ,m
+1�k for m=−j , . . . , j �k=1,2 referring to the site�. For con-
venience, let us relabel the atomic states 
�j ,m�k� at each site
by their number n of “excitations” over the ground state:
�n�k��j ,n− j�k for n=0, . . . ,N.

The dynamics at each site can be analytically treated for
N�4 �14�. For instance, let us recall the time evolution op-
erator for N=1:

e−iHkt = cos��	ak
†ak + 1� − iak

sin��	ak
†ak�

	ak
†ak

− iak
†sin��	ak

†ak + 1�
	ak

†ak + 1
cos��	ak

†ak� � ,

�3�

where the matrix acts on the ordered atomic two-dimensional
Hilbert space 
�1� , �0��k �whereas a and a† act on the infinite-
dimensional Hilbert space of the field�, ��gt is the rescaled
interaction time, and �=1. We have numerically integrated
the dynamics for a larger number of atoms �up to N=20�,
truncating the infinite-dimensional Hilbert space of the field
modes at number states depending on the initial squeezing
parameter r �obviously, as r increases higher excitation states
get more significantly populated�. For the sake of clarity, let
us explicitly describe the dynamics of the system under the
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action of the evolution operator exp�−iHintt�=exp�−iH1t�
� exp�−iH2t��U1 � U2. The density matrix ���� describing
the state of the system at the rescaled time � reads

���� = U1 � U2���r���0,0����0,0����r��U1
†

� U2
†, �4�

where � denotes the tensor product with respect to the bi-
partition in the two sites, � denotes the tensor product with
respect to the bipartition into the atomic and radiation sub-
systems, and the state �0,0�= �0�1 � �0�2 stands for the ground
state of the global atomic system. We are now interested in
the reduced atomic state �at���, obtained by partially tracing
the global state ���� over the field variables: �at���
=Trf����, Trf denoting the trace over the Hilbert space of the
field.

Finally, the “logarithmic negativity” EN of the state �at���
can be worked out to estimate the rate of entanglement trans-
ferred from the CV two-mode squeezed state to the finite-
dimensional Hilbert space of the atoms. Let us recall that
such a quantity is strictly related to the positivity of the par-
tial transpose �PPT� criterion for the separability of quantum
states �15�. The partial-transposed density matrix �̃ is ob-
tained from any given bipartite quantum state � by transpos-
ing the variables of only one of the two subsystems. The PPT
criterion then simply reads �̃�0. Indeed, such a criterion is
necessary for the separability of any quantum state regardless
of the dimension of the system’s Hilbert space but is also
sufficient only for 2	2 and 3	2 Hilbert spaces �consider-
ing only finite-dimensional cases�. The “negativity” N �first
envisaged in Ref. �16�, later thoroughly discussed in Ref.
�17��, which can be easily determined from knowledge of the
density matrix �upon diagonalization of �̃�, is simply defined
as the absolute value of the sum of the negative eigenvalues
of �̃ and directly quantifies the violation of the PPT criterion.
The logarithmic negativity is then just given by EN
� log2�2N+1� �so that EN=1 for Bell states of two qubits�.
From an operational point of view, the quantity EN is an
upper bound to the distillable entanglement and is related to
the entanglement cost under PPT-preserving operations �18�.
Let us mention that, since the PPT criterion is no longer
sufficient for Hilbert spaces of dimension 3	3 and higher,
such a quantity is null for some entangled states in higher
dimensions. Still, EN has been recently proven to be an en-
tanglement monotone irrespective of the dimension of the
Hilbert space under study �19�. Moreover, it satisfies the
other crucial requirement of being null for nonentangled
states. Thus, it can be employed as a proper quantification of
the entanglement for high-dimensional Hilbert spaces.
Clearly, increasing the dimension of the Hilbert space allows
for “more space” being available for entanglement: in fact,
the maximal value of EN is given by log2�d� for a bipartite
�d	d�-dimensional Hilbert space.

Let us now move on to analyze the entanglement transfer
to pairs of “microscopic” ensembles of N atoms. Interest-
ingly, as already found in the case N=1 �3�, the maximal
entanglement which can be dynamically transferred to a
finite-dimensional system is not monotonically increasing
with the entanglement of the initial CV state �i.e., with r�.
Indeed, the value of r allowing for the optimal transfer �after

maximization over time�, which we will denote by ropt�N�,
increases with increasing N but is always finite. The behavior
of the function ropt�N�, whose values for small N are reported
in Table I, is not trivial, resulting from a compromise be-
tween the amount of entanglement initially present in the
system �monotonically increasing with r� and a population of
the excitated states of the field modes favoring a better state
transfer �too large r’s imply large populations in higher num-
ber states and, as a consequence, a mismatch of the “effec-
tive” dimensions of the atoms’ and light’s Hilbert spaces�.
Notice that

lim
N→�

ropt�N� = � ,

as in the infinite-dimensional �CV� limit, a beam splitter al-
lows for perfect state transfer and, in principle, an infinitely
entangled initial state �obtained in the limit r→�� can be
also perfectly transferred to the atoms.

Also, one has ropt�1��0.86, for which the initial CV state

��ropt�1�� has a logarithmic negativity ĒN�2.48. For such a
two-mode squeezing parameter, which is in the range of cur-
rent experimental techniques �1,2�, we have investigated the
possibility of realizing “exhaustive” entanglement transfer
from CV to discrete-variable systems by increasing the num-
ber of atoms, N. Figure 1 shows the behavior of the transfer
for different values of N. The efficiency and velocity of the
transfer increase with increasing N, the value of 15 allowing
for a very good transfer to 16-dimensional atomic space

�with EN�2.38�0.96ĒN�. Let us mention that the trunca-
tion of the CV state to the state �15, 15� has a logarithmic
negativity EN�2.47, thus containing almost all the entangle-
ment of the CV state. In general, for the squeezing param-
eters currently achievable, a small number of atoms �N
�10–100� is always capable of retrieving a substantial part
of the entanglement contained in the initial two-mode

TABLE I. Optimal values of the two-mode squeezing parameter,
maximal logarithmic negativity achievable �through resonant inter-
action with a CV state with the optimal two-mode squeezing�, and
“efficiency” �Eff.� of the optimal transfer �quantified by the ratio
between the transferred logarithmic negativity and the logarithmic
negativity of the initial distributor’s CV state: Eff.�EN ln�2� / �2r��
for the first values of N. Note the monotonic increase of the ratio
Eff.

N ropt EN Eff.

1 0.86 0.90 0.36

2 0.86 1.25 0.50

3 0.92 1.59 0.60

4 1.02 1.85 0.63

5 1.10 2.07 0.65

6 1.18 2.24 0.66

7 1.22 2.40 0.68

8 1.27 2.54 0.69

9 1.31 2.66 0.70

10 1.35 2.77 0.71
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squeezed state. For instance, the most entangled two-mode
state reported in Ref. �2� has a logarithmic negativity EN
�1.60, corresponding to r�0.55 �20�. For such a value of r,
a number of atoms, N=10, allows for the transfer of a loga-
rithmic negativity EN�1.55, whereas for N=20 one reaches
the value EN�1.58, thus almost exhausting the resources of
the initial CV state. Indeed, values of N of this order allow
for an almost perfect extraction of the entanglement even in
instances still far from the current experimental possibilities.
To be more specific, let us consider the most entangled state
considered in the first of Ref. �2�, with a logarithmic nega-
tivity EN�4.53 corresponding to r�1.57. Now, the logarith-
mic negativity of this CV state is mostly contained in the first
40 levels of the field’s Hilbert space �the truncation of the
CV state to the state �40, 40� has EN�4.49�. Even though a
direct numerical treatment of this instance would be cumber-
some, one can provide a very good estimate of the logarith-
mic negativity which can be transferred to 40 atoms by as-
suming that the same ratio between the maximal transferable
logarithmic negativity and the initial available one as in the
case r=0.86 and N=15 applies here. Note that this a very
conservative assumption, as the efficiency of the transfer
generally increases with increasing N since, as we will ap-
preciate in detail shortly, the finite-dimensional system better
mimics a quantum harmonic oscillator �see also Table I�.
Finally, we infer that a logarithmic negativity EN
4.31
could be transferred from the CV to the finite-dimensional
system by letting N�40 qubits interact simultaneously.

As we have seen, while being a great improvement with
respect to the transfer to single atoms, the “microscopic”
transfer is never completely exhaustive, even though the re-
ceiving Hilbert space would be able to almost perfectly con-
tain the initial CV state. We now show that the reason for this
fact lies in the dynamics of the system, and not in the mis-
match between the different Hilbert spaces. To this aim, let
us consider in more detail the features of the transition of the
atomic system between the microscopic and macroscopic re-

gimes which, as is well known, can mimic under certain
conditions a CV system interacting through a beam splitter.
First, let us remark that, if the ladder operators of the atomic
ensembles �k

+ were behaving like actual bosonic ladder op-
erators bk

†—i.e., according to

bk
†�n�k = 	n + 1�n + 1�k �5�

�with the additional proviso bk
†�N�k=0—the state �and thus

entanglement� transfer from light to the atoms would be es-
sentially perfect for low enough squeezing parameters �as the
only requirement on the atomic subsystem would consist in
having enough dimensions to contain the initial field’s state
up to its effective truncation�, with perfect �not “convo-
luted”� oscillations resulting from a beam-splitter-like dy-
namics. On the other hand, the action of the actual operators
�k

+ is described by

�k
+�n�k = 	�N − n��n + 1��n + 1�k �6�

for n=0, . . . ,N. Let us now focus on the subspaces �k �for
k=1,2� of the atomic Hilbert spaces, spanned by basis vec-
tors �n�k such that N�n �corresponding to the macroscopic,
“highly polarized” limit�. Denoting by ��k

+ and b�k
the re-

strictions of �k
+ and bk to the subspace �k one has, as appar-

ent from the previous two equations, ��k

+ �	Nbk
†, which

properly accounts for the bosoniclike behavior of the polar-
ized atomic system. Notice that this relationship also implies
that, on the “highly polarized” subspace, the SU�2� algebra
approximates the Heisenberg algebra of the canonical com-
mutation relations, because the restriction of the operator �z

can be regarded as a �large� constant: ��k

z �N /2. Explicitly,
���k

− ,��k

+ ��N�2��k

z , as one should expect. Let us note that
the 	N factor relating the ladder operators to their bosonic
approximations accurately explains the aforementioned
speedup in the transfer with increasing N. To explore in de-
tail the transition to the macroscopic regime, we have nu-
merically compared the �real� entanglement transfer obtained
with the atomic operators �k

+ to the ideal transfer obtained by
replacing them with the operators bk

†. As shown in Fig. 2, the
mimicking is still not very accurate even for N=15, thus
explaining the good, but not quite perfect entanglement
transfer in this instance �even though all the needed capabil-
ity would be available in the receiving Hilbert space�. More-
over, in all the plots, it is apparent that the matching with the
regular bosonic oscillations is lost with increasing interaction
time: this is due to the fact that higher atomic levels �with n
not negligible with respect to N� get excited and the atoms
lose their original polarization. In fact, the bosonic approxi-
mation commonly employed in treating the interaction of
light with atomic ensembles is not only restricted to the mac-
roscopic and polarized cases, but also to short interaction
times.

As a final remark about the entanglement transfer to small
atomic ensembles, let us mention the possibility, already ad-
dressed in Ref. �21�, of probabilistically improving the per-
formance of the transfer by measurements on the CV system
and subsequent postselection. In particular, we have here
considered the measurement of the parity of the field’s pho-
ton number. The results of this study for the cases N=1 and

FIG. 1. �Color online�. Entanglement transferred from a two-
mode squeezed state with r�0.86 �with initial EN�2.48� for vari-
ous numbers N of receiving two-level atoms at each site. The red
curve refers to N=15 �solid line�, the blue curve to N=7 �dashed
line�, the cyan curve to N=2 �dash-dotted line�, and the green curve
to N=1 �dotted line�. All quantities plotted are dimensionless.
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N=2 are reported in Fig. 3. In general, the outcome “even”
always increases the entanglement of the finite-dimensional
state. Conversely, the outcome “odd” always completely
spoils the entanglement for N=1 �corresponding to the tran-
fer to two-level systems� as, because of the structure of the
state resulting from the dynamical evolution, it effectively
projects such a state onto a separable subspace. Still, notice
that for N�1 the outcome “odd” may actually enhance the
entanglement, depending on the time at which the measure-
ment is performed.

III. MULTIPLE ATOMS INTERACTING SUCCESSIVELY

As we have seen in the previous section, simultaneous
interactions with many atoms allow for a very efficient en-
tanglement extraction from infinite- to finite-dimensional
systems. Despite this remarkable fact, the main interest of
such entangling schemes lies in the possibility of achieving
highly entangled states of pairs of two-level systems, which
are privileged and archetypical for computational and com-
munication protocols. In the present section we present a
strategy �based on the measurement of ancillary qubit sub-
systems and on the subsequent postselection� to enhance the
entanglement extraction from the CV system to two qubits.
In general, such schemes result in the purification of the
interesting two-qubit state and thus in a sort of entanglement
“purification,” as is the case for the postselection of detection
events of the field modes �see the previous section and Ref.

�21��. We mention that a scheme employing ancillary qubits
and measurements was also proposed in Ref. �5�, addressing
the realization of quantum repeaters through atom-light in-
teractions.

Here, instead of measuring the state of the CV subsystem
�which might present some practical difficulties�, we exam-
ine the measurement of the states of ancillary qubit pairs.
The scheme of principle of the protocol we consider here is
sketched in Fig. 4. In order to elucidate the basics of the
protocol, we consider just two pairs of qubits, the first one
given by qubits 1 and 2 and the second by qubits 3 and 4.
The first pair interacts with the entanglement distributor for a
time �1, after which the system is described by the density
matrix ���1� determined by Eq. �4� for N=1. Then, the sec-
ond pair of qubits interacts with the CV system for an inter-
action time �2. Each qubit interacts with the local light mode
according to the Jaynes-Cummings Hamiltonian of Eq. �2�.
After such a dynamical evolution, qubits 3 and 4 are indi-
vidually measured in the orthogonal basis 
��� , ����� with
������0�+��1�. Here, ���2=1− ���2 and ���� �0,1� �for
simplicity, we assume that the same measurement is per-
formed on the two-qubit ancillary systems �22��. We consider
all the qubits initialized in the ground state �0� and the en-
tangled state ��r� of Eq. �1� as the initial state of the field,
constituting the entanglement resource. Let us recall, once
more, that this choice for the initialization of the qubits,
other than being natural, has been proven to optimize the
entanglement transfer process �3,9,23�. In what follows, we

FIG. 2. �Color online�. Comparison between the entanglement transfer to a pair of ensembles of N atoms �solid lines� and to a pair
bosonic modes with interaction strength rescaled by 	N �dotted lines�, for N=2 �a�, for N=7 �b�, for N=11 �c�, and for N=15 �d�. All
quantities plotted are dimensionless.
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set the value of the two-mode squeezing parameter r to 0.86
which, as already remarked, allows for the maximal transfer
in the “passive” scheme with N=1. We denote by U3 and U4
the evolution operators that describe the dynamics of qubits
3 and 4 interacting with the light modes �each of them being
given by Eq. �3� for �=�2�. Let us also suppose that the
measurement projects qubits 3 and 4 onto the two-qubit state
�cd����� � ���. After such a measurement, qubits 1 and 2
are left in the state �cd,12 reading

�cd,12 =
Tr34,f��cd��cd��U3 � U4����1��U3

†
� U4

†��
Tr��cd��cd��U3 � U4����1��U3

†
� U4

†��
, �7�

with probability

p = Tr��cd��cd��U3 � U4����1��U3
†

� U4
†�� . �8�

Here Tr34,f stands for the partial trace on the Hilbert space of
qubits 3 and 4 and on the field while Tr is the usual global
trace.

Before proceeding with the quantitative description of the
performances of this protocol, it is worth remarking that the
addressed situation can be realized in different physical set-
ups such as cavity-QED systems, individually trapped ions
interacting with optical cavities �24�, and cavity-integrated
superconducting systems �4,12,23�. In the first case, the two
pairs of qubits could cross an optical cavity along two or-

thogonal directions on the same plane �see Fig. 4� �25�. In
the second and third cases, a specific qubit pair can be set in
resonance with a cavity-field mode by tuning an external
magnetic flux which, at the same time, sets the qubits of the
second pair in a dispersive �far-off-resonant� regime. The
technology needed for this kind of operations already exists,
requiring a magnetic field with a spatial gradient. The mag-
netic field globally addresses the two qubits of two different
pairs which are simultaneously present inside a single cavity,
but differently Zeeman-shifts them, setting one qubit in reso-
nance and the other off resonance �in a way which extends
and generalizes the Mintert-Wunderlich proposal �26��.
However, while the strong-coupling regime seems to be re-
motely feasible in the cavity-trapped ion setup, the main ad-
vantage which characterizes the superconducting implemen-
tation is the natural achievement of these working
conditions. This is due to the fact that the electromagnetic
fields, in a system of superconducting charge qubits �23�,
couple directly to the excess charge of the qubit rather than
to its intrinsic dipole moment. This gives rise to effective
dipole moments which are orders of magnitude larger than
the already large ones characterizing alkali-metal Rydberg
atoms interacting with cavity-field modes �4,12�. Moreover,
the very high cavity quality factors achievable in this quasi-
unidimensional configuration �12,27� and a judicious choice
of the superconducting qubits working point �the charge-
degeneracy point, as described in Refs. �4,12,23��, which
strongly quenches the non-Markovian 1/ f noise �4,9,28�,
make our proposal robust against decoherence. Thus, a suit-
able modification of already realizable fully integrated setups
seems to be very promisig for the implementation of the
present proposal.

As for the scheme of principle of our proposal, note that
an alternative approach based on the simultaneous interac-
tion of each light field with N qubits �as in the previous
section� and on the subsequent measurements of

FIG. 4. Scheme of the protocol based on sequential passage of a
multiqubit system, shown for just two qubit pairs. Two qubits, la-
beled 1 and 2, interact with the entanglement distributor, repre-
sented by a two-mode squeezed state �generated by the
nondegenerate-parametric amplifier �NDPA��. Then, a second pair
of qubits, 3 and 4, are sent to interact with the entangler and are
subsequently measured �for instance, by means of two channel-
trons� onto the qubit basis 
��� , ����� �defined in the body of the
paper�.

FIG. 3. �Color online�. Entanglement transfer for N=1 �a� and
N=2 �b� after postselection of the finite-dimensional state for an
even �solid line� and odd �dotted line, always null in case �a�� CV
system’s photon number. The measurements are taken after the CV
and qubit systems have interacted for a rescaled time �. The non-
postselected, “purely dynamical” entanglement transfer is plotted as
a reference �dashed line�. All quantities plotted are dimensionless.
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�N−1�-qubit systems to localize the entanglement in the in-
teresting pair might have been considered. Actually, even
allowing for generic qubit measurements, such a strategy
cannot beat the direct dynamical transfer to two qubits �ob-
tained for N=1�: the “dispersion” of the entanglement among
the qubit subsystems cannot be reversed by local measure-
ments and classical communication. The projection of qubit
pairs which sequentially interact with the distributor, as is the
case for the scheme presented here, is thus a key to improve
the “passive,” purely dynamical transfer.

In Fig. 5, we show the behavior of EN between qubits 1

and 2 as a function of the rescaled interaction time �1=�. The
interaction time �2 �relative to the coupling between qubits 3
and 4 and the CV system� is used as a parameter. We have
considered �=0 �i.e., both ancillary qubits are found in their
excited state�. As is apparent, the analytical structure of the
transferred entanglement changes drastically in the presence
of the ancillary interaction and postselection which is, not
surprisingly, not always advantageous for all interaction
times as it can even completely spoil the entanglement be-
tween the qubits. However, large peaks of entanglement,
with values beating the maximum obtained with the passive
strategy �corresponding to EN�0.9; see Table I�, are fre-
quently present. In particular, as detailed in Fig. 6, for the
interaction times �1=5.65 and �2=3� /2, the considered post-
selection process results in EN�0.975 with probability p
�0.3, thus allowing for the distillation of a quasimaximally
entangled state.

Before addressing the refining of such an almost-perfect
Bell-pair extraction procedure, some further remarks are in
order. The procedure is qualitatively effective regardless of
the choice of �. Any value of � allows one to beat the maxi-
mum of transferred entanglement achievable with the passive
strategy �in Fig. 7 we report the analysis for �=0.95; in
particular, panel �c� corresponds to an increase in entangle-
ment with respect to 0.9 which can be as large as 3% for
�1=5.65 and �2=3� /2�. However, as seen in panel �b� of
Fig. 7, the changes in the behavior of the transferred en-
tanglement are much less abrupt �no qualitative changes with
respect to the passive case of �1=0 are found up to �2=1�
and the values of the maximally transferred entanglement are
lower than the corresponding ones obtained for �=0. The
optimality of the projection on the excited states of the an-
cillary qubits obtained for �=0 can be understood at the
level of the density matrix structure. Indeed, such a projec-
tion always results in a postselection of states of qubits 1 and
2 of the following form:

�cd,12 =
A1 0 0 − B

0 A2 0 0

0 0 A3 0

− B 0 0 A4

� , �9�

with the density matrix’s entries being, in general, very com-
plicated functions of �1,2 and r �no qualitative information

FIG. 5. Entanglement against the rescaled interaction time �1

=� for the case ���2=0 �with both the qubits 3 and 4 found in �1��
and an initial squeezing parameter r=0.86. From �a� to �d� we show
the behavior of the entanglement function for �2=0, �2��, �2

�3� /2, and �2�2�. All quantities plotted are dimensionless.

FIG. 6. Positive part of the difference between the logaritmic
negativity for �1=� and �2=3� /2 and the peak of logarithmic nega-
tivity for �1=3� /2 and �2=0 �for which EN�0.9� against the res-
caled interaction time �. We have considered r=0.86 and ���2=0 as
in the previous figure. All quantities plotted are dimensionless.
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can be gathered, in general, from the presentation of their
analytical form�. Now, for optimal choices of �1 and �2, cor-
responding to the values discussed in Figs. 5�c� and 6, one
has A1 ,A4 ,B�A2,3�0 so that �cd,12 is a highly pure state
with a very large projection on the Bell state ��00�
− �11�� /	2. On the other hand, as soon as ����0, contribu-
tions different from Eq. �9� appear, becoming increasingly
relevant for larger values of ���, thus reducing the efficiency
of the entanglement transfer.

The efficiency of the postselected protocol depends on the
initial squeezing of the CV state as well. Indeed, if we con-

sider a small degree of initial entanglement between the field
modes of the CV system, it can be analytically seen that the
entanglement between qubits 1 and 2 in the postselected pro-
tocol described so far is not larger than the entanglement
transferred through the passive protocol of Refs. �3,4,23�. In
particular, by considering the expansion of Eq. �1� into terms
up to O�r2� and the joint qubit-CV modes dynamics, the
postselected density matrix ��=1 being in this instance the
most favorable case� turns out to be equivalent to the non-
postselected one. Choices of � different from 1 correspond,
in this case, to a smaller overlap between the reduced state of
the qubits and ��00�− �11�� /	2.

Let us now note that, as a matter of principle, the en-
tanglement transfer to a pair of two-level systems can be
further �probabilistically� improved by considering the inter-
action of the entanglement distributor with additional pairs
of ancillary qubits. To be more specific, we have explicitly
considered the case of a third pair of qubits, labeled with 5
and 6, which interact for a rescaled time �3 with modes a1
and a2, after the measurement of the state of qubits 3 and 4
has been accomplished. We assume that the third pair of
qubits are also found to be in ��� � ���. It is possible to
choose �2 and �3 so that the maximum of entanglement trans-
ferred by this active sequential protocol is even larger than
what is shown in Fig. 5�c�. Indeed, for �1�5.65, �2=�3=�
�and r=0.86� the transferred entanglement reaches EN
�0.99, with a difference from the passive transferred en-
tanglement enhanced to 0.093 �see Fig. 8�.

This result is per se interesting as it permits one to con-
jecture that the sequentialization of the postselected protocol
would allow for an asymptotically perfect entanglement ex-
traction. Moreover, quite remarkably, such an iterative pro-
cess is efficient, in that a relatively small number of itera-
tions does provide an almost perfect transfer �as we have
shown, the results are nearly perfect already after two itera-
tions�. Clearly, with respect to the first iteration of the post-
selection process, the second one is much less efficient, in
that the entanglement enhancement is a much smaller frac-
tion of the total transferred entanglement. This reduction in
efficiency is a feature characteristic of any “distillationlike”
�in a broad sense� process �21� and sets a practical trade-off
between the amount of entanglement one would like to ex-
tract from the distributor and the number of iterations al-
lowed by the decoherence time which characterizes the spe-
cific setup adopted. In many practical cases, like the one we

FIG. 7. Entanglement against the rescaled interaction time �1

=� for the case ���2=0.952 and an initial squeezing parameter r
=0.86. From �a� to �d� we show the behavior of the entanglement
function for �2=0, �2��, �2�3� /2, and �2�2�. All quantities
plotted are dimensionless.

FIG. 8. Positive part of the difference between the logarithmic
negativity for �1=� and �2��3�� and the passive peak value �for
which EN�0.9� against the interaction time �. An enhancement of
about 0.093 is found, which improves the result for a single itera-
tion protocol shown in Fig. 6. We have considered again r=0.86
and ���2=0. All quantities plotted are dimensionless.
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are addressing, just two repetitions of the protocol could be
enough to extract a nearly entire ebit.

IV. CONCLUSIONS AND OUTLOOK

We have considered the transfer and extraction of CV
entanglement by Jaynes-Cumming interactions with finite-
dimensional atomiclike systems. Our results show that mi-
croscopic systems or, from a slightly different standpoint,
systems with Hilbert spaces of “small” dimensions ��20�
allow for an almost complete extraction of the CV entangle-
ment originally stored in an infinite-dimensional Hilbert
space. On the other hand, the reasons for the impossibility of
a perfect extraction have been clearly shown to lie in the
feature of the considered dynamics, which cannot perfectly
mimic that of a quantum harmonic oscillator. In this respect,
the macroscopic highly polarized limit �achievable in atomic
clouds� can be already considered as optimal. However, it
could be interesting to envisage a realistic microscopic sys-
tem in which the couplings between different levels do actu-

ally reproduce the harmonic oscillator’s ones, described by
truncated bosonic ladder operators. Such a development de-
serves further investigation.

Furthermore, we have shown that a simple and realistic
sequential postselection protocol would allow for the arbi-
trarily perfect extraction of the CV entanglement into a Bell
state and, even more significantly, that one iteration of such a
protocol would provide one with an almost perfectly sym-
metric Bell state. Such a strategy could be a promising can-
didate to build up entangled pairs at a distance, with remark-
able improvements over passive purely dynamical strategies.
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