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Quantum cluster states and entangled-state analyzers are essential to measurement-based quantum comput-
ing. We propose to generate a quantum cluster state and to make a multipartite entanglement analyzer by using
noninteracting free electrons or conduction electrons in quantum dots, based on polarizing beam splitters,
charge detectors, and single-spin rotations. Our schemes are deterministic without the need of qubit-qubit
interaction.
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Quantum computers own great advantages over existing
computers for solving classically intractable problems and
speeding up some tractable solutions �1–3�. Most current re-
searches are exploring quantum computing based on exter-
nally controlled qubit-qubit interaction, while there are some
alternative quantum computing proposals based on qubit
measurements.

The quantum cluster state �4�, a special multipartite en-
tangled state, is the key ingredient in a measurement-based
quantum computing, i.e., one-way quantum computing �5�.
With a cluster state of an array of qubits, we can carry out
expected quantum gates by some single-qubit operations and
detections. In a lattice structure, for any site a of the lattice,
the cluster state ���k��C obeys the set of eigenvalue equations
K�a����k��C= �−1��a���k��C, with the corresponding operator
K�a�=�x

�a�
�b�nghb�a��z

�b�, where nghb�a� specifies the sites of
all the neighbors of the site a and �a� �0,1�. The operators
K�a� with �a� lattice� form a complete family of commuting
operators on the lattice. It has been shown that some physical
systems such as quantum dots, optical photons, and cavity
quantum electrodynamics �QED� are suitable for preparation
of cluster states �6–9�.

Alternatively, if we have Bell-state measurements �or, say,
analyzers� and some initial source of entanglement, quantum
gates necessary for universal quantum computing are also
available. A typical example for this quantum computing is
to use linear optical elements, e.g., polarizing beam splitters,
as proposed in �10,11�. It is generally believed that for
measurement-based quantum computing, either full Bell-
state measurements in combination with some initial source
of entanglement or partial Bell-state measurements are suffi-
cient for a universal quantum computing �12,13�.

In this work, we report how to generate cluster states and
to make analyzers for multipartite entangled states with non-
interacting free electrons or conduction electrons in quantum
dots, by using beam splitters and single-spin rotations. Our
work is inspired by recent work �12,14�, which show that
quantum-information processing with such electrons could
be simpler but more powerful than by using photons. How-
ever, a previous no-go theorem �15,16� declared that the op-
erators with beam splitters and single-spin rotations can only
achieve universal quantum computing in noninteracting bo-

son systems instead of with fermions. Nevertheless, Ref. �17�
shows that entangled states can be created probabilistically
using beam splitters and position detections for bosons as
well as for fermions. Recently, more specific schemes
�12,14� were proposed by using noninteracting free electrons
or conduction electrons in quantum dots to carry out univer-
sal quantum computing with beam splitters and single-spin
rotations. The present paper consists of two parts. In the first
part, we describe how to construct cluster states with nonin-
teracting electrons using polarizing beam splitters and single-
spin rotations, assisted by parity check on the qubits. In con-
trast to the design in �18� with success probability of 0.25 by
using polarized photons, our scheme is deterministic without
using any prior entanglement necessary in former
parametric-down-conversion-based protocols. In the second
part of the paper, we describe entanglement analyzers for
multipartite states which would be useful for quantum com-
munication with multipartite states and for judging multipar-
tite entanglement �19,20�.

As in �12,14�, we encode the qubits into the spin degrees
of freedom of the noninteracting electrons. We first show in
Fig. 1 how to realize a controlled phase �C-PHASE� gate using
the encoder designed in �12�, which is modified from Fig. 3
of �12�. Based on this design, we could realize a cluster state
in the following. We consider N noninteracting electrons in

FIG. 1. A controlled-phase gate in the case of P1= P2=1, where
the blocks P1 and P2 are the encoders designed in Fig. 2 of Ref.
�12�, and H means a Hadamard gate H= ��x+�y� /	2. Electrons
output from port 2 are destroyed by measurement, while outputs
from ports 1 and 3 remain.
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Fig. 2 prepared initially in a product state ��0�= � j�+ � j,
where the indices j=1,2 ,3 , . . . refer to the sites of the atoms
and �+ � j is the eigenstate of �x

�j� with the eigenvalue 1. A
straightforward deduction yields that, when Pj =1, the pair
states of 1-2, 3-4, and so on, will collapse to

1
	2

��00� + �11�� . �1�

After Hadamard transformations are performed on the sec-
ond qubits of each pair, Eq. �1� becomes

1

2
��00� + �01� + �10� − �11�� . �2�

This is a typical quantum phase gate for each electron pair.
For example, when the charge detectors P1 and P2 are both
equal to 1, the output qubits 1, 2, 3, and 4� become

���1234� = 1
4 ��0000� + �0001� + �0010� − �0011� + �0100�

+ �0101� − �0110� + �0111� + �1000� + �1001�

+ �1010� − �1011� − �1100� − �1101� + �1110�

− �1111�� , �3�

which can also be rewritten to be a standard form of the
cluster state,

���1234� = 1
4 ��0�1 + �1�1�z

2� � ��0�2 + �1�2�z
3� � ��0�3 + �1�3�z

4�

� ��0�4 + �1�4� . �4�

If P1 and P2 are not both equal to 1, a single-qubit opera-
tion is needed after above operations to realize the required
state in Eq. �4�. For example, in Table I, where the first row
means the case when P1 gets the value 0 or 1 and the first
column means the case of P2=0 or 1; �x2� and �x3� are
spin-flip operations on the qubit output from the ports 2� and
3�, respectively, and I is the identity operator. It is easy to
check that the above idea can be extended to generation of an

N-electron cluster state by the design shown in Fig. 2. For
any Pj =0 we just need a spin-flip ��x� operation on one of
the electron spins in the control-out arm of the corresponding
encoders.

Now we start to construct analyzers for multipartite en-
tangled states. In Fig. 3 we show how multipartite entangled
states can be distinguished using blocks of the encoder. In
the full Bell-state analyzer shown in Fig. 3�a�, the different
outputs of Pj �j=1,2� correspond to different Bell states,
where P1=1→ ��+� or ��−�; P1=0→ ��+� or ��−�,
P2=1→ ��+� or ��+�; P2=0→ ��−� or ��−�, with ��±� and
��±� being, respectively, the Bell states ��±�= �1/	2�
���00�± �11�� and ��±�= �1/	2���01�± �10��. For example, if
we have P1=1 and P2=1, we know the electrons passing our
analyzer to be in ��+�.

In the case of a three-electron entangled state shown in
Fig. 3�b�, after qubits 1 and 2 go through the encoder P1, we
can distinguish �g1 ,g2� from �g3 ,g4� when P1=1 by a parity
check on the detected pairwise 1-2, where g1= ���i,ii,
g2= ���iii,iv, g3= ���v,vi, g4= ���vii,viii, by using the following
equations:

���i,ii =
1
	2

��000�123 ± �111�123� = ��+�12� ± �3 + ��−�12� � �3,

���iii,iv =
1
	2

��110�123 ± �001�123� = ��+�12� ± �3 − ��−�12� � �3,

FIG. 2. The schematic diagram for generating a cluster state in
the case of Pj =1, where the block of C-Pj is the controlled-phase
gate designed in Fig. 1.

TABLE I. The corresponding single-qubit operation for different
values of P1 and P2 in preparation of a cluster state.

P2

P1

0 1

0 �x2� � �x3� I � �x3�
1 �x2� � I I � I

FIG. 3. �a� A deterministic Bell-state analyzer. �b� An analyzer
for three-electron entangled state, where M± denotes measurement
in the bases �	, 
�. �c� An analyzer for a four-particle entangled
state.
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���v,vi =
1
	2

��010�123 ± �101�123� = ��+�12� ± �3 + ��−�12� � �3,

���vii,viii =
1
	2

��100�123 ± �011�123� = ��+�12� ± �3

− ��−�12� � �3. �5�

If P1=0, with a �x operation on one of the output electrons
from the encoder P1, we can do the same job as in the case of
P1=1. Similarly, after electrons go through the encoder P2,
we can distinguish �g1 ,g4� from �g2 ,g3�. So up to now we
have separated the eight three-qubit entangled states into
four groups, i.e., g1 ,g2 ,g3 ,g4. In order to distinguish the two
states �i.e., the 	 state from the 
 state� in each groups,
we have to perform measurements on each group. For
example, to distinguish the state �1/	2���000�+ �111�� from
�1/	2���000�− �111��, if we get a click in the basis �	� and
P3=1, or get a click in �
� and P3=0, we have the state
�1/	2���000�+ �111��. Otherwise we have �1/	2���000�
− �111��. Although each measurement would destroy a qubit,
as the eight entangled states can be completely distinguished,
the device in Fig. 3�b� would be useful for teleportation and
superdense coding with tripartite states �19,20�.

The idea can be generalized to many-electron cases,
which would be more complicated but still deterministic. We
show in Fig. 3�c� an example for a four-electron entangle-
ment analyzer. By checking the parity of the two pairs 1-2
and 3-4, along with the readouts of P1 and P2, we can sepa-
rate the four-qubit entangled states into four sets of groups,
as shown in Table II, by using the following Eq. �6�:

���i =
1
	2

��0000�1234 ± �1111�1234�

= 

1
	2

���+�12��+�34 + ��−�12��−�34� for + state,

1
	2

���+�12��−�34 + ��−�12��+�34� for − state,�
���ii =

1
	2

��0001� ± �1110��

= 

1
	2

���+�12��+�34 + ��−�12��−�34� for + state,

1
	2

���+�12��−�34 + ��−�12��+�34� for − state,�

���iii =
1
	2

��0010� ± �1101��

= 

1
	2

���+�12��+�34 − ��−�12��−�34� for + state,

1
	2

���+�12��−�34 − ��−�12��+�34� for − state,�
���iv =

1
	2

��0100� ± �1011��

= 

1
	2

���+�12��+�34 + ��−�12��−�34� for + state,

1
	2

���+�12��−�34 + ��−�12��+�34� for − state,�
���v =

1
	2

��1000� ± �0111��

= 

1
	2

���+�12��+�34 − ��−�12��−�34� for + state,

1
	2

���+�12��−�34 − ��−�12��+�34� for − state,�
���vi =

1
	2

��0011� ± �1100��

= 

1
	2

���+�12��+�34 − ��−�12��−�34� for + state,

1
	2

���+�12��−�34 − ��−�12��+�34� for − state,�
���vii =

1
	2

��0101� ± �1010��

= 

1
	2

���+�12��+�34 + ��−�12��−�34� for + state,

1
	2

���+�12��−�34 + ��−�12��+�34� for − state,�
���viii =

1
	2

��1001� ± �0110��

= 

1
	2

���+�12��+�34 − ��−�12��−�34� for + state,

1
	2

���+�12��−�34 − ��−�12��+�34� for − state,�
�6�

where the � state means ��¯ �± �¯ �� /	2, respectively. An-
other encoder P3 would further divide the four sets of groups
into eight groups, i.e., ��� j �j= i, ii, ¯, viii�. In order to
completely distinguish the 16 four-qubit entangled states, we

TABLE II. Parity check for four-qubit entanglement
analyzer.

P2

P1

0 1

0 ���vii , ���viii ���ii , ���iii

1 ���iv , ���v ���i , ���vi
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have to make two measurements, as shown in Fig. 3�c�.
To achieve our proposal experimentally, we may encode

the qubits into the spin degrees of freedom of, for example,
the conduction electrons in a quantum dot system. A recent
scheme �14� for such conduction electrons is proposed to
convert spin parity into charge information by resonant tun-
neling between two dots when the spins are antiparallel.
Moreover, both the beam splitters and the charge detectors
required in our scheme have been experimentally achieved
�21–24� by means of the point contacts in a two-dimensional
electron gas. Since it only makes a parity check, the charge
detector in our case can be realized by using the point con-
tact made of a quantum dot with a resonant conductance.
According to whether it is resonant or off resonant, the de-
tector can distinguish occupation number 1 from occupation
number 0 or 2. However, the great experimental challenge
for a charge detector is the time-resolved detection required
for ballistic electrons, which at present is longer than our
requirement by several orders �24�. We expect that this re-

quirement could be met in the near future with the advance
of techniques in this respect.

In conclusion, we have presented schemes for fermions to
deterministically generate cluster states and to deterministi-
cally distinguish multipartite entanglement based on polariz-
ing beam splitters and single-spin rotations in combination
with the charge detectors. The generation of the cluster states
would be useful for one-way quantum computing with fer-
mions, and the construction of analyzers for multipartite en-
tangled states provides a potential way for fermionic
quantum-information processing with multipartite entangled
states.
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