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Recently, Yan and Gao �Phys. Rev. A 72, 012304 �2005�� presented a quantum secret sharing protocol which
allows a secret message to be shared between two groups of parties �m parties in group 1 and n parties in group
2�. Their protocol is claimed to be secure that, except with the cooperation of the entire group 1 or group 2, no
subgroup of either group 1 or group 2 can extract the secret message. However, this study points out that the
mth party �the last party to process the quantum state� of group 1 can maliciously replace the secret message
with an arbitrary message without the detection of the other parties.
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I. INTRODUCTION

In �1�, Yan and Gao proposed a quantum secret sharing
�QSS� protocol which allows a secret message to be shared
between two groups of parties �m parties in group 1 and n
parties in group 2�. In their protocol, all m parties in group 1
collectively generate the secret message by directly encoding
their respective secret strings on a sequence of single pho-
tons. The mth party �the last party to process the single pho-
tons� of group 1 then sends 1/n of the resulting qubits to
each of n parties of group 2. Thus the secret message shared
by all parties of group 1 is shared by all parties of group 2 in
such a way that no subset of each group can correctly deter-
mine the secret message except with the cooperation of ei-
ther the entire set of group 1 or the entire set of group 2.

Yan and Gao �1� have shown that their protocol is uncon-
ditionally secure based on the quantum no-cloning theory.
However, this study points out that if the mth party of group
1 is not honest, he can generate either another sequence of
single photons or a sequence of EPR pairs to replace the
original photons without the detection of the other parties. In
other words, the mth party of group 1 can maliciously re-
place the original secret message with an arbitrary message
and pass the check procedure performed by all parties in
group 1 and in group 2.

The rest of this study is organized as follows. The next
section briefly reviews the QSS protocol proposed by Yan
and Gao �1�. Section III shows the weakness of their protocol
and gives a suggestion to avoid the flaw. Finally, a short
conclusion is given in Sec. IV.

II. REVIEW OF YAN AND GAO’S QSS PROTOCOL

Let Alice 1, Alice 2,…, Alice m be m parties of group 1
and Bob 1, Bob 2,…, Bob n be n parties of group 2. Yan and
Gao’s QSS protocol �1� is briefly described as follows.

�a� �Step 1� Alice 1 chooses two random nN bit strings A1
and B1. She then encodes each bit ak

1 of A1 as ��ak
1bk

1� for k
=1,2 , . . . ,nN, where ak

1 is the kth bit of A1, bk
1 is the corre-

sponding bit of B1, and each qubit is one of the four states

��00� = �0� ,

��10� = �1� ,

��01� = � + � =
1
�2

��0� + �1�� ,

��11� = �− � =
1
�2

��0� − �1�� .

The effect of this procedure is to encode A1 in the basis Z
= ��0� , �1�	 or X= ��+ � , �−�	, as determined by B1. Note that
the four states are not all mutually orthogonal; thus, no mea-
surement can distinguish between all of them with certainty.
Then Alice 1 sends the resulting nN qubit state

��1� = �k=1
nN ��ak

1bk
1�

= � j=0
N−1��anj+1

1 bnj+1
1 ���anj+2

1 bnj+2
1 � ¯ ��anj+n

1 bnj+n
1 �

to Alice 2.
�b� �Step 2� Alice 2 creates two random nN bit strings A2

and B2. She applies a unitary transformation �0 �if the kth bit
ak

2 of A2 is 0� or �1 �if ak
2=1� to each qubit ��ak

1bk
1� of nN qubit

state ��1�, where

�0 = I = �0�
0� + �1�
1� ,

�1 = i�y = �0�
1� − �1�
0� .

Then, she performs a unitary transformation I �if bk
2=0� or H

�if bk
2=1� to each qubit of the resulting nN qubit state, where

H =
1
�2

��0� + �1��
0� +
1
�2

��0� − �1��
1� .

After this, she sends Alice 3 the resulting nN qubit state ��2�.
�c� �Step 3� Alice i does likewise, for i=3,4 , . . . ,m. After

Alice m finishes the unitary transformations on each qubit of
��m−1� according to the strings Am and Bm, she sends N qubit
state ��l

m�= � j=0
N−1��anj+l

m bnj+l
m � of the resulting nN qubit state
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��m�= �k=1
nN ��ak

mbk
m� to Bob l, for l=1,2 , . . . ,n.

�d� �Step 4� Bob 1, Bob 2,…, Bob n receive N qubits and
announce this fact, respectively.

�e� �Step 5� Alice 1, Alice 2,…, Alice m publicly an-
nounce the strings B1 ,B2 , . . . ,Bm one after another, respec-
tively.

�f� �Step 6� Bob 1, Bob 2,…, Bob n measure each qubit of
their respective strings in the basis Z or X according to the
XOR results of corresponding bits of strings B1 ,B2 , . . . ,Bm.
That is, Bob l measures ��anj+l

m bnj+l
m � in the basis Z �if

� i=1
m bnj+l

i =0� or in the basis X �if � i=1
m bnj+l

i =1�, for j
=0,1 , . . . ,N−1, and l=1,2 , . . . ,n.

�g� �Step 7� All Alices select some bits njr+ l of their nN
bits at random and publicly announce the selection, where
jr� �j1 , j2 , . . . , jr0

	� �0,1 , . . . ,N−1	 and l=1,2 , . . . ,n. In the
check procedure, all Alices and Bobs are required to broad-
cast the values of their checked bits and compare the XOR

results of the corresponding bits of checked bits of
A1 ,A2 , . . . ,Am and the values of the corresponding bits of
Bob 1, Bob 2,…, Bob n. If more than an acceptable number
disagree, they abort this round of operation and restart from
the first step.

�h� �Step 8� The XOR results � l=1
n �� i=1

m anjs+l
i � of Bob l ’ s

corresponding bits � i=1
m anjs+l

i of the remaining bits njs+ l of
�� i=1

m anj+1
i 	 j=0

N−1, �� i=1
m anj+2

i 	 j=0
N−1 , . . . , �� i=1

m anj+n
i 	 j=0

N−1 can be used
as raw keys for secret sharing between all Alices and all
Bobs, where js� �j1 , j2 , . . . , jr0

	 and js� �0,1 , . . . ,N−1	.

III. THE SECURITY FLAW IN YAN AND GAO’S
PROTOCOL

Yan and Gao’s protocol is claimed to be secure that, ex-
cept with the cooperation of all Alices or all Bobs, no sub-
group of either group 1 or group 2 can extract the secret
message. However, this study shows that if Alice m is not
honest, she can maliciously replace the original secret mes-
sage with an arbitrary message she chooses without the de-
tection of other parties. Two ways are proposed to replace the
original secret message with some other forged one: the first
one is using single photons and the other is using EPR pairs.
These attacks are given as follows.

A. The attack with single photons

�a� Let Alice i, for i=1,2 , . . . ,m−1, perform the same
process as that in Yan and Gao’s protocol.

�b� When the malicious Alice m receives the nN qubit
state ��m−1� from Alice m−1, she preserves it. Then she
chooses two random nN bit strings Am� and Bm� . Instead of
applying unitary transformations on ��m−1�, she creates a
new nN qubit state ��m�= �k=1

nN ��ak
mbk

m� according to each bit
ak

m of Am� and bk
m of Bm� , for k=1,2 , . . . ,nN. Alice m sends N

qubit state ��l
m�= � j=0

N−1��anj+l
m bnj+l

m � of the resulting nN qubit
state ��m� to Bob l, for l=1,2 , . . . ,n.

�c� When all Bob 1, Bob 2,…, Bob n have announced the
receiving of their string of N qubits and Alice 1, Alice 2,…,
Alice m−1 have announced the strings B1 ,B2 , . . . ,Bm−1, Al-
ice m calculates

Bm = Bm� � B1 � B2 � ¯ � Bm−1.

Alice m publicly announces the string Bm. Note that the mea-
suring basis used by Bob l to measure the qubit ��anj+l

m bnj+l
m � is

determined by the bit bnj+l
m of Bm� , in which the basis Z �the

basis X� is used if bnj+l
m =0 �if bnj+l

m =1�, for j=0,1 , . . . ,N−1
and l=1,2 , . . . ,n. Accordingly, the measuring result of the
qubit ��anj+l

m bnj+l
m � should be decoded as the same bit value as

the bit anj+l
m of Am� .

�d� Since Alice m has preserved the nN qubit state ��m−1�,
she can learn the contents of the message A�= � i=1

m−1Ai by
measuring each qubit ��ak

m−1bk
m−1� of ��m−1� in the Z basis �if

� i=1
m−1bk

i =0� or in the X basis �if � i=1
m−1bk

i =1�, for k
=1,2 , . . . ,nN. Alice m then calculates

Am = Am� � A�,

and uses Am to cooperate with other Alices during the check
procedure �steps 7 and 8�.

According to the above description, Alice m can replace
the nN qubit state ��m−1� with the new state ��m�, and she
can also calculate the strings Am and Bm to successfully cheat
on other parties during the check procedure. Consequently,
the secret message shared between all Alices and all Bobs is
indeed chosen by Alice m rather than the collaboration of all
Alices.

B. The attack with EPR pairs

In the above attack, Alice m cannot announce the string
Bm until she obtains all the strings B1, B2 , . . . ,Bm−1 from
Alice 1, Alice 2,…, Alice m−1 respectively. However, this
can be a risk for the cheating of Alice m if Alice m is asked
to announce her string Bm before other Alices do. We now
propose another attack to Yan and Gao’s protocol in which
Alice m can announce her string Bm without first knowing
other string Bi, for i=1,2 , . . . ,m−1.

�a� Let Alice i, for i=1,2 , . . . ,m−1, perform the same
process as that in Yan and Gao’s protocol.

�b� When the malicious Alice m receives the nN qubit
state ��m−1� from Alice m−1, she preserves it. Rather than
prepare the nN qubit state, Alice m generates nN EPR pairs
in the state �k=1

nN ��k�, where ��k�= �1/�2���00�+ �11��. Alice
m keeps the first qubit of each EPR pair and takes the second
qubit of each EPR pair as the nN qubit state ��m�. She then
sends N qubit state ��l

m� of ��m� to Bob l, for l=1,2 , . . . ,n,
as the same procedure as that described above.

�c� Alice m chooses a random nN bit string Bm. When all
Bob 1, Bob 2,…, Bob n have announced the receiving of
their string of N qubits, Alice 1, Alice 2,…, Alice m publicly
announce the strings B1 ,B2 , . . . ,Bm, respectively. Note that
Alice m can select the string Bm without first knowing other
string Bi, for i=1,2 , . . . ,m−1.

�d� Alice m calculates Bm� =B1 � B2 � ¯ � Bm. She then
measures the first qubit of each EPR pair according to the
corresponding bit of Bm� and decodes the measuring results to
obtain the string Am� . Note that Bob 1, Bob 2,…, Bob n
measure each qubit of their respective states in the basis Z or
X according to the XOR results of corresponding bits of
strings B1 ,B2 , . . . ,Bm. Thus, the measuring results of Bobs
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and Alice m should be identical owing to the property of the
EPR pair.

�e� Similar to the previous attack, Alice m can learn
the contents of the message A�= � i=1

m−1Ai by measuring
each qubit ��ak

m−1bk
m−1� of ��m−1�, for k=1,2 , . . . , ,nN. She

then calculates

Am = Am� � A�,

and uses Am to cooperate with other Alices during the check
procedure.

According to the above description, Alice m can replace
the nN qubit state ��m−1� with nN EPR pairs. Due to the
property of the EPR pairs, Alice m can announce her string
Bm without first knowing other string Bi, for i=1,2 , . . . ,m
−1. As a result, the attacker in this attack does not necessar-
ily have to be the last party of group 1 if she can collect the
string Ai from the other Alices during the check procedure.

C. An improvement of Yan and Gao’s protocol

In the above attacks, Alice m can successfully cheat on
other parties because she can calculate the proper strings Am
and Bm by gathering the string B1 ,B2 , . . . ,Bm−1 and measur-
ing the nN qubit state ��m−1� according to the result of
� i=1

m−1Bi. Hence, to avoid the security flaw, we suggest that

all Alices must cooperatively extract the secret message A�
= � i=1

m Ai before they publicly announce the strings
B1 ,B2 , . . . ,Bm, respectively. Moreover, the announcement of
the string Bi, for i=1,2 , . . . ,m, must be in a random sequen-
tial order so that Alice m cannot calculate the proper strings
Am and Bm during the check procedure. Note that all Alices
also have to keep the string A� secret from all Bobs before
they publicly announce the strings B1 ,B2 , . . . ,Bm.

IV. CONCLUSION

This study has pointed out a security flaw in Yan and
Gao’s QSS protocol, in which the secret message shared by
all Alices and all Bobs can be maliciously replaced by Alice
m without detection of the other parties. We have proposed
two ways to perform the attack: one is to use the single
photons and the other makes use of the EPR pairs. Neverthe-
less, a possible way to avoid the security flaw is also given in
this study.
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