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The emission from a radiating source embedded in a photonic lattice is calculated. The analysis considers the
photonic lattice and free space as a combined system. Furthermore, the radiating source and electromagnetic
field are quantized. Results show the deviation of the photonic lattice spectrum from the blackbody distribu-
tion, with intracavity emission suppressed at certain frequencies and enhanced at others. In the presence of
rapid population relaxation, where the photonic lattice and blackbody populations are described by the same
equilibrium distribution, it is found that the enhancement does not result in output intensity exceeding that of
the blackbody at the same frequency. However, for slow population relaxation, the photonic lattice population
has a greater tendency to deviate from thermal equilibrium, resulting in output intensities exceeding those of
the blackbody, even for identically pumped structures.
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I. INTRODUCTION

One of the many novel optical phenomena exhibited by
photonic lattices is the modification of spontaneous emission
properties �1,2�. A photonic lattice can funnel radiation into
narrow energy bands, where exceedingly high intensities at
photonic lattice band edges have been predicted theoretically
and observed experimentally �3–6�. A question is whether
the peak intensities exceed those of a blackbody under simi-
lar experimental conditions �7–12�. The answer is important
for scientific understanding and can impact the development
of new light sources.

It is generally agreed that a higher photonic-lattice density
of states will increase the intracavity intensity. The debate
concerns the output intensity in comparison with that of a
blackbody. Arriving at an answer is difficult experimentally
because it is difficult to ensure that the comparison is made
under similar conditions. Theoretically, the difficulty lies
with the treatment of the matter and optical aspects of the
problem �13�. The derivation of the matter equations requires
knowledge of the normal modes of the optical structure,
preferably in the form of an orthonormal basis. However,
such a basis set is not rigorously defined for a finite photonic
lattice with outcoupling loss. This problem occurs also in
laser theory, where one usually begins with the Fox-Li
modes for a Fabry-Perot cavity with perfectly reflecting mir-
rors and introduces a loss mechanism to represent the out-
coupling �14�. Such a phenomenological approach is inad-
equate for the present problem because of the inconsistency
arising from separating the treatments of the eigenmode
problem and the outcoupling effects.

The approach taken in this paper considers the photonic
lattice and free space outside of the photonic lattice as one
combined system �see Fig. 1�. We follow the method of an
earlier paper on the linewidth of a Fabry-Periot laser �15� in
representing free space by a very large cavity. The photonic
lattice is approximated by a series of semitransparent inter-
faces. We begin with discussing the one-dimensional geom-
etry �7,16�, which we will show to contain the essential fea-
tures necessary for addressing our question. Section II
discusses the equations and boundary conditions obeyed by

the modes of our “universe.” The determination of the eigen-
frequencies and eigenfunctions requires the simultaneous di-
agonalization of a usually large matrix and the solution of a
transcendental equation. A numerical procedure for a photo-
nic lattice of arbitrary size and interface transmission is pre-
sented in the Appendix.

In Sec. III, the radiation field is expanded in term of these
large number of modes and quantized. The radiation source
is also treated quantum mechanically, as an inhomoge-
neously broadened ensemble of two-level atoms confined
within the photonic lattice structure. The equations of motion
for the photon number and atomic populations are derived in
this section. We choose a fully quantized �i.e., quantized mat-
ter and field� treatment based on Einstein’s derivation of the
Planck radiation law, which showed the importance of a con-
sistent treatment of stimulated and spontaneous emission
processes �17�. Einstein was able to circumvent a fully quan-
tized theory by using the Wien displacement law, which ap-
plied only to emission in free space. For the photonic lattice,
such a general relation does not exist.

There are several recent calculations of photonic-lattice
emission where the emitting source is a classically described
current �12,16�. An advantage of our treatment over these
classical ones is that by paralleling the Planck radiation law
derivation, our comparison of photonic-lattice and blackbody
emission spectra is appreciably more straightforward. More-
over, the fluctuation-dissipation theorem �18�, which is an
essential assumption in classical calculations �12,16�, ap-
pears as a result in a fully quantized treatment because spon-
taneous emission is treated from first principles.

FIG. 1. Model of a photonic lattice connected to a large cavity
approximating the universe.
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Section IV describes a spectrometer model used to deter-
mine the emission spectrum. Section V uses the theory de-
veloped in the earlier sections to investigate emission from
an active photonic lattice that is excited by an external pump
and allowed to equilibrate with a thermal bath via collisions.
The radiation field spectra measured inside and outside the
photonic lattice are described. Comparison of photonic lat-
tice and blackbody emissions is discussed for equilibrium
and nonequilibrium situations.

Section VI summarizes the extension to a three-
dimensional �3D� geometry. The comparison between
photonic-lattice and blackbody spectra is made assuming a
spherically symmetric photonic-lattice dielectric function.
The 3D treatment is important for three reasons. First, it
proves that the theory can retrieve Planck’s blackbody distri-
bution in the absence of a photonic lattice. Second, it verifies
the 1D treatment in terms of containing the necessary phys-
ics for answering the question of photonic-lattice versus
blackbody thermal emission. Last, it points out the substan-
tial increase in numerical demands with increase dimension-
ality, thus justifying our concentration on the 1D analysis to
facilitate physical understanding and tractability of numerics.

II. MODES OF THE COMBINED PHOTONIC-LATTICE
AND FREE-SPACE SYSTEM

In this section, the eigenmodes for a photonic lattice
coupled to the outside world are derived using the model
depicted in Fig. 1. The universe, which embeds the photonic
lattice, is represented by a very large cavity with perfectly
reflecting walls at z=0 and z=L. �End results are extrapo-
lated by taking the limit L→�.� The photonic lattice is mod-
eled as a series of coupled resonators with semitransparent
interfaces. Following Spencer and Lamb �19�, the semitrans-
parent interfaces are described as very thin surfaces with
very large dielectric constants. As an idealization, we use
dielectric “bumps,” giving a dielectric permittivity

��z� = �0�1 +
�

k̄
�
j=1

Npl

��z − zj�� , �1�

where �=2��1−Tpl� /Tpl, Tpl is an effective transmission at

each interface located at zj, k̄ is the average magnitude of the
electromagnetic field wave vector, and Npl is the number of
periods making up the photonic lattice. For brevity, we as-
sume the background permittivity inside the photonic lattice
to be that of vacuum �0.

Using the above dielectric function in Maxwell equations
gives the following differential equation for the eigenmodes
of the combined photonic-lattice and free-space system:

d2

dz2uk�z� = − �0��z��k
2uk�z� , �2�

where �0 is the permeability in vacuum, �k is the eigenfre-
quency, and k labels the eigenmode. The boundary condi-
tions are obtained by first noting that the system is bounded
by totally reflecting surfaces, so that

uk�0� = uk�L� = 0. �3�

Integrating Maxwell’s equations across the bump gives the
boundary conditions

uk�zj
+� = uk�zj

−� , �4�

d

dz
uk�zj

+� −
d

dz
uk�zj

−� = − �kuk�zj� , �5�

where the superscripts − and + indicate the positions imme-
diately before and after an interface, respectively. Integrating
by parts �2� gives the orthogonality relation

	
0

L

dz��z�uk�z�ul�z� = �0�k,l. �6�

Plotted in Fig. 2 are examples of eigenfunctions for a
six-period �Npl=6� photonic lattice with effective interface
transmission Tpl=0.1. Most of the solutions are not resonant
with the photonic lattice, so that mode amplitude is negli-
gible inside the photonic lattice, as shown in Fig. 2�a�. Fig-
ures 2�b� and 2�c� show examples of photonic-lattice modes,
where the latter figure clearly depicts the first derivative dis-
continuities at the interfaces.

We show in Figs. 3 and 4 that the model can reproduce
the photonic-lattice properties relevant to our study. Figure 3
illustrates the formation of bands and band gaps, by plotting
the frequencies of the photonic-lattice modes �i.e., modes
depicted Figs. 2�b� and 2�c�� versus the interface transmis-
sion. Not plotted are the large number of free-space modes
�Fig. 2�a��, with mode separation �=�c /L→0 as the system
length L→�. At Tpl=0, the photonic-lattice modes are sim-
ply the modes of six uncoupled resonators, each of length a;
i.e., they are Npl-fold degenerate and have frequencies �
=m�c /a where m is an integer. The degeneracy is removed
with coupling among sections of the photonic lattice. The
result is groupings of states separated by energy gaps, as
shown in the figure. As Npl become very large, the groups of
states become continuous bands, with the photonic-lattice

FIG. 2. Eigenfunctions of a six-period photonic lattice coupled
to free space for interface transmission Tpl=0.10. The figure shows
nonresonant �a� and resonant �b�, �c� photonic-lattice modes.
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modes residing entirely within the shaded regions and the
free-space modes residing outside. At Tpl=1, the model �with
a very long L� approximates the free-space situation.

Figure 4 shows that the model can also reproduce the
significant flattening of the photonic-lattice dispersion at the
bandedges. Plotted in the figure is the dispersion for a 12-
period �Npl=12� photonic lattice, where the points indicate
the actual eigenfrequencies and the solid curve is a fit of the
data to illustrate the case of Npl→�. The flattening of the
dispersion at a band edge results in a drastic increase in the
density of states. We define the density of states as 	�
�

=dk0 /d�, where following solid-state convention k0 is the
wave vector with vanishing interface reflectivity. The effects
of the large density of states increase on intensity inside and
outside of a photonic lattice is the focus of this paper.

III. ACTIVE MEDIUM AND RADIATION FIELD

To study the modification of emission characteristics by a
photonic lattice, we consider the situation of an ensemble of
two-level atoms located inside a photonic lattice. Each atom
is labeled by n and j, so that 
anj� and 
bnj� are the ground
and excited states, respectively, of an atom located at zj in-
side the photonic lattice, with resonant energy �
n. Assum-
ing the dipole approximation, zj is a parameter locating the
atom to a region that is small compared to a wavelength, but
large compared to the size of an atom. We describe the ra-
diation field emitted by these atoms in terms of the combined
system eigenmodes derived in the previous section—i.e.,

E�z,t� = �
k

Ek�ak�t� + ak
†�t��uk�z� , �7�

where Ek=���k / �A�0�, ak
† and ak are the photon creation

and annihilation operators, respectively, and A is the cross
section area of the structure. From Eq. �7�, using Maxwell’s
equations and a dipole interaction, the Hamiltonian for the
matter and radiation-field system is �20,21�

H = �
n,j

� 
n
bnj��bnj
 + �
k

� �kak
†ak

− �
k,n,j

gkj�
bnj��anj
ak + ak
†
anj��bnj
� , �8�

where gkj =�Ekuk�zj� and � is the dipole matrix element.
Introducing the operators for the microscopic polarization
amplitude pnjk

bnj��anj 
akexp�−i�
n−�k�t�, the excited-
and ground-state populations, �anj 

anj��anj
 and �bnj



bnj��bnj
, respectively, and working in the Heisenberg pic-
ture �18�, we derive the equations of motion

dpnjk

dt
=

i

�
e−i�
n−�k�t�

k�

gk�j��bnjakak�
† − ak�

† ak�anj� , �9�

d�anj

dt
=

i

�
�

k

gkj�pnjk
† e−i�
n−�k�t − pnjke

i�
n−�k�t� , �10�

d�bnj

dt
= −

i

�
�

k

gkj�pnjk
† e−i�
j−�k�t − pnjke

i�
j−�k�t� . �11�

Additionally, the photon number operator obeys

dak
†ak

dt
=

i

�
�
n,j

gkj�pnjk
† e−i�
j−�k�t − pnjke

i�
j−�k�t� . �12�

Assuming that the polarization decays because of dephasing
collisions and that the effective decay rate 
 is much larger
than the rate of changes in the active medium and photon
populations, we can adiabatically eliminate the polarization

FIG. 3. Eigenfrequency versus interface transmission for a six-
period photonic lattice. The points indicate the actual eigenmodes
of the finite structure, while the shaded regions illustrate the extent
of the bands of photonic-lattice states when the number of periods
become very large.

FIG. 4. Dispersion for a 12-period photonic lattice. The points
are the eigenmodes, the solid curve is a fit through these points, and
the dashed curve shows the free-space dispersion.
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equation. Then, introducing the expectation values

Nk = �ak
†ak� , �13�

Nan = �
j=1

N

��anj� , �14�

Nbn = �
j=1

N

��bnj� , �15�

we obtain the working equations for our analysis:

dNan

dt
=

2�2

��0ALc

�

k

�k�k��Nbn − Nan�Nk + Nbn�L�
n − �k�

− 
r�Nan − fa�
n,T�� − ��
n�Nan, �16�

dNbn

dt
= −

2�2

��0ALc

�

k

�k�k��Nbn − Nan�Nk + Nbn�L�
n − �k�

− 
r�Nbn − fb�
n,T�� + ��
n�Nan, �17�

dNk

dt
=

2�2

��0ALc

�

n

�k�k��Nbn − Nan�Nk + Nbn�L�
n − �k�

− 
cNk, �18�

where N is the number of atoms, L�x�= �1+ �x /
�2� and

�k = 	
0

Lc

dz
uk�z�
2 �19�

is the mode confinement factor. In Eqs. �16�–�18�, the pump
and decay contributions are included phenomenologically, 
c
is the photon decay rate, ��
n�=�0exp���
0−
n� /kBTp� is
the pump rate, �
0 is the material band-gap energy, and 
r is
an effective rate for the actual populations Nan and Nbn to
relax to the equilibrium distributions

fa�
n,T� = Zn, �20�

fb�
n,T� = Znexp�− � 
n

kBT
� , �21�

where

Zn = �1 + exp�− � 
n

kBT
��−1

�22�

and Tp and T are the pump and reservoir temperatures. In our
study, Eqs. �16�–�18� are solved numerically.

IV. DETECTOR

To determine the spectra of the intracavity and output
radiation, we use the simple spectrometer model shown in
Fig. 5. In this model, two-level atoms are placed in the re-
gion of interest. These atoms are prepared with only the
ground state 
an

d� populated when the radiation field is absent
�zero detector temperature�. The label n indicates that the

level spacing between 
bn
d� and 
an

d� is 
n
d. The atoms interact

weakly with the radiation field to be measured, which excites
some fraction of the atoms to an excited state 
bn

d� that has
some finite lifetime 
d

−1. Assuming a sufficiently fast detector
response so that the detector populations adiabatically follow
the variations in the photon number, the population in state

bn

d� gives a measure of the radiation intensity ��Nk� in the
region occupied by the detector atom. The steady-state
upper-detector-state population is

Nb
d�
n

d� = D�
k

�kNk

d


d
2 + �
n

d − �k�2	
zd

zd+Ld

dz
uk�z�
2,

�23�

where D=2�dNd / ���0ALd
d�, �d is the dipole matrix ele-
ment between states 
bn

d� and 
an
d�, Ld is the length of the

detected region, and Nd is the number of detector atoms.
Measuring this population for atoms of different 
n

d gives the
spectrum within the region zd�z�zd+Ld. In this model, Nd
and the decay rate 
b should be sufficiently large to prevent
saturation of the detector. On the other hand, too large a 
d
degrades spectral resolution. Alternately, one may use two-
level atoms injected into the region of interest and removed
after a short time �22�.

V. PHOTONIC-LATTICE EMISSION

We consider a 12-period photonic lattice with Lc
=120 �m, L=1.2 cm, and interface transmission Tpl=0.01,
0.1, and 0.4. The eigenmodes are determined by solving Eq.
�2� with the boundary conditions �3�–�5�. The results are
used in Eqs. �16�–�18�, which are solved numerically with a
fourth-order Runge-Kutta finite-difference method. The input
parameters are 
=1012 s−1, 
c=109 s−1, �0=1010 s−1, 
0
=1.6�1014 s−1, �=e�1.3 nm, N=601, and Tp=T=400 K.

A. Equilibrium

To relate to earlier studies �7,10–12�, we first compare
photonic-lattice and blackbody emissions under thermal
equilibrium conditions. To do so, we perform the calcula-
tions for a rapid population relaxation rate of 
r=1013 s−1,
which ensures �verified after the time integration� that the
steady-state active-medium populations Nan and Nbn are to a

FIG. 5. Spectrometer model where the upper-level decay pre-
vents detector saturation and approximates the drift of carriers to
the electrodes in a reverse-baised photodiode.
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good approximation given by the equilibrium distributions
fa�
n ,T� and fb�
n ,T�, respectively. The solid curves in Fig.
6 show the calculated intracavity emission spectra for three
interface transmissions. In the figure, we define an intracav-
ity detector signal

Sin�
� 

Nb

d�
�
D

= �
k

�kNk

d


d
2 + �
 − �k�2	

0

Lc

dz
uk�z�
2,

�24�

where Nb
d�
� is calculated using the steady-state solution for

Nk in Eq. �23�. The figure shows two bands of photonic-
lattice states, where the frequency extent of the bands de-
pends on the interface transmission. Between the two bands
is a photonic band gap where emission is strongly sup-
pressed. By repeating the calculation with Tpl=1, we obtain
the corresponding blackbody spectrum �dashed curve�. Com-
parison of the curves clearly indicates the significant inten-
sity enhancement inside a photonic lattice, especially at the
band edges for Tpl=0.01.

To determine the output spectrum, we place the spectrom-
eter in the free-space region. Figure 7 shows the output de-
tector signal

Sout�
� 

Nb

d�
�
D

= �
k

�kNk

d


d
2 + �
 − �k�2	

L−Lc

L

dz
uk�z�
2

�25�

for the same interface transmissions as in Fig. 6. In contrast
to inside the photonic lattice, where there is significant opti-

cal intensity enhancement, Fig. 7 indicates that the intracav-
ity emission peaks are appreciably depressed outside the
photonic lattice. The strong intracavity enhancement by the
photonic-lattice density of states appears to be canceled by
an outcoupling attenuation. This leaves the photonic lattice
emission peaks to be essentially independent of interface
transmission. More importantly, these peaks lie at or slightly
below the blackbody emission curve.

Simulations performed over a wide range of input param-
eters point towards the result that as long as the active-
medium populations Nan and Nbn are in thermal equilibrium,
the photonic-lattice output is always below that of the black-
body. For instance, the spectra are insensitive to the choice of

. The blackbody spectrum is also insensitive to 
d because
of the weak frequency dependence of the blackbody photon
density. However, for the photonic lattice, too large a 
d
degrades the spectrometer resolution and leads to lower spec-
tral peaks. For the opposite situation, too small a 
d intro-
duces noise in the spectrum because of the inadequate reso-
lution of the system normal modes �i.e., because L is
insufficiently large�.

B. Nonequilibrium

To study active photonic-lattice operation in greater gen-
erality, we allow the active-medium populations to deviate
from thermal equilibrium. The investigation is performed by
repeating the earlier calculations, keeping all input param-
eters except 
r the same. Figure 8 illustrates the changes in
the excited-state population distribution Nbn, at steady state
and for decreasing population relaxation. When 
r is reduced

FIG. 6. Photonic-lattice �solid curves� and blackbody �dashed
curves� intracavity emission spectra.

FIG. 7. Photonic-lattice �solid curves� and blackbody �dashed
curves� output emission spectra.
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to 1011 s−1 from 1013 s−1, a slight difference emerges be-
tween the excited-state populations of the identically pumped
photonic-lattice and blackbody active media. The solid curve
in Fig. 8�a� shows a noticeable deformation of the photonic-
lattice excited-state population distribution. There is also a
significant difference between Nbn and fb�
n ,T� for T
=400 K �dot-dashed curve�, which are the actual distribution
and the asymptotic �
r→ � � equilibrium distribution, respec-
tively. Further reduction to 
r=1010 s−1 significantly in-
creases the deviation of the photonic-lattice excited-state
population distribution from a Maxwell-Boltzmann distribu-
tion �see solid curve, Fig. 8�b��. Holes are burned in the
distribution because the population relaxation is insuffi-
ciently fast to replenish the excited-state population depleted
by the spectrally relatively narrow radiation field emitted by
the photonic lattice. There is also a change in the blackbody
distribution �dashed curve, Fig. 8�b�� to one that approxi-
mates a Maxwell-Boltzmann distribution at T�500 K �dot-
ted curve�. Since the active media in both structures are iden-
tical, the difference between the photonic-lattice and
blackbody populations �solid and dashed curves, respec-
tively� is from photonic-lattice effects.

The effects of the population changes in Fig. 8 on the
emission spectra are depicted in Fig. 9. Plotted on the y axis
is the relative emission intensity inside �outside� the photonic
lattice, which we define as Sin�out��
� for the photonic lattice
divided by S�
� for the blackbody. In spite of the large in-
crease in excited-state population, we find that the intracavity
and output relative intensities remain basically unchanged
when 
r is reduced from 1013 to 1011 s−1. In particular, the
output photonic-lattice intensity remains at or slightly below
that of the blackbody �i.e., relative intensity �1�. However,
the result changes considerably for 
r=1010 s−1. Here, the
intensity within the photonic-lattice band increases consider-
ably relative to that of the blackbody both inside and outside

the cavity �solid curves�. More importantly, the solid curve in
Fig. 9�b� clearly shows greater output intensity for the pho-
tonic lattice than the blackbody throughout the emission
band of the photonic lattice. This enhancement of output
emission occurs for identically pumped active regions and is
a result of a nonequilibrium population that shows significant
hole burning. The presence of nonequilibrium effects may be
the cause for experimental observations of metallic photonic-
lattice emission exceeding that of the blackbody �23�. Note
that the difference in output emission spectra �solid and
dashed curves in Fig. 9�b�� comes from population distribu-
tions that are, on the average, quite similar. That is, a least-
squares fit of the solid and dashed curves in Fig. 8�b� will
produce Maxwell-Boltzmann distributions that differ in tem-
perature by less than 20 K. Therefore, measurement of aver-
age temperature will not identify the experimental conditions
leading to the photonic-lattice output emission exceeding
that of the blackbody. Rather, an energy-resolved measure-
ment of the emitter upper-state population is necessary.

The end results reached in our analyses involving equilib-
rium and nonequilibrium situations are robust; i.e., they are
relatively insensitive to the choice of input parameters.
While calculations performed with different interface trans-
mission show significant differences in spectral shapes and
intracavity intensities, the output intensities remain relatively
constant because of the mitigating influence of the coupling
to free space. Calculations are also performed for a different
number of photonic-lattice periods. The results show negli-
gible differences beyond Npl=10, thus verifying that the use
of a 12-period photonic lattice does not lead to loss of gen-
erality. Clearly noticeable are effects, such as differences in
excess output intensity with varying interface transmission,
that are due to optical nonlinearities in the nonequilibrium
active medium. Such effects will not be present in treatments
using linear classical sources �12�.

FIG. 8. Upper-state population for photonic lattice �solid curve�
and blackbody �dashed curve� versus transition frequency for 
r

=1011 s �a� and 1010 s−1 �b�. The dot-dashed curves show the equi-
librium distribution at 400 K. The dotted curve is the equilibrium
distribution at 500 K.

FIG. 9. Relative intensity spectra inside �a� and outside �b� the
photonic lattice in Fig. 8. The curves are for 
r=1011 s �dashed
line� and 1010 s−1 �solid line�. Above the long-dashed line, the
photonic-lattice intensity is higher than the blackbody’s.
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VI. EXTENSION TO A THREE-DIMENSIONAL
PHOTONIC LATTICE

This section treats a three-dimensional photonic lattice.
Following earlier quantum optical studies of photonics lat-
tices �24�, a spherically symmetric dielectric function is as-
sumed to simplify the numerics. In spherical coordinates, the
equation satisfied by the passive eigenmodes of the com-
bined photonic-lattice and free-space system, uklm�r ,� ,��, is

1

r

�2

�r2 �ruklm� +
1

r2sin �

�

��
�sin �

�uklm

��
� +

1

r2sin2�

�2uklm

��2

= − �0��r��klm
2 uklm. �26�

Choosing the dielectric function

��r� = �0�1 +
�

k̄
�
j=1

Npl

��r − rj�� , �27�

where � and k̄ are the same as in Eq. �1�, a solution of Eq.
�26� between the photonic-lattice interfaces or in the free-
space region is

uklm�r,�,�� = �Akln jl�kr� + Bkln�l�kr��Ylm��,�� , �28�

where jl�	� and �l�	� are spherical Bessel and Neumann
functions, Ylm�� ,�� is a spherical harmonic, and the sub-
script n indicates that the coefficients Akln and Bkln are for
rn�r�rn+1. In order for a solution to be finite at the origin
and vanish at r=rNpl+1 �the end of the region representing
free space�, we require

Bkl1 = 0, �29�

AklNpl+1jl�kr� + BklNpl+1�l�kr� = 0. �30�

At the interfaces, the boundary conditions �4� and �5� de-
mand

Akln jl�kr� + Bkln�l�kr� − Akln+1jl�kr� − Bkln+1�l�kr� = 0,

�31�

Akln�− jl��kr� + �jl�kr�� + Bkln�− �l��kr� + ��l�kr��

+ Akln+1jl��kr� + Bkln+1�l��kr� = 0, �32�

for 2�n�Npl and r=r1 ,r2 , . . . ,rNpl
.

The numerical solution is implemented similar to what is
described in the Appendix. A six-period photonic lattice is
considered, where the lattice constant is 2 �m and the inter-
face transmission is Tpl=0.05. Coupled to the photonic lat-
tice is a “free”-space region extending from 24 �m�r
�612 �m. The system dynamics is governed by the equa-
tions of motion �16�–�18� with the photon-state index k re-
placed by the three indices k, l, and m. Numerical analyses of
the steady-state solutions are performed assuming the input
parameters 
=2�1012 s−1, 
r=1013 s−1, 
c=1012 s−1, �0
=1012 s−1, 
0=1.6�1014 s−1, �=e�1.3 nm, N=601, and
Tp=T=200 K. Similar to the one-dimensional case, the rates
are chosen to ensure reaching steady state with active-
medium populations Nan and Nbn described by Maxwell-
Boltmann distributions.

To obtain the intracavity emission spectrum, detector at-
oms are placed inside the photonic-lattice structure. The
probability of finding a photon with frequency 
 is propor-
tional to

Sin�
� = �
klm

�klmNklm

d


d
2 + �
 − �klm�2

�	
0

2�

d�	
0

�

d�	
0

rNpl

dr r2
uklm�r,�,��
2, �33�

so that the emission energy is proportional to �
Sin�
�. In
Fig. 10, the solid curve is a plot of 
Sin as a function of
frequency. It shows four narrow emission bands separated by
photonic band gaps. Repeating the calculation using inter-
face transmission Tpl=1 gives the free-space emission spec-
trum �dashed curve�. Examination of the populations after
steady state is reached verifies that both solid and dashed
curves are for identical Maxwell-Boltmann distributions at
T=200 K. The curves clearly indicate intensity enhancement
inside the photonic lattice.

To compare the output emission in a given direction, the
detector atoms are placed to give a signal

Sout�
� = �
klm

�klmNklm

d


d
2 + �
 − �klm�2

�	
�d1

�d2

d�	
�d1

�d2

d�	
rd1

rd2

dr r2
uklm�r,�,��
2,

where rd1 and rd2 are within the free-space region, �d1 ,�d2
and �d1 ,�d2 define the direction and collection solid angles.
The solid curve and dashed curves in Fig. 11 show the output
photon-lattice and free-space emission spectra, respectively.
These results are obtained for rd1=100 �m, rd2=124 �m,
�d1=�d1=0, �d2=2�, and �d2=� /18, which define emission
within a cone of ±10° in the z direction. Comparison of solid
and dashed curves indicates that, similar to the one-

FIG. 10. Intracavity three-dimensional photonic-lattice and
blackbody emission spectra �solid and dashed curves, respectively�.
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dimensional case, peak intensities measured outside the
photonic-lattice structure do not exceed those of the black-
body.

A test of our treatment is to see how well it reproduces
Planck’s distribution for the frequency spectrum of free-
space emission energy from a thermal source. The dotted
curve in Fig. 11 is proportional to 
3�exp��
 /kBT�−1�−1

with temperature T=200 K, and it depicts the shape of the
blackbody frequency spectrum according to Planck’s for-
mula. The agreement is good, considering that there are sev-
eral factors causing discrepancies. Two important ones are
truncating the optical modes at l=13 and limiting “free”-
space to 24 �m�r�612 �m, in order to maintain reason-
able computation times. Even so, over 104 optical modes are
used. Other factors contributing to the differences include the
presence of optical loss �
c�0 in Eq. �18��, which is ne-
glected in the derivation of Planck’s distribution. While in-
creasing the number of optical modes improves agreement
with Planck’s formula, it does not impact the blackbody ver-
sus photonic-lattice emission comparison. This is because the
result of the photonic-lattice output intensity spectrum being
bounded inside the blackbody one applies separately for
each l.

VII. CONCLUSION

In summary, the emission from an active photonic lattice
is investigated using a model consisting of an inhomoge-
neously broadened ensemble of two-level atoms interacting
with a multimode radiation field. A fully quantized �i.e.,
quantized atoms and quantized electromagnetic field� de-
scription is chosen to provide a consistent description of
stimulated and spontaneous emission. Furthermore, to de-
scribe the modal properties of the radiation field of a finite
photonic lattice coupled to free space, the analysis considers
the photonic lattice and free space as one combined system.

This circumvents a long-standing inconsistency in quantum
optics involving the decoupling of the treatments of the cav-
ity normal modes and outcoupling losses.

Our approach gives the emission spectra for arbitrary
photonic-lattice configurations and reproduces Planck’s
blackbody radiation formula for thermal emission in free
space. Comparison of photonic-lattice and blackbody emis-
sion shows appreciable modification of the blackbody spec-
trum by the photonic lattice, where the redistribution of the
photon density of states results in a suppression of radiation
at certain wavelengths and enhancement at others. The en-
hancement can give rise to high-intracavity-intensity peaks,
especially at the photonic-lattice band edges. These intensity
peaks are mitigated outside the photonic lattice by the spec-
trally dependent outcoupling. For population relaxation suf-
ficiently fast to ensure the same equilibrium population dis-
tribution in both structures, the photonic-lattice output
intensity does not exceed that of the blackbody at the same
frequency. However, for slow population relaxation, there is
a greater tendency for a nonequilibrium photonic-lattice
population. Then, in the presence of population hole burning,
the intensity in certain regions of the photonic-lattice spec-
trum can exceed that of the blackbody, even when both struc-
tures are identically pumped.
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APPENDIX: NUMERICAL EVALUATION OF SYSTEM
EIGENMODES

In this appendix we describe a numerical procedure for
evaluating the eigenmodes of the combined photonic-lattice
and free-space system. This procedure applies for a photonic
lattice of arbitrary size and interface transmission. In region
n, which may be any section of the photonic lattice or the
section representing free space, the solutions of Eq. �2� have
the form

uk�zn� = Ak,nsin�kzn� + Bk,ncos�kzn� , �A1�

where k=�k /c. Because of boundary condition �3�,

Ak,1 � 0, �A2�

Bk,1 = 0, �A3�

Ak,Npl+1sin�kzNpl+1� + Bk,Npl+1cos�kzNpl+1� = 0. �A4�

From boundary conditions �4� and �5�,

Ak,nsin�kzn� + Bk,ncos�kzn� = Ak,n+1sin�kzn� + Bk,n+1cos�kzn� ,

�A5�

FIG. 11. Output emission spectra for 3D photonic-lattice �solid
curve�, blackbody �dashed curve�, and Planck’s �dotted curve�
distributions.
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Ak,n�− cos�kzn� + � sin�kzn�� + Bk,n�sin�kzn� + � cos�kzn��

= − Ak,n+1cos�kzn� + Bk,n+1sin�kzn� , �A6�

for 2�n�Npl.
There are many approaches to numerically solve the

above equations. We describe below the one we followed in
this paper. Basically, we look for values of k satisfying Eq.
�A4�, where the mode amplitudes Ak,Npl+1 and Bk,Npl+1 are
obtained by solving a 2Npl�2Npl matrix equation

SU = D . �A7�

The matrix elements of S are best defined by separating the
even- and odd-number rows. For n=odd,

Si,i = − sin�kz1� , �A8�

Si,i+1 = − cos�kzi� , �A9�

and for n=even,

Si,i = − sin�kzi−1� . �A10�

For n�3 and n=odd,

Si,i−1 = cos�kzi� , �A11�

Si,i−2 = sin�kzi� , �A12�

and for n�4 and n=even,

Si,i−1 = cos�kzi−1� , �A13�

Si,i−2 = sin�kzi−1� + � cos�kzi−1� , �A14�

Si,i−3 = − cos�kzi−1� + � sin�kzi−1� . �A15�

All other matrix elements are zero. The elements of the col-
umn matrix D vanish except for

D1 = − sin�kz1� , �A16�

D2 = cos�kz2� − � sin�kz2� . �A17�

Equation �A7� is solved using the Gauss-Jordan method.
In the solutions and for j=odd, Uj gives the coefficient
Ak,j+1, while Uj+1 gives the coefficient Bk,j+1. At this stage,
we have set Ak,1=1 so that the eigenfunctions are unnormal-
ized. We perform the normalization according to Eq. �6�.

�1� E. Yablonovitch, Phys. Rev. Lett. 58, 2059 �1987�.
�2� S. John, Phys. Rev. Lett. 58, 2486 �1987�.
�3� P. Pigeat, D. Rouxel, and B. Weber, Phys. Rev. B 57, 9293

�1998�.
�4� S.-Y. Lin, J. G. Fleming, E. Chow, J. Bur, K. K. Choi, and A.

Goldberg, Phys. Rev. B 62, R2243 �2000�.
�5� J. G. Fleming, S. Y. Lin, I. El-Kady, R. Biswas, and K. M. Ho,

Nature �London� 417, 52 �2002�.
�6� Z.-Y. Li, Phys. Rev. B 66, 241103�R� �2002�.
�7� C. M. Cornelius and J. P. Dowling, Phys. Rev. A 59, 4736

�1999�.
�8� S.-Y. Lin, J. Moreno, and J. G. Fleming, Appl. Phys. Lett. 83,

380 �2003�.
�9� S.-Y. Lin, J. G. Fleming, and I. El-Kady, Opt. Lett. 28, 1909

�2003�.
�10� A. Narayanaswamy and G. Chen, Phys. Rev. B 70, 125101

�2004�.
�11� T. Trupke, P. Würfel, and M. A. Green, Appl. Phys. Lett. 84,

1997 �2004�.
�12� C. Luo, A. Narayanaswamy, G. Chen, and J. D. Joannopoulos,

Phys. Rev. Lett. 93, 213905 �2004�.

�13� For a textbook discussion see A. E. Siegman, Lasers �Univer-
sity Science Books, Mill Valley, CA, 1986�, Chap. 24.

�14� W. E. Lamb, Jr., Phys. Rev. 134, A1429 �1964�.
�15� R. Lang, M. O. Scully, and W. E. Lamb, Jr., Phys. Rev. A 7,

1788 �1973�.
�16� A. Narayanaswamy and G. Chen, Phys. Rev. B 70, 125101

�2004�.
�17� For a recent discussion, see D. Kleppner, Phys. Today 58�2�,

30 �2005�.
�18� W. H. Louisell, Quantum Statistical Properties of Radiation

�Wiley, New York, 1973�.
�19� M. B. Spencer and W. E. Lamb, Jr., Phys. Rev. A 5, 884

�1972�.
�20� M. O. Scully and M. S. Zubairy, Quantum Optics �Cambridge

University Press, Cambridge, England, 1977�.
�21� N. Vats, S. John, and K. Busch, Phys. Rev. A 65, 043808

�2002�.
�22� M. O. Scully and W. E. Lamb, Jr., Phys. Rev. 166, 246 �1968�.
�23� S.-Y. Lin, J. Moreno, and J. G. Fleming, Appl. Phys. Lett. 84,

1999 �2004�.
�24� S. John and J. Wang, Phys. Rev. B 43, 12772 �1991�.

THEORY OF EMISSION FROM AN ACTIVE PHOTONIC… PHYSICAL REVIEW A 73, 013821 �2006�

013821-9


