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The isolated resonance picture �IRP� is tested by comparing calculations on doubly excited autoionizing
states of H2 by using two different theoretical approaches: a recent implementation of the exterior complex
scaling method and the standard Feshbach method with B-spline basis sets. These calculations demonstrate that
the IRP can yield poor approximations to autoionization widths when doubly excited states approach the
ionization threshold at large internuclear distances, R. In contrast, at small R where avoided crossings appear,
the IRP produces accurate resonance parameters.
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Many resonance phenomena observed in H2 photoioniza-
tion or in the scattering of electrons by H2

+ ions can be
explained by the existence of doubly excited autoionizing
states �1–11�. These states are commonly viewed as bound
states embedded in a nonresonant continuum to which they
decay after a short time �typically a few femtoseconds� due
to the electron-electron interaction �12�. The use of this
simple image requires the knowledge of the resonance pa-
rameters: the energy position Es and the autoionization width
�s �i.e., the inverse of the autoionization lifetime �s=1/�s�.
In the framework of the Born-Oppenheimer approximation,
the values of these parameters depend on internuclear dis-
tance, as is the case for all molecular electronic properties
�apart from symmetry�. Therefore, a complete description of
resonance phenomena in H2 requires the knowledge of en-
ergy positions and autoionization widths in a wide range of
internuclear distances. This area has been the subject of ex-
tensive theoretical investigations for more than three decades
�13–21�.

The extraction of autoionization parameters depends very
much on the particular method used to describe autoionizing
states, e.g., time-delay �22–24�, R-matrix �16,18,25�,
Feshbach �26�, or complex scaling �27,28� methods. This
paper focuses on the latter two methods. In the Feshbach
method, one defines two orthogonal subspaces P and Q. The
wave functions of the doubly excited states �DESs� and the
corresponding energies result from diagonalizing the
Schrödinger equation in the Q subspace; the autoionization
widths are obtained from a simple golden rule equation that
describes the coupling between the DES and a nonresonant
continuum that mostly belongs to the P subspace. This
method has been and still is widely used because it provides
a simple physical image in agreement with our intuition.
Complex scaling methods directly provide energy positions
and widths through the poles of the S matrix by assuming
that the effect of the autoionization decay can be described
by a non-Hermitian Hamiltonian that results from rotating
the Schrödinger equation into the complex plane. Although

both methods are, in principle, exact �i.e., capable of produc-
ing exact results when numerically converged�, many appli-
cations of the Feshbach method make use of a simplifying
approximation: the isolated resonance picture �IRP�, in
which one neglects the effects of neighboring DESs on the
state of interest.

In this paper we compare the results of the Feshbach
theory �26�, implemented both exactly �19� and in the IRP,
with the results of exterior complex scaling �ECS� calcula-
tions that locate the poles of the S matrix directly �29–31�.
The two methods should agree in the case of narrow, isolated
resonances. As described by Feshbach himself in �26�, in the
case where the resonances are narrow but nearly overlapping
there is reason to suspect that the IRP might not be a good
approximation. We demonstrate that, in H2, the regions of
avoided crossings between resonance states are still well de-
scribed within the IRP. However, we have found that there is
another context in which the IRP is unsuccessful: when po-
larization of the residual electron cloud by the outgoing elec-
tron is important. Such polarization occurs, e.g., when a DES
is close to the ionization threshold and, therefore, it is impor-
tant for the description of resonance phenomena near the
threshold �e.g., the dissociative recombination of a slow elec-
tron with a H2

+ ion or the radiative decay of the excited
hydrogen atoms produced in the dissociation of H2 by xuv
photons �2,8,11,32,33��.

We start by briefly describing the ECS and Feshbach
methods. In the ECS method, complex scaling is applied to
the electronic coordinates r outside a fixed radius R0 �which
encloses the singular nuclear attraction potentials�:

r → �r , for r � R0

R0 + �r − R0�ei�, for r � R0
� . �1�

In this method, the eigenvalues associated with the bound
states of the scaled Hamiltonian H� are the same as those of
the original Hamiltonian H. Segments of the continuum
spectrum of H� beginning at each scattering threshold are
rotated an angle 2�. Isolated complex eigenvalues revealed
by the rotated continua correspond to resonances. Their pa-
rameters are directly extracted from the ECS complex spec-*Electronic address: felipe.morales@uam.es
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trum: Es=Re�E� and �=−2 Im�E�. These parameters are in-
dependent of �, as long as they are not covered by branches
of the continuum spectrum of H� and the basis set is practi-
cally complete. In an accurate calculation using the ECS ap-
proach, the isolated complex eigenvalues of the scaled
Hamiltonian are the locations of the poles of the S matrix,
and the interaction between different DESs is automatically
included.

In the Feshbach method, the resonance energy is given by

Es = Es + Re��s�QHPGP
�s�−�E = Es�PHQ��s	 �2�

and the autoionization width by

�s 
 �
�

�s,� = 2��
�

��P	�E=Es

0− �PHQ��s	�2, �3�

where �s is the resonant wave function of energy Es; the
solution of the projected Schrödinger equation

�QHQ − Es��s = 0, �4�

	�E
0− is the nonresonant wave function in the � open channel

that satisfies the equation

�PHP + PHQGQ
�s��E�QHP − E�	�

0− = 0, �5�

where �s,� is the � partial width, and GP
�s�− and GQ

�s� are
Green’s functions defined in the P and Q=1-P subspaces
�34,35�. The index � represents a particular state of
the remaining ion and the asymptotic angular momentum
l of the outgoing electron. For two-electron systems,
P= P1+ P2− P1P2, where Pi is a one-electron projection op-
erator that includes all the H2

+ orbitals associated with the
ionization thresholds lying below the DES of interest �36�. In
an exact derivation of Feshbach theory, the integrals on the
right-hand side of Eqs. �2� and �3� depend on energy �35�.
They are just mathematical objects that allow one to express
the exact scattering wave function in a convenient way for
computations. The interpretation of these integrals as energy
position Es and autoionization width �s comes from the fact
that, for sufficiently narrow resonances, they are practically
independent of energy and, therefore, can be assigned to the
�s resonance by fixing the energy, E=Es.

The Green function GQ
�s� includes the effect of all DESs in

the calculated wave functions but the �s one. The IRP con-
sists in neglecting GQ

�s� wherever it appears. In other words, it
consists in neglecting the coupling between resonance states
in the Q space through the P space. In this approximation,
the above equation reads:

�PHP − E�	�E
0− = 0, �6�

where the potential Vp= PHQGQ
�s��E�QHP has been removed

from Eq. �5�. The IRP also affects the second term of Eq. �2�
since the Green function GP

�s�− contains information from the
	�E

0− wave functions for all E�Es. Neglecting GQ
�s� is equiva-

lent to using a restricted Q subspace containing a single adia-
batic state, Q= ��s	��s�, instead of the exact Q subspace con-
taining the whole spectrum that arises from Eq. �4�.

All equations in this work have been solved in a basis of
two-electron configurations built from H2

+ orbitals expanded
in a basis of B splines �details about B-spline bases can be
found in �37��. In the Feshbach calculations, we have used
the same methods as in Ref. �19�, namely a standard configu-
ration interaction approach to solve Eq. �4� and the L2 close-
coupling method to solve Eqs. �5� and �6�. The configuration
bases in both P and Q subspaces are the same as in Ref. �19�,
where it has been shown that they are accurate enough to
describe the lowest DESs of each symmetry. In the ECS
calculations, the configuration basis is the sum of the P and
Q bases used in the Feshbach calculations, but scaled accord-
ing to Eq. �1�.

We have carried out calculations of energy positions and
autoionization widths for the lowest Q1 DESs of H2 with 1
g

+

and 1�u symmetries. These symmetries have been chosen
because they contain DESs that are relevant in e−+H2

+ scat-
tering and H2 photoionization �see, e.g., �2,7–9,11,32,33��.
The calculated energies and widths are shown in Figs. 1 and
2 as functions of internuclear distance. The results from the
exact Feshbach method have been taken from Ref. �19�. A
detailed comparison with previous works can also be found
in that reference �19�.

Figures 1�a� and 2�a� show that the IRP does an excellent
job in describing resonance energies since the results are
practically identical to those obtained from exact theories for
all internuclear distances. As discussed in previous works
�15,19�, the energy curves exhibit avoided crossings in the
region of small internuclear distances, R�2 a.u. It is worth
noting that the agreement is excellent even in this region. As
can be seen, the energy curves cross the ionization threshold
at larger internuclear distances, where the DESs become
truly bound states. For the lowest 1
g

+ state, this occurs at
around 2.8 a.u.

Figures 1�b� and 1�c� show that total widths obtained with
exact Feshbach and ECS approaches are practically indistin-
guishable for all internuclear distances �irrespective of the
fact that extraction of resonance parameters is based on quite
different assumptions�. The total widths obtained within the
IRP agree with the exact ones at small internuclear distances
but differ significantly from them when the DES approaches
the ionization threshold at large internuclear distances. The
same holds for the s and d partial widths. It is worth noting
that the IRP widths are accurate in the vicinity of the avoided
crossings, where the IRP is expected to fail. This is because
the energy separation between DESs in this region is still
larger than the corresponding widths. The failure of the IRP
near the ionization threshold is due to the impossibility of
describing the polarization of the remaining electronic cloud
by the outgoing electron �by construction of the P operator,
the ionic core is frozen unless GQ

�s� is included in Eq. �5��.
Such an effect is more important when the outgoing electron
is slow �as in the vicinity of the threshold� and it is included
in the exact Feshbach approach through the polarization po-
tential Vp.

Inclusion of polarization effects is relevant for an accurate
description of the dissociative recombination process e−

+H2
+→H+H, in which a slow electron is resonantly cap-

tured in a low lying DES that further dissociates into two
neutral H atoms. All theoretical models developed so far to
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study this process need total and partial autoionization
widths, but also the couplings of the corresponding DESs
with the Rydberg states that lie below the ionization thresh-
old �8�. Such couplings entirely determine the population of
the different dissociation channels and are usually repre-
sented in the form of a pseudowidth that smoothly correlates
to the physical autoionization width above the threshold.
Evaluation of these pseudowidths in the context of the Fes-
hbach method is very simple if one encloses the system in a
finite box that transforms the infinite series of Rydberg states

in a fine set of discrete states similar to those used to repre-
sent true continuum states with an L2 integrable basis �38�.
Figures 1�b� and 1�c� show that the pseudowidths obtained
using the IRP beyond the crossing point between the DES
and the ionization threshold significantly differ from the ex-
act ones.

The results obtained for the DESs of 1�u symmetry lead
to similar conclusions. For this symmetry the main effect of
the narrow avoided crossing is to produce abrupt variations
of the widths with internuclear distances �see �15,19��. These
variations are due to the sudden exchange of character in the
region of the avoided crossing. However, the IRP still leads
to an accurate description of both energies and widths. As it
does for 1
g

+ symmetry, the IRP fails for the states of this
symmetry when the DES approaches the ionization thresh-
old, although the errors are less pronounced than in the pre-
vious case. The same holds for the p and f partial widths.

FIG. 1. �Color online� Resonance parameters as functions of
internuclear distance for the 1
g

+ symmetry. �a� Resonance posi-
tions. Full line, exact Feshbach results from �19�; squares, ECS
results; circles, IRP Feshbach results. The dashed line shows the
position of the 1s
g ionization threshold. �b� Autoionization widths
of the lowest DES. Full lines: total widths. Dotted lines: partial
widths. Lines without symbols: exact Feshbach results from �19�;
lines with squares, ECS results; lines with circles, IRP Feshbach
results. The vertical dashed line indicates the internuclear distance
where the DES crosses the ionization threshold. �c� The same as in
�b� but for the second lowest DES.

FIG. 2. �Color online� Resonance parameters as functions of the
internuclear distance for the 1�u symmetry. Notations as in Fig. 1.
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In conclusion, we have shown that the isolated resonance
picture is a reasonable approximation to describe �i� energy
positions of DESs in the whole range of internuclear dis-
tances and �ii� the corresponding autoionization widths in the
region of small and intermediate internuclear distances. At
large internuclear distances, when the doubly excited state
approaches the ionization threshold, the IRP fails in describ-
ing the autoionization widths due to the absence of polariza-
tion effects. This may have important consequences in the
analysis of H2 dissociation into two neutral hydrogen atoms,

in particular, when extrapolations of autoionization widths
�calculated at intermediate internuclear distances� are per-
formed beyond the ionization threshold.
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