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We analyze methods designed to go beyond the standard quantum limit for a class of atomic interferometers,
where the quantity of interest is the difference of phase shifts obtained by two independent atomic ensembles.
An example is given by an atomic Sagnac interferometer, where for two ensembles propagating in opposite
directions in the interferometer this phase difference encodes the angular velocity of the experimental setup.
We discuss methods of separately or jointly squeezing observables of the two atomic ensembles, and compare
in detail the advantages and drawbacks of such schemes. In particular, we show that the method of joint
squeezing may improve the variance by up to a factor of 2. We take into account fluctuations of the number of
atoms in both the preparation and the measurement stage, and obtain bounds on the difference between the
numbers of atoms in the two ensembles, as well as on the detection efficiency, which have to be fulfilled in
order to surpass the standard quantum limit. Under realistic conditions, the performance of both schemes can
be improved significantly by reading out the phase difference via a quantum nondemolition measurement.
Finally, we discuss a scheme using macroscopically entangled ensembles.
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I. INTRODUCTION

Comparing the phase shifts obtained in two independent
interferometric setups has several applications, prominent
examples being the comparison of atomic clocks �1�, and
Sagnac interferometry to discriminate between rotations and
accelerations �2�. In addition, the comparison of gravitational
forces at different points in space or for different atomic
species �3� allows us to test predictions of possible violations
of Einstein’s general relativity �4,5�. For such differential
interferometers, the quantity of interest is encoded in either
the difference, or the sum of the individual phase shifts.

Especially for the measurement of inertial forces, atom
interferometers promise high resolution. Here atom optical
elements such as beam splitters and mirrors can be realized
using Raman transitions between two atomic ground state
levels �6�. The accumulated phase difference between the
interferometer paths is encoded in the difference in the num-
ber of atoms in the exit ports labeled by different internal
states. For example, this can be measured by state selective
fluorescence detection. Such schemes have already been suc-
cessfully implemented to measure inertial forces and the
earth’s gravity with a high accuracy �6,7�. In Sagnac atom
interferometry, the goal is to measure the phase shift which
occurs when the laser setup �laboratory frame� is rotating
relative to the frame of the freely flying atomic ensembles.

This phase shift is given by �at=4�A�mat /h as compared to
�light=4�A� / ��c� for laser interferometers, where mat is the
mass of the atoms, A is the oriented enclosed area of the
interferometer, � is the vector of angular velocity, and � is
the wavelength of the light. For an atomic gyroscope work-
ing with 87Rb, the phase �at is 1011 times larger than the
corresponding phase �light of a light interferometer enclosing
the same area and operating at �=103 nm. Hence, atom in-
terferometers promise an enormously improved resolution
for rotation measurements as compared to “classical” photo-
nic devices.

The Sagnac phase can be measured by letting two en-
sembles of atoms pass through the interferometer from op-
posite sides. They then obtain phase shifts ±� due to the
rotation of the laboratory frame, where the sign depends on
the direction of propagation of the ensembles, and a common
phase shift � due to effects such as an acceleration of the
setup. Subtracting the phases of the two ensembles yields the
desired phase 2�, which encodes the rotation of the setup
around an axis perpendicular to the plane of the interferom-
eter. Collisions between the two ensembles in the interferom-
eter can safely be neglected due to the low atomic densities
of the ensembles.

In the standard quantum limit for phase measurements in
atomic interference experiments, the variance of the phase
due to quantum projection noise is given by ����SQL

2 =1/N,
where N is the number of atoms in a sample. By feeding the
interferometer with nonclassical states of atoms, the so-
called squeezed states, this limit can be surpassed, with a*Also at Institució Catalana de Recerca i Estudis Avançats.
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fundamental bound given by ����H
2 =1/N2, the so-called

Heisenberg limit �8–10�. Squeezed atomic states can be pro-
duced by a quantum nondemolition �QND� interaction of the
atoms with a light beam �11�, or by absorption of nonclassi-
cal states of the light �12�. Squeezed states of atomic en-
sembles might also be useful as quantum memory for states
of light �13�.

It has been shown that for such squeezed states atoms
within an ensemble are entangled with each other �14�. In
addition to this entanglement on a microscopic level, it is
also possible to entangle macroscopic degrees of freedom of
two atomic ensembles with a similar interaction �15,16�.
This, in principle, enables teleportation of the macroscopic
state of an ensemble. Furthermore, it has been shown re-
cently that such macroscopically entangled ensembles can
improve the efficiency of measurements of the components
of a magnetic field �17�. Here, we try to exploit microscopic
as well as macroscopic entanglement between two atomic
ensembles in the context of differential interferometry, where
we focus especially on an atomic Sagnac interferometer
setup.

In Sec. II we calculate the phase variance for a differential
interferometer using nonsqueezed coherent states in order to
introduce our methodology. We also show how to include
number fluctuations into the calculations. These will turn out
to be important later. In Sec. III we show that the phase
uncertainty can be reduced by feeding the interferometer
with individually squeezed ensembles. In Sec. IV we con-
sider squeezing of a joint observable of both ensembles. In
Sec. V we discuss how decoherence affects the interferom-
eter and in Sec. VI we compare the variances of the schemes
discussed so far for realistic parameters. Finally, in Sec. VII
the use of macroscopically entangled states in the interfer-
ometer is discussed.

II. COHERENT INPUT STATES

For a single atom we define a pseudo-spin-1 /2 through
two ground state atomic hyperfine levels �1� and �2� �2,5� by
introducing the relevant spin operators as

�̂z = 1
2 ��1��1� − �2��2��, �̂x = 1

2 ��1��2� + �2��1�� ,

�̂y =
1

2i
��1��2� − �2��1�� . �1�

We will subsequently only consider the collective spin Ĵ
=�i=1

NJ �̂�i� for the first, and in analogy L̂ for the second en-
semble; NJ,L are the number of atoms in the ensembles J and
L, respectively. The measurements that can typically be per-
formed in atom interferometry are population measurements
of the levels �1� and �2� by fluorescence techniques �18�.
Hence, only the z components of the collective spin vectors
can be measured directly.

A. Description of the interferometer

Initially, all the atoms are assumed to be prepared in the
state �1�, leading to the following expectation value and vari-
ance of the collective spin vector:

�Ĵ� =
NJ

2
ẑ, ��Ĵz�2 = 0, ��Ĵx,y�2 =

NJ

4
. �2�

Analogous values are obtained for the ensemble L̂. Corre-
sponding to the definitions in Eq. �1�, the z axis denotes the
difference of the number of atoms in states �1� and �2�,
whereas the phase difference between these two states is en-
coded in the x-y plane. The uncertainties stem from the
single particle uncertainties, and correspond to a state with a
fixed number of atoms.

A typical interferometer sequence used for the measure-
ment of inertial forces consists of three atom-light interac-
tions as shown in Fig. 1. The first beam splitting Raman
pulse transfers all the atoms from the ground state �1� to the
superposition 1�	2 ��1�+ �2��. Atoms transferred to state �2�
obtain a momentum kick of two photon recoil if the two
Raman lasers are counter-propagating, so that the partial
waves delocalize, as depicted in Fig. 1. The second pulse
exchanges the populations, �1�↔ �2�, and deflects the partial
waves. Finally, they are recombined in the last interaction
zone, acting as a beam splitter. These pulses can be repre-

sented as rotations of the collective spin vectors �Ĵ� and �L̂�
around an axis in the x-y plane, the angle being given by � /2
for beam splitters and by � for mirrors. For a fixed coordi-
nate system the angle between the x axis and the rotation axis
is given by the laser phase �19�. The laser phases change if
the setup �laboratory frame� rotates with respect to the path
of the freely flying ensembles, which causes the Sagnac
phase shift. This change corresponds to a rotation of the
collective spin vectors in the x-y plane around the z direc-
tion.

In order to make the scheme applicable to a more general
scenario for differential interferometers, we model it as fol-

lows for each of the ensembles labeled by Ĵ and L̂, respec-
tively: the first beam splitter rotates each collective spin vec-
tor by � /2 around the y axis, then we collect all the phase
shifts occurring in the interferometer in rotations around z of

Ĵ and L̂ by �J and �L, respectively. Finally, a � and a � /2
pulse, both around x, implement the mirror and the final
beam splitter, respectively. These last two pulses can be com-
bined to a single rotation around the x axis by −� /2.

All relevant interferometric steps are described in Fig. 2,
where the atomic spin vector is depicted together with a disk

FIG. 1. Scheme of the atom interferometer. � /2 and � label the
beamsplitting and the mirror pulses, respectively. The populations
in the two exit ports are detected state selectively via fluorescence
measurements.
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representing the corresponding uncertainties of the spin op-
erators. To simplify notation we will take the state after the

first beam splitter as the initial state: Ĵin=Ry�� /2�Ĵ, see Fig.
2�a�. Here Ri�	�, i� 
x ,y ,z� is the matrix rotating a vector
by the angle 	 around the direction êi. In the Heisenberg
picture, and neglecting collisions between the atoms within

the ensemble, the spin operator changes according to Ĵout

=Rx�−� /2�Rz��J�Ĵin. This leads to

Ĵout = � Ĵx
incos �J − Ĵy

insin �J

Ĵz
in

− Ĵx
insin �J − Ĵy

incos �J

 . �3�

It is also possible to consider a balanced atom interferometer
in which all rotations are around the x axis. In this case, an
extra � /2 shift around z leads to the same result. The advan-
tage of the extra pulse is that for the initial state of Eq. �2�

�Ĵz
out� = −

NJ

2
sin �J � −

NJ

2
�J �4�

for small angles �J, while with the unmodified balanced

scheme �Ĵz
out� would be proportional to cos �J, and hence

sensitive to �J only in second order around �J=0.
As explained in the Introduction, the phase will be given

by �J=�+� for Ĵ and by �L=−�+� for L̂, because the
Sagnac phase � takes a different sign, depending on the di-
rection in which the ensemble passes the interferometer. We
define the phase operator for the case of coherent states �cs�
as

�̂cs = −
Ĵz

out

NJ
+

L̂z
out

NL
�5�

and obtain to the first order in � and �

��̂cs� = � �6�

���̂cs�2 =
1

4NJ
+

1

4NL
. �7�

The variance of �̂cs corresponds to the standard quantum
limit. Note that � can be obtained in an analogous way. From
the definition it is obvious that determining the number of
atoms is important for the calculation of the phase shift. A

major source of error will come from fluctuations in the
number of atoms of the ensembles and hence we will discuss
how to include this process into the calculations in the next
section.

B. Number fluctuations

There are two sources of deviations in the number of at-
oms: the preparation process and the number measurement
process. The atomic ensembles produced from the source are
best described as a statistical mixture of states with different
atom numbers, but we will assume that the final number
measurement projects onto a number state with NJ and NL

atoms in the two ensembles. Defining N̄= �NJ+NL� /2, we

assume that �NJ−NL � =
	N̄, which reflects the variances of

the number operators N̂J,L of the ensembles after the produc-
tion. Thus, 
 is the parameter which describes how well the
atom numbers in the two ensembles match.

We treat the number measurements by introducing opera-

tors �N̂ with

��N̂� = 0, ����N̂��2 = 	N , �8�

where 	 describes the quality of the number measurement.
For fluorescence measurements, 	−1 is given by the mean
number of times an atom goes through the fluorescence cycle
and scatters a photon which subsequently is registered in the
detectors �20�. Typical values in current experiments are

	−1�50, . . . ,100. We replace NJ by NJ
0+�N̂J

�1�+�N̂J
�2� and

Ĵz
out by Ĵz

out,0+ ��N̂J
�1�−�N̂J

�2�� /2. NJ
0 refers to the actual num-

ber that would have been measured in perfect number pro-

jection measurements, and in �N̂J
�i�the index i corresponds to

the atomic levels �i�.
With these substitutions, we obtain

��̂cs� = � − 	� 1

NJ
0 +

1

NL
0� �9�

���̂cs�2 =
1

4NJ
0 +

1

4NL
0 + 	� 1

NJ
0 +

1

NL
0� , �10�

where terms of higher order have been neglected. The con-
tribution from the number fluctuations is in agreement with
Ref. �20�. The expectation value of �̂cs is shifted for 	�0.
As this shift is of the order of the second term in ���̂cs�2, it
is of the second order of the standard deviation only, and thus
can safely be neglected. From the expressions it is clear that
	�1 is required in order to reach the fundamental limit for
the phase resolution using coherent input states.

In the following, we will drop the superscript 0 on the
atom number, as long as there is no danger of confusion.

III. SEPARATELY SQUEEZED ENSEMBLES

It is known that by taking squeezed input states it is pos-
sible to surpass the standard quantum limit in interferometry
�8�. In this section, we consider the case where both en-
sembles are squeezed separately with the method introduced

FIG. 2. �Color online� Interferometric scheme for a coherent
input state: �a� collective spin after the first beam splitter, �b� the
total phase � accumulated in the interferometer results in a rotation
around z, before �c� a final rotation around x by −� /2 implements
the mirror and the final beam splitter, encoding the phase in the z
direction.
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in �11�, i.e., by a QND interaction with a laser beam shortly
after the first beam splitter.

A. Squeezing a single ensemble

We assume to have the situation of Fig. 3, i.e., the elec-
tromagnetic field mode a1 couples states �1� and �3�, and a2
couples states �2� and �4�. Here transitions �1�↔ �4� and
�2�↔ �3� have to be suppressed to the first order in the cou-
pling constant ��11�, see also the discussion in Sec. V�.

For the light, an effective spin vector can be defined, the
so-called Stokes vector. Its components are given by

Ŝz = 1
2 �â1

†â1 − â2
†â2�, Ŝx = 1

2 �â1
†â2 + â2

†â1� , �11�

Ŝy =
1

2i
�â1

†â2 − â2
†â1� , �12�

where â1
† and â2

† create a photon in mode a1 and a2, respec-

tively. Ŝz measures the difference of photons in the two
modes. By an appropriate choice of the parameters, the
Hamiltonian describing the interaction of the light with the
first atomic ensemble can be brought to the form �11�

Ĥ = q JŜzĴz, �13�

with a frequency J. Due to the interaction, the collective

spin vector of the atoms is rotated around the z axis by �JŜz,
with the atom-photon coupling �J=Jt and the effective in-
teraction time t. The Stokes vector undergoes the same varia-

tion with �JŜz replaced by �JĴz. This rotation of the Stokes
vector is due to the Faraday effect of the light passing the
atoms, while the rotation of the atomic spin vector is due to
an ac Stark shift originating from the light field. The cou-
pling �J is given by �11�

�J = 2g2L

c

�
1
4�2 + �2

, g =	 �d2

2 q �0AL
, �14�

where A and L are the cross section and length of the atomic
sample, � and d are the linewidth and dipole moment of the
atomic transition, respectively, and � is the detuning from
the atomic resonance frequency �.

After the interaction,

Ŝy
out = sin��JĴz�Ŝx

in + cos��JĴz�Ŝy
in, �15�

and if initially

�Ŝin� =
nJ

2
x̂, ��Ŝx

in�2 = 0, ��Ŝy,z
in �2 =

nJ

4
, �16�

where nJ is the number of photons in the ensemble Ĵ, then

we can effectively replace Ŝx
in by its macroscopic expectation

value nJ /2. Furthermore, developing the trigonometric ex-
pressions and assuming that NJ�J

2�1, we obtain in leading
order

Ŝy
out �

nJ�

2
Ĵz

in + Ŝy
in. �17�

Hence a measurement of the y component of the outgoing

light vector gives information about �Ĵz�, while Ĵz itself is not
affected by the rotation around the z axis.

If such a QND measurement is performed after the first
beam splitter of the interferometer, then the operator

Ĵz� � Ĵz
out −

2

nJ�J
Ŝy

out �18�

measures the difference between the z component of the en-
semble’s atomic spin vector after the second beam splitter
and the estimated value after the first one. The fluctuations of

this operator are reduced as compared to Ĵz
out �11�, while the

fluctuations of Ĵy are enlarged, which is depicted in Fig. 4.
Hence, the state of the atomic spin vector is squeezed in the
z direction.

B. Modified interferometric scheme

We modify the scheme introduced in Sec. II by inserting
the QND interaction shortly after the first beam splitter, fol-
lowed by an extra rotation around x by � /2, which rotates
the uncertainty ellipse such that the phase uncertainty is re-
duced as desired, cf. Fig. 4. In the experiment, the latter
pulse must not transfer momentum to the particles, which
can be achieved by using co-propagating Raman lasers for
this step, provided that the two transition frequencies are
approximately equal, so that the two recoil momenta cancel
in the transitions.

The outgoing spin vector now is calculated as Ĵout=Rx

�−� /2�Rz��J�Rx�� /2�Rz��Ŝz�Ĵin, and in analogy for the

FIG. 3. For the QND interaction, the levels �1� and �2� are
coupled off-resonantly to states �3� and �4�.

FIG. 4. �Color online� The interferometric scheme for squeezed
input states: �a� collective spin after the first beam splitter, �b� the
QND measurement prepares a spin squeezed state which �c� is ro-
tated around x by � /2; step �d�→ �e� as step �b�→ �c� in Fig. 2.
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second ensemble L̂, with corresponding Stokes vector T̂.

In comparison to Eq. �5�, Ĵz
out now has to be corrected to

incorporate the spin squeezing �ss� as described above:

�̂ss = −
1

NJ
�Ĵz

out −
2

nJ�J
Ŝy

out� +
1

NL
�L̂z

out −
2

nL�L
T̂y

out� .

�19�

Calculating the expectation value and variance as before
yields

��̂ss� = � − 	� 1

NJ
+

1

NL
� �20�

���̂ss�2 =
1

n�2� 1

NJ
2 +

1

NL
2� + 	� 1

NJ
+

1

NL
� . �21�

Here it has been assumed nJ=nL¬n and �J=�L¬�. Devia-
tions from these assumptions enter the variance only in
higher order terms as long as ���J �−��L � � / ���J � + ��L � ��1,
and similar for nJ. Further assumptions leading to these ex-

pressions are N̄�2�1 as mentioned before, as well as n�2

�	8� �	N̄��2+�2��−1. Now, provided that 	 is small
enough, the variance is dominated by the first two terms
scaling as NJ/L

−2 . They originate from the projection noise of
the light, and, in principle, allow us to improve the resolution
below the standard quantum limit. However, n�2 equals, ex-
cept for a factor of order unity, the fraction of atoms which
are lost due to spontaneous processes during the squeezing
process, cf Sec. V. Thus, n�2�1 is necessary, and even
though we obtained a Heisenberg-like scaling ���̂ss�2

�1/NJ,L
2 , we are far from reaching the Heisenberg limit.

Furthermore, as it becomes clear from the second term,
the resolution is limited by the accuracy of the fluorescence
number measurements. These measurements are necessary in

any case to determine the phase, because �Ĵz
out� and �L̂z

out�
have to be rescaled properly. However, Ĵz and L̂z itself can be
measured using another QND interaction. As will be shown
in the next section, this reduces the dependence on the qual-
ity of the number measurements.

C. QND output measurement

Let us consider now a modification of the scheme using
squeezed states, where a second QND laser beam is sent
through each ensemble shortly after the last beam splitter.
We define

�̂ss+ = −
1

NJ

2

n�
�Ŝy,r

out − Ŝy
out� +

1

NL

2

n�
�T̂y,r

out − T̂y
out� , �22�

where the extra index + is supposed to indicate the additional

QND measurement. Furthermore, Ŝr and T̂r correspond to

individually prepared light pulses used to read out Ĵz and L̂z,
respectively. The resulting expectation value and variance in
leading order are

��̂ss+� = � + 	�� 1

NJ
+

1

NL
� , �23�

���̂ss+�2 =
2

n�2� 1

NJ
2 +

1

NL
2� + 	��2 + �2�� 1

4NJ
+

1

4NL
� .

�24�

Let us compare the modified scheme including an additional
QND measurement with the scheme using squeezed states.
The magnitude of 	 in the variance of the modified scheme
is effectively reduced for small � and �, 	→	��2+�2� /4, as
compared to Eq. �21�. Hence, the dependence on the number
measurement is reduced. Furthermore, the leading term shift-
ing the expectation value from the desired result � is smaller
by a factor � as compared to Eq. �20�.

As a further possible advantage, the effect of a nonsym-
metric atom-light interaction is compensated if the coupling
of the read-out QND pulse is similar to the coupling of the
squeezing pulse �21�. However, this advantage is probably
not very relevant for the Sagnac interferometer considered
here due to the long time-of-flight of the ensembles in the
interferometer between the two QND pulses.

A disadvantage of this scheme is that the first term of the
variance of Eq. �24� comes with a factor of 2 because of the
two projection measurements of the light necessary per
atomic ensemble. It is possible, although technically de-
manding, to reduce this contribution by re-using the light
from the first QND interaction for the read-out. In this case,
�→−� is needed in the second interaction in order to obtain

the difference Ĵz
out− Ĵz

in �21�, and in analogy for the second
ensemble. The sign can also be achieved by a � rotation of
the atom spin vector around the x axis in between the final
beam splitter and the QND read-out pulse.

IV. JOINTLY SQUEEZED ENSEMBLES

In the preceding section we have seen that the 1/ �n�2NJ
2�

term in the variance comes with a factor given by the number
of QND interactions with different ensembles of light, cf. Eq.
�24�. For this reason let us consider the case of preparing the
initial state of the two atomic ensembles with only a single
QND pulse that interacts with both ensembles consecutively.

The first interaction �with ensemble Ĵ� transforms Ĵin

→Rz��Ŝz
in�Ĵin, the second interaction �with ensemble L̂�

transforms L̂in→Rz��Ŝz
in�L̂in, because Ŝz

in itself remains un-

changed during the QND interaction. The Stokes vector Ŝ
transforms as Ŝout=Rz��L̂z

in�Rz��Ĵz
in�Ŝin, and the y compo-

nent of the outgoing light is given by

Ŝy
out = cos��L̂z

in��cos��Ĵz
in�Ŝy

in + sin��Ĵz
in�Ŝx

in�

+ sin��L̂z
in��cos��Ĵz

in�Ŝx
in − sin�Ĵz

in��Ŝy
in� , �25�

such that for N�2�1, and Ŝ initially prepared as in Eq. �16�,
we have

Ŝy
out �

n�

2
�Ĵz

in + L̂z
in� + Ŝy

in. �26�

Measuring Ŝy
out thus reveals information about Ĵz

in+ L̂z
in and

performs a squeezing operation on this joint operator. Now
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we apply the same operations as before to the ensemble Ĵ,

but for the ensemble L̂ we perform a rotation by � around
the x axis before the final measurement. After the extra pulse,
the Sagnac shift � is effectively encoded in the sum of the z
components instead of into the difference.

We define the phase operator for the scheme employing
jointly squeezed �js� ensembles as

�̂js = − � 1

NJ
Ĵz

out +
1

NL
L̂z

out −
2

n�N̄
Ŝy

out� . �27�

Note that in this definition Ĵz
out and L̂z

out are divided by the
atom numbers of the respective ensembles as before, while

the QND measurement yields an estimate of Ĵz
out+ L̂z

out with-
out such a correction, cf. Eq. �26�. As a consequence we
expect that we lose the advantages of squeezing if the num-
bers of atoms in the two ensembles differ strongly, i.e., if

�1. We find in leading order

��̂js� = � −
2	

N̄
, �28�

���̂js�2 =
1

n�2N̄2
+

2	

N̄
+


2

8N̄2
. �29�

The importance of the number fluctuations at the preparation
stage is reflected in the fact that in order to arrive at these
equations, the assumption


	N̄�n�2�2��2 + �2� � 1 �30�

is necessary in addition to the assumptions leading to Eq.

�21�. Furthermore, now 1/ �n�2N̄2� is the leading term only if
n�2
2 /8�1.

A QND measurement could also be used after the inter-

ferometer to directly read out the joint observable Ĵz
out+ L̂z

out

by defining

�̂js+ = −
2

n�

1

N̄
�Ŝy,r

out − Ŝy
out� , �31�

where again the index r refers to the read-out QND measure-
ment. Notice that in this way it is not possible to measure the

correct rescaled observable Ĵz
out /NJ+ L̂z

out /NL, and conse-
quently there is an important contribution from the difference
of the atom numbers in the expectation value already:

��̂js+� = � +
NL − NJ

NL + NJ
� +

	�

2N̄
. �32�

Compared to the variance of the scheme using jointly
squeezed ensembles without the QND read-out measure-
ment, Eq. �29�, the dependence of the variance on the
number measurements and on the atom number difference in
the two ensembles is reduced for small �, �:

���̂js+�2 =
2

n�2N̄2
+

	

2N̄
��2 + �2� +


2

8N̄2
	��2 + �2� .

�33�

However, the 
-dependent correction to the expectation
value ��̂js+� is only negligible compared to the standard de-

viation ��js+ if 
2N̄n�2�2 /8�1. This is generally a stronger
criterion than the limit on 
 encountered without the QND
read-out, cf. Eq. �30�.

The offset can be compensated by using an estimate for �
from the final fluorescence measurement

�̂ = −
1

NJ
Ĵz

out +
1

NL
L̂z

out, �34�

to define a corrected phase operator

�̂ js+
c = �̂ js+ −

NL − NJ

NL + NJ
�̂ �35�

which takes into account the bias of ��̂js+�. We find that to
leading order

��̂js+
c � = � +

	�

2N̄
−


2	

2N̄2
�36�

���̂js+
c �2 =

2

n�2N̄2
+

	�2

2N̄
+


2

8N̄2
. �37�

Hence, the 
-dependent bias in the expectation value is re-

duced by a factor 	
 / �N̄3/2���1, while the 1/ N̄ term in the
variance still has a factor 	�2.

These are the same advantages that we also found in the
case of separately squeezed ensembles with QND read-out,
cf. Eq. �24�. However, the contribution of the term propor-

tional to 1/n�2N̄2 is reduced by a factor of 2 in ���̂js+
c �2,

because only two instead of four projective measurements of
the light are necessary in this case.

V. DECOHERENCE

The attainable squeezing is limited by the absorption of
photons during the interaction between light and atoms �22�.
Each atom which absorbs and subsequently spontaneously
emits a photon is no longer correlated to the rest of the at-
oms, but still adds to the variance. We estimate the number
of atoms contributing to such an uncorrelated background as
the number of scattered photons n�, where �=NJ�� /� is the
optical density. Then, in the limit of ��1 and for just a
single ensemble, one finds �22�

�Jz
out� → �Jz

out��1 −
n��

�
� , �38�

��Jz
out�2� → �1 −

n��

�
�2

��Jz
out�2� +

nNJ��

2�
�39�

for the collective atomic spin vector and
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�Sz
out� → �Sz

out��1 −
NJ��

�
� , �40�

��Sz
out�2� → �1 −

NJ��

�
�2

��Sz
out�2� +

NJ
2��

4�
�41�

for the Stokes vector. The leading order corrections to the
variance ���̂ss�2 given in Eq. �21� for the case of separately
squeezed ensembles reads

���̂ss�2 → ���̂ss�2 +
n��

�

1

N̄
+

2�

n2��
, �42�

and similarly for the other schemes. We will use this estimate
in the following discussion and leave an in-depth analysis of
decoherence processes, e.g., following the lines of �22�, to
further investigations. Generally, according to Eq. �38� the
expectation value also changes due to decoherence. This can
be accounted for by rescaling, and doing so gives only higher
order corrections to Eq. �42�.

For usual choices of parameters, the last term in Eq. �42�
is negligible, while the contribution proportional to N̄−1 is
comparable in size to the terms in Eq. �21�. This limits the
coupling � and thus the achievable squeezing. For all other
experimental parameters fixed, there exists an optimal choice
for the detuning � and thus for � �see Eq. �14�� which mini-
mizes the variance. Taking into account only the first term in
Eq. �21�, and in the limit ���, this optimal choice of �

leads to a minimal value for ���̂ss�2:

min
�

����ss�2� =
2

N
3
2d
	2�0 q cA�

�
. �43�

The scaling is thus no longer as in the Heisenberg limit, but
is still better than in shot-noise limited measurements �see
also �23��.

In addition, the decay of the states �1� and �2� during the
interferometer step has to be taken into account. Choosing
long-lived hyperfine ground state levels to implement �1� and
�2� minimizes this decay. Also, spin-squeezed states have
been shown to be robust with respect to both particle loss
and dephasing �24�, in contrast to, e.g., Greenberger-Horne-
Zeilinger �GHZ� states, which are maximally fragile under
particle losses.

VI. COMPARISON OF THE SCHEMES

To analyze the performance of the schemes discussed in
the preceding sections we will fix the number of photons as

n=1011 and take N̄=1010 as a reasonable parameter for the
mean atom number per ensemble. We will first consider a
close-to-ideal scenario and assume that the noise from the
fluorescence measurements can be neglected by setting 	

=2�10−7. Also, we will set 
=10, which for N̄=1010 atoms

corresponds to �NJ−NL � =10−4N̄, and we will initially not

include decoherence. Figure 5�a� shows the scaling with N̄ of
����2 / ���cs�2, i.e., of the various variances normalized to
the case of coherent ensembles. For all the methods involv-
ing squeezing of some joint observable a Heisenberg-like
scaling is visible. The offsets of these curves are given by the

FIG. 5. Double-logarithmic plot of the variances ����2 for the methods discussed in the text normalized to the variance for coherent

states ���cs�2, as a function of the mean number of atoms N̄. The scale on the right-hand side gives the noise reduction in dB. In both figures
n=1011, and we fixed �=�=0.01 in order to operate close to the point of maximal sensitivity of the interferometer. In �a� we consider the
close-to-ideal scenario with 	=2�10−7, 
=10, and decoherence is not included. �=3.23�10−10 is used, corresponding to a detuning �

=2.28�1010 s−1 for the Rb D2 line and a cross section A=0.3 mm2 of the laser beam. In this close-to-ideal scenario, the scaling as N̄−2 is
visible for all the methods employing squeezing. The graphs for separately squeezed ensembles �without QND read-out� and for jointly
squeezed ensembles with QND read-out and corrected expectation value lie on top of each other. In the case of a joint QND read-out, failing

to correct the expectation value for the contribution from � results in a scaling as 1/ N̄ for N̄�109. �b� Realistic scenario with 	=2

�10−2, 
=104, and including decoherence. In each case and for each value of N̄ the detuning has been adjusted to minimize the variance
�25�. The inset shows the corresponding optimal values of the coupling parameter �. For large atom numbers it is clearly seen that the
schemes which do not employ a final QND measurement are strongly affected by the limitations from the fluorescence detection. The curve
for jointly squeezed ensembles using a joint QND readout lies outside the range of the figure.
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numbers of QND measurements performed, i.e., by the factor

multiplying the 1/ �n�2N̄2� term in the variance of each of the
considered schemes that involve squeezing. For the measure-

ment of � via reading out Ĵz+ L̂z through a QND interaction,
the term proportional to � shifting the expectation value �see
Eq. �32�� has been included into the variance, in order to
allow for a fair comparison. It is this term which makes the

variance scale only proportional to 1/ N̄ for N̄�109. Obvi-
ously, correcting this contribution of � as described in Sec.
IV avoids this term and maintains the improvement by a
factor of 2 compared to the case of squeezing and QND
measuring both ensembles separately.

In Fig. 5�b�, the relative variances are plotted for realistic
experimental parameters and including decoherence. 	=2
�10−2 corresponds to 50 fluorescence cycles per atom, and

=104 is equivalent to a difference of the number of atoms

in the two ensembles of 10% of the mean number N̄ at N̄

=1010. With all other parameters fixed, for each value of N̄
the interaction strength � is determined by choosing the de-
tuning � from atomic resonance such that the variance ����2

is minimized, see Eq. �43� �25�.
As can be seen from Fig. 5�b�, in such a realistic scenario

the noise reduction obtained from squeezing decreases for all
methods. For large atom numbers, in all cases the variance

scales as 1 / N̄ due to decoherence and the noise from the
fluorescence measurements. For all the procedures not in-
volving a QND read-out, the strong influence of the latter

contribution can be observed, though for N̄=1010 atoms the
total noise still is reduced by around 7 dB with respect to the
limit set by quantum projection noise. On the other hand, the
read-out via QND measurements allows us to reduce the
noise by more than 10 dB compared to this limit, and this
method does not require an additional experimental setup as
compared to the scheme where QND measurements are per-
formed only on the incoming atomic ensembles.

While in the close-to-ideal case the squeezing of a joint
observable gives an advantage of a factor of 2 in the variance
compared to individual squeezing and read-out �correspond-
ing to a 3 dB noise reduction�, for an experimental reason-
able scenario this advantage reduces to about 1.5 dB. Of
course the method of squeezing a joint observable of both
ensembles has a basic advantage since it only needs a single
squeezing operation instead of two, and thus less technical
effort is necessary.

VII. ENTANGLED ENSEMBLES

Julsgaard et al. demonstrated experimentally in Ref. �16�
the generation of macroscopic entanglement between two
atomic ensembles. The scheme to generate such a macro-
scopically entangled state �15� is motivated by the fact that
under the ideal condition of 
=0 two commuting joint ob-

servables can be constructed from Ĵ and L̂:

��Ĵy − L̂y, Ĵz + L̂z�� � �NJ − NL� = 0, �44�

i.e., Ĵy − L̂y can be measured without affecting Ĵz+ L̂z, and
vice versa. This can be seen directly from

�Rz��Ŝz�Ĵin − Rz��Ŝz�L̂in�y = Ĵy
in − L̂y

in, �45�

i.e., the first QND interaction leaves the difference of the y

components unaffected. Thus, after squeezing the sum Ĵz

+ L̂z, also the difference Ĵy − L̂y can be squeezed without los-
ing the information gained in the first measurement. To real-
ize this experimentally in the interferometer, after the first

squeezing interaction Ĵ is rotated by a classical � /2 pulse

around the x axis so that Ĵy→ Ĵz, while L̂ is rotated by −� /2

around x giving −L̂y→ L̂z. Then a second laser pulse, pre-
pared again as in Eq. �16�, interacts consecutively with both

ensembles and thus finally carries information about Ĵy − L̂y.
The outgoing state corresponds to a macroscopically en-
tangled EPR state �15�. It is now a natural question to ask
whether entangled atomic ensembles are of use in Sagnac
atom interferometry.

For the schemes discussed so far, the collective spin vec-
tors lie in the x-z plane after the last step of the interferom-

eter. Therefore always �Ĵy − L̂y�=0, and an additional opera-
tion is necessary in order to encode phase information in the
y components as well. This can be achieved by rotating both

ensemble vectors Ĵ and L̂ by an angle � and −� around the
x axis before and after the interferometric phase is applied,
respectively. In this way the plane of rotation of the phase
shift is effectively tilted by � around the x axis.

The measurement process now consists of first rotating Ĵ
and L̂ by ±� /2 and using another QND interaction to mea-
sure the sum of the z components. This measurement, scaled
correctly by a �-dependent factor, reveals �. To be more
explicit, the corresponding operator for entangled ensembles
�EE� reads

�̂EE =
1

cos �

2

N̄n�2
�Ŝy,r

out − Ŝy
out� . �46�

A measurement of the sum of the y components can be real-
ized after another rotation around x by either a QND or a
projection measurement. In the former case

�̂EE =
1

sin �

2

N̄n�2
�T̂y,r

out − T̂y
out� . �47�

These measurements yield both angles:

��̂EE� = � +
NL − NJ

NL + NJ
� +

	�

2N̄
�48�

��̂EE� = � +
NL − NJ

NL + NJ
� +

	�

2N̄
, �49�

where the offsets can be corrected as above. For parameters
as in Sec. V, the leading terms of the corresponding variances
read �at �=0 and �=0�

���̂EE�2 =
1

cos2 �

2

N̄2n�2
+


2n�2

8N̄
. �50�
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���̂EE�2 =
1

sin2 �

2

N̄2n�2
+


2n�2

8N̄
. �51�

Changing � allows us to trade in a lower variance of one
component for a higher variance of the other. But these vari-

ances are only scaling with 1/ N̄2 if 
 is close to zero, other-

wise the last term �
2n�2 / N̄ in Eqs. �50� and �51� is domi-
nating the scaling. However, 
�0 is an obvious requirement
in this case, as otherwise the commutator does not vanish in
Eq. �44�, and the two squeezing operations are thus not com-
patible.

VIII. CONCLUSION AND OUTLOOK

We have presented and compared in detail several meth-
ods to improve the detection of a differential phase shift of
two atomic interferometers beyond the standard quantum
limit, keeping in mind especially the application to Sagnac
interferometry. For this purpose, we have analyzed the
squeezing of individual and joint observables and, in both
cases, the read-out of the interferometer via fluorescence de-
tection of the atoms only or by an additional QND interac-
tion.

If decoherence and measurement imperfections are ne-
glected, all the methods of squeezing improve the behavior

of the variance of the differential phase to a 1/ N̄2 scaling,
modified by a factor k / �n�2��1, which is determined by the
number k of QND interactions involved, by the number of
photons n, and by the coupling � between atoms and pho-
tons. In the case of jointly squeezed observables, we found
that this limit can only be attained if some constraints on the
difference of the number of atoms in both ensembles can be
fulfilled. In all cases, the achievable squeezing is limited by
decoherence due to the absorption of photons during the
QND measurement.

Using fluorescence measurements to read out the atomic
spins after the interferometer always produces additional

noise scaling as 1/ N̄ due to the photon shot noise. As an
alternative method, a QND measurement can be employed to
read out the final state of the interferometer. Although in this

case fluorescence measurements are still necessary to deter-
mine the number of atoms in the two ensembles, their con-
tribution to the noise is reduced to a large extent. We have
shown that the best method to achieve this is to perform
squeezing and read-out via a QND measurement of a joint
observable of the two ensembles, provided that the differ-
ence between the number of atoms in the two ensembles can
be made smaller than approximately 10% of the mean num-
ber of atoms. This procedure minimizes the number of QND
interactions necessary, thereby minimizing the factor multi-

plying the 1/ N̄2 term in the variance, and it reduces the ex-
perimental effort.

Finally, we considered the creation of a macroscopically
entangled state of the two atomic ensembles via squeezing of
two nonlocal, commuting observables. We showed that in
this case both the sum and the difference of the phase shifts

can be measured with a variance scaling with 1/ N̄2, and that
the relative uncertainty can be shifted between both quanti-
ties. However, this scaling can only be reached here if the
number difference between the two ensembles can be made
very small. Therefore, it would be desirable to identify meth-
ods to control the numbers of atoms in the ensembles, for
instance, by employing the superfluid–Mott insulator transi-
tion in an optical lattice embedded in a weakly confining
harmonic potential �26,27�. Controlling this confinement,
which plays the role of a local chemical potential, the num-
ber of atoms in the Mott phase at T�0 can be controlled and
should only mildly depend on the total number of atoms in
the system. A detailed analysis of this idea is left for future
investigations.
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