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The microscopic foundation of quantum-optical spectroscopy is presented. It is proposed to use this tech-
nique to generate and detect quasiparticle states in semiconductors whose quantum-statistical properties are
governed by that of the exciting light. While resonant classical excitation induces an optical interband polar-
ization, low-intensity quantum excitation directly seeds a quantum-degenerate exciton state which is charac-
terized by long-range order, anomalous reduction of Coulomb and phonon scattering, as well as strongly
enhanced and directional quantum emission.
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I. INTRODUCTION

Optical spectroscopy is a very important and versatile tool
for identifying and characterizing elementary processes in a
large variety of inorganic �1–5�, organic �6,7�, and biological
�8–10� systems. In many of these applications, it is desirable
to use spectrally and/or temporally well-defined sources
while the detailed quantum statistics of the exciting light is
often not relevant. However, if one carefully characterizes
spontaneous emission from excited systems, nonclassical
features, such as antibunching �11,12�, entanglement
�13–15�, squeezing �16,17�, etc., may show up. The analysis
reveals that such effects appear when the light and matter
properties cannot be factorized. In other words, quantum-
mechanical aspects of the matter excitations influence the
quantum statistics of the emitted light via correlations.

If one takes a closer look at the quantum mechanics of
optical interactions, one immediately realizes that light-
matter correlations may be relevant not only for emission but
also for absorption. After all, emission and absorption are
fundamentally related processes, especially, when excitations
with genuine quantum-light sources are considered. Follow-
ing up on this notion, we develop the concept of quantum-
optical spectroscopy making it possible to map the quantum-
statistical properties of the exciting light directly onto the
generated state of the quasiparticle excitations in matter.

To illustrate our concept, we study the example of a
direct-band-gap semiconductor system where light emission
or absorption involves electron-hole-pair excitations. In the
usual classical spectroscopy, one excites the system with co-
herent classical light and monitors the subsequent transmis-
sion, reflection, absorption, light scattering, or wave-mixing
signatures. These very successful methods continuously re-
veal a great deal of fascinating many-body physics in semi-
conductors, ranging from the formation of quasiparticle ex-
citations, their interaction and scattering mechanisms, all the
way to disorder features in the particular samples.

However, if one truly wants to explore the full potential of
optical spectroscopy, one should not only consider the semi-
classical aspects of light-matter interaction but also utilize its
quantum-optical properties to expand the possibilities for
generating desired quasiparticle states. Since quantized light

has bosonic quantum statistics, the most straightforward ap-
proach is to seed the analogous quantum statistics to the
excited semiconductor state, even though the electrons and
holes obey their intrinsic Fermi statistics.

As an example, we consider manipulating the quantum
statistics of Coulomb-bound electron-hole pairs, i.e., exci-
tons, because they are the conceptually simplest optically
active quasiparticle excitations. The excitonic statistics can
be dominated by the fermionic character of the constituent
electron and hole or it may be nearly bosonic under suitable,
i.e., low-density and -temperature conditions �18�. In particu-
lar, we determine how the boson-to-boson mapping functions
and how the fermionic substructure of excitons influence the
quantum-statistical aspects as the excitation densities are in-
creased. In connection to this, we show that there is an ex-
perimentally accessible parameter range where one can seed
a quantum-degenerate exciton state with a macroscopic
population of one single level.

As in any quantum theory, the complete system Hamil-
tonian H defines the starting point for our quantum-
electrodynamic treatment of optically excited semiconductor
systems. Since the derivation of the generally accepted H for
semiconductors has been described in the literature
�5,19,20�, we just briefly summarize these aspects in Sec. II.
After the proper H is identified, we evaluate the quantum
dynamics of different excitation schemes from the Heisen-
berg equations of motion for the relevant operator combina-
tions. In particular, we find a closed set of self-consistent
equations for the expectation values by applying the so-
called cluster-expansion-truncation scheme �21–25� outlined
briefly in Sec. II B and Appendix A. The general theory for
quantum-optical spectroscopy is derived in Sec. III. As a
result, we obtain a full description of the most important
quantum-optical excitation properties, which allows us to
analyze the principles of quantum-optical spectroscopy of
semiconductors. The effect of quantum statistics of light on
quasiparticle excitations is solved analytically in Sec. IV by
introducing meaningful simplifications to the excitation
problem. The full numerical solutions, presented in Sec. V,
illustrate the principles of quantum-optical spectroscopy via
several relevant examples. These concepts are summarized
and extended in Sec. VI.
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II. QUANTUM-ELECTRODYNAMIC APPROACH
FOR SEMICONDUCTORS

We consider a system with either a quantum well or a
planar arrangement of identical quantum wires. In both
cases, we assume sufficiently strong quantum confinement so
that only two optically active bands exist in the spectral
range of interest. The quantum wires are placed such that
they are much closer than the relevant optical wavelength
but, at the same time, they are so far apart that the different
wires are not electronically coupled. In this situation, each
quantum wire is electronically independent and optical ef-
fects do not lead to a diffraction pattern. Consequently, the
quantum-wire arrangement is as close as possible to the
quantum well; indeed, such an arrangement behaves qualita-
tively very similarly to the quantum well �see, e.g., Ref.
�25��. As an illustration, we present computational results for
the case of a quantum-wire system with typical GaAs mate-
rial parameters providing 11 meV exciton binding energy
and a three-dimensional �3D� Bohr radius of a0=12.5 nm.
We study resonant excitation configurations at low tempera-
tures such that only acoustic phonons are relevant.

A. System Hamiltonian

For semiconductors, the microscopic description of car-
rier excitations can be obtained with the help of the fermi-
onic operators ac,k and ac,k

† for conduction-band electrons
and av,k and av,k

† for valence-band electrons. For notational
simplicity, we present the equations in a form compatible
with the quantum-well case; reduction to quantum wires is
obtained by replacing the vectorial carrier momentum k by
the scalar k along the wire.

Both the quantized light, i.e., photons, and the lattice vi-
brations, i.e., phonons, influence the dynamics of the quasi-
particle excitations in semiconductors. For a quantum-
mechanical description of the transverse electromagnetic
field, we start from the vector potential A within the canoni-
cal quantization scheme �19�. The quantization procedure
gives

A�r,z� = �
q,q�

Eq/�q�Uq,q�
�r�Bq,q�

+ H.c.� �1�

where Eq=���q / �2�0� is the so-called vacuum field ampli-
tude, �q=cq is the optical frequency, and q=��q�2+q�

2 is the
magnitude of the photon wave vector �q ,q�� which is di-
vided into the component q� perpendicular to the planar
structure and the parallel component q. The bosonic photon
operator Bq,q�

defines the quantum statistics of a light mode
Uq,q�

�r�. The quantized lattice vibrations can be treated
similarly to the electromagnetic field by introducing the
bosonic operators Dp,p�

and Dp,p�

† for phonons with parallel
and perpendicular momenta p and p�, respectively. For pho-
tons and phonons, the independent polarization directions are
implicitly included into the momentum index.

The fundamental system Hamiltonian Htot=H0+HC+HD
+HP follows from �5,19,20�

H0 = �
k

��k
cac,k

† ac,k + �k
vav,k

† av,k� + �
q,q�

� �q�Bq,q�

† Bq,q�
+

1

2
	

+ �
p,p�

� �p�Dp,p�

† Dp,p�
+

1

2
	 ,

HC =
1

2 �
k,k�,q�0

Vq�ac,k+q
† ac,k�−q

† ac,k�ac,k

+ av,k+q
† av,k�−q,

† av,k�av,k + 2ac,k+q
† av,k�−q

† av,k�ac,k� ,

HD = − �
q,q�,k

i � Fq�av,k
† ac,k−q + ac,k

† av,k−q�Bq,q�
+ H.c.,

HP = �
p,p�,k

�Gp
c�Dp,p�

+ D−p,p�

† �ac,k
† ac,k−p

+ Gp
v�Dp,p�

+ D−p,p�

† �av,k
† av,k−p� . �2�

The noninteracting carriers, photons, and phonons are in-
cluded in H0 and the corresponding carrier energies are

�k
c =

�2k2

2me
+ Eg, �k

v = −
�2k2

2mh
, �3�

with the band-gap energy Eg and the effective electron and
hole masses me,h. The phonon dispersion is given by �p. The
Coulombic many-body Hamiltonian HC contains the bare
Coulomb matrix element Vk �26� of the confined system. The
interaction between the optical photons and carriers follows
from HD, and the interaction strength is determined by Fq

dv,cUqEq /� where dv,c is the dipole-matrix element. The
strength of the phonon-carrier interaction HP is determined
by the form factor Gp

� �27�.

B. Formal aspects of semiconductor quantum dynamics

As a general starting point of our investigations, we
evaluate the expectation values �O�=Tr�O�� for generic op-
erator O, according to the probabilistic interpretation of
quantum mechanics and solve their dynamics using the
Heisenberg equations of motion

i �
�

�t
�O� = ��O,Htot�−� �4�

which generally leads to the well-known hierarchy problem
of infinite coupled equations. In the following, we overview
briefly how the quantum dynamics of the interacting
semiconductor-photon-phonon system can be treated system-
atically via the so-called cluster expansion �21–25�.

This method is based on a general classification scheme
where each operator combination is identified via particle
clusters. For semiconductor systems, bosonic B1 and D2 as
well as fermionic carrier operator pairs a1

†a2 correspond to
single-particle operators; we have used here an implicit no-
tation where numerals 1 and 2 denote the appropriate mo-
mentum, polarization, or band index combinations. Then, a
general N-particle operator follows from N
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=B1
†
¯BN1

† D1
†
¯DN2

† a1
†
¯aN3

† aN3
¯a1DN4

¯D1BN5
¯B1 with

all possible combinations of Nj where the total number of
operators satisfies N1+N2+N3+N4+N5=N. According to this
classification, HC, HP, and HD correspond to two-particle
interactions and the hierarchy problem of semiconductors is
cast into the form

i
�

�t
�N� = T��N�� + V��N + 1�� , �5�

where the N-particle expectation value �N� couples to higher-
order �N+1� quantities via the functional V. The functional T
results mainly from the noninteracting part of the Hamil-
tonian while V originates from the Coulomb, light-matter,
and carrier-phonon interactions.

The cluster-expansion truncation is based on a clear
physical principle where one determines all consistent factor-
izations of an N-particle quantity �N� in terms of �i� indepen-
dent single particles �singlets�, �ii� correlated pairs �dou-
blets�, �iii� correlated three-particle clusters �triplets�, up to
�iv� correlated N-particle clusters. If we formally know all
expectation values from �1� to �N�, a specific correlated clus-
ter recursively follows from

�2� = �2�S + ��2� ,

�3� = �3�S + �1���2� + ��3� ,

�N� = �N�S + �N − 2�S��2� + �N − 4�S��2���2� + ¯ + ��N� .

�6�

Here, the quantities with the subscript S denote the singlet
contributions and the terms ��J� contain the purely corre-
lated part of the J-particle cluster. In Eq. �6�, each term in-
cludes a sum over all possibilities to reorganize the N coor-
dinates among singlets, doublets, and so on by including the
possible sign changes due to the permutations of the carrier
operators. This way all cluster groups in Eq. �6� are fully
antisymmetric for fermionic carriers and symmetric for
bosonic photon and phonon operators, respectively. As ex-
amples, the singlet factorization produces the Hartree-Fock
factorization for pure carrier operators, while the classical
factorization �N�S= �1��1�¯ �1�= �1�N is obtained for pure
photon or phonon terms.

The systematic cluster-expansion truncation of the hierar-
chy problem follows as we present any given N-particle
quantity up to C-particle correlations,

�N�1,. . .,C 
 �N�S + �N�D + ¯ + �N�C = �
J=1

C

�N�J, �7�

following directly from Eq. �6� by noting that �N�S contains
only singlets, �N�D contains all combinations of doublets but
no higher-order correlations, and so on. For example, if the
electron-hole system contains only bound pairs like excitons,
the description up to doublets is sufficient �24,28–30�. If the
system develops molecules or droplet correlations �31,32�,
higher-order clusters need to be included.

When we truncate the hierarchy to the consistent singlet-
doublet level and include three-particle contributions at scat-
tering level, we end up with the general equation structure

i �
�

�t
�1� = T1��1�� + V1��2�S� + V1���2�� ,

i �
�

�t
��2� = T2���2�� + V2��3�SD� + G��1�,��2�� , �8�

where the functional G��1� ,��2�� indicates that three-
particle correlations are included at the scattering level dis-
cussed in Appendix A. This seemingly simple formal struc-
ture includes the microscopic description for optical
excitations of semiconductors including nonlinear classical
optics as well as the most relevant aspects of semiconductor
quantum optics.

III. OPTICAL EXCITATION OF SEMICONDUCTORS

The main idea of quantum-optical spectroscopy is to ex-
cite different matter states using light with specific quantum
statistics. The analysis of the generated quasiparticle states
can be performed by monitoring the subsequent quantum
emission, which allows us to deduce the resulting quantum
dynamics of the matter excitations. To illustrate this concept,
we now apply the cluster-expansion formalism to solve op-
tical excitations in the direct-band semiconductor system de-
scribed by Hamiltonian �2�. We are particularly interested in
identifying the effects resulting from a given quantum statis-
tics of the exciting light. In general, the quantum statistics of
light contains the complete information about the quantum as
well as classical aspects of a given optical field. It can be
represented in several equivalent ways; here, we classify the
field via either its density matrix, wave function, or all pos-
sible �J+K�-particle expectation values ��B†�JBK�.

We consider two excitation schemes: �i� classical and �ii�
entirely incoherent quantum light with quantum statistics de-
fined by

��B†�JBK��classical = �B†�J�B�K,

��B†�JBK��quantum = 	J,KJ ! ��B†B�J, �9�

respectively. The classical excitation follows from the single-
particle quantities and classical factorization whereas pure
quantum excitation is characterized by two-particle correla-
tions describing the incoherent quantum fluctuations of the
field. One of the reasons for us to choose these two schemes
is the possibility to demonstrate the capabilities of quantum-
optical spectroscopy in semiconductors because such classi-
cal and quantum fields have drastically different quantum
statistics. The other reason is that both of these schemes can
be realized using currently available experimental setups.

It is interesting to note that the coherent state �19,33�

�
� 
 D�
��0�, D�
� 
 e
�B−
B†
�10�

corresponds to a classical field since ��B†�JBK�
= �
 � �B†�JBK �
�= �
��J
K produces the classical factoriza-
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tion in Eq. �9� after we identify 
= �B�. From a quantum-
optical point of view, a coherent state—i.e., classical field—
is obtained when the coherent displacement operator D�
�
acts on the vacuum state �0�.

We can also find the precise density matrix of the quan-
tum excitation used here; it is given by the thermal state

�̂th = �
j=0

�

�j�
nth

j

�1 + nth� j+1 �j� , �11�

where �j� is the usual Fock-number state �19,33�. Since this
field has ��B†�JBK�=Tr��B†�JBK�̂th�=	J,KJ ! �nth�J, the quan-
tum excitation in Eq. �9� is equivalent to �̂th after we identify
nth=��B†B�. There are in fact infinitely many other forms of
��B†�JBK� that could be used for the quantum excitation.
However, the thermal light is the simplest quantum field and
also most easily accessible source in experiments. The role
of other quantum excitations is discussed later in Sec. VI
after the relation between quantum statistics and quasiparti-
cle excitations in matter has been fully described.

Before the exciting light enters into and interacts with the
semiconductor, it is assumed to be completely uncorrelated
with the electronic system. Such situations are realized with
any excitations that are external with respect to the excited
system. Similarly, the phonon system is assumed to be ini-
tially uncorrelated with both photons and carriers. As a re-
sult, the total density matrix �̂tot separates into light, phonon,
and electronic parts i.e., �̂tot= �̂light � �̂phonons � �̂electrons before
the interactions take place. The specific form of �̂light follows
from Eq. �10� or �11� and the phonon system is chosen to be
a thermal bath where phonon occupations follow a Bose-
Einstein distribution. The many-body features of the elec-
tronic system can be investigated in its purest form when we
assume that the semiconductor is in its ground state �G� be-
fore the excitation. Thus, we choose �̂electrons= �G��G� in our
analysis. As the light interacts with the semiconductor, non-
trivial electron-photon-phonon correlations build up and are
computed self-consistently.

A. Classical excitation scheme

The classical part of the light field is directly connected to
the coherent amplitudes �Bq� and �Bq

†� such that only the
electric field

�E�r,t�� = �
q

�iEqUq�r��Bq� − iEqUq
��r��Bq

†�� �12�

is needed to describe the classical field. In the following, we
discuss the singlet-doublet equation structure �8�, correla-
tions, and the relevant quasiparticle excitations generated by
the classical field. The additional correlations and effects in
the realm of quantum fields are discussed in connection with
the quantum excitation.

The Heisenberg equation of motion for �E� yields the
well-known wave equation

��2 −
n2�z�

c2

�2

�t2	�E�z,t�� = �0
�2

�t2 P�z� , �13�

where we have assumed that the light field propagates in the
z direction perpendicular to a planar structure with the back-
ground refractive index n�z�. The right-hand side of Eq. �13�
shows that the classical light field is directly coupled to the
optical polarization P�z�=g�z�P where g�z�→	�z� follows
from the strong planar confinement of carriers. The macro-
scopic polarization P is given by

P =
dvc

S �
k

Pk, P =
dvc

lL �
k

Pk, �14�

for the quantum-well and -wire structures, respectively; the
quantization area is given by S or lL where l is the separa-
tion of wires in the planar arrangement. Since the micro-
scopic polarization follows from a singlet term, Pk

�av,k

† ac,k�, the wave equation contains only single-particle
contributions without the hierarchy problem. Thus, Eq. �13�
is exact and its accuracy depends only on how precisely we
are able to solve Pk.

The dynamics of Pk couples to other singlets: �E�z , t��,
the occupation probabilities of electrons f k

e 
�ak,c
† ak,c� and

holes f k
h 
�ak,vak,v

† �. In addition, the beginning of the hier-
archy problem appears via the coupling to two-particle cor-
relations. Altogether, the classical excitation leads to the sin-
glet dynamics


i �
�

�t
Pk


clas
= �̃kPk − �1 − fk

e − fk
h��k − i
k, �15�


�

2

�

�t
f k

e

clas

= Im�Pk�k
� + �

q,k�,�

Vqcc,�,�,c
q,k�,k + �

q
Dk,q

c,c 	 ,

�16�


�

2

�

�t
f k

h

clas

= Im�Pk�k
� − �

q,k�,�

Vqcv,�,�,v
q,k�,k − �

q
Dk,q

v,v	 ,

�17�

with the renormalized kinetic electron-hole-pair energy and
renormalized Rabi frequency

�̃k 
 �k
c − �k

v − �
k�

Vk−k��fk�
e + fk�

h � ,

�18�
�k 
 dcvE�0,t� + �

k�

Vk−k�Pk�,

respectively. The last term of Eq. �15� contains the correlated
two-particle contributions

− i
k = �
q
�Vq�

n,�
cv,�,�,c

q,n,k − Dk,q
v,c	 − �c ↔ v��. �19�

The contribution 
k leads to the dephasing of the polariza-
tion via the true two-particle correlations defined from
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c�,�,��,��
q,k�,k 
 ��a�,k

† a�,k�
† a��,k�+qa��,k−q�

= �a�,k
† a�,k�

† a��,k�+qa��,k−q�

− �a�,k
† a�,k�

† a��,k�+qa��,k−q�S, �20�

where the factorized single-particle contributions are re-
moved. Note that other momentum combinations do not exist
for the homogeneous excitation conditions used here. The
corresponding phonon terms are defined by

Dk,q
�,� 
 �

p�

Gq,p�

� ���Dq,p�
+ D−q,p�

† �a�,k
† a�,k−q�

= �
p�

Gq,p�

� ���Dq,p�
+ D−q,p�

† �a�,k
† a�,k−q�

− �Dq,p�
+ D−q,p�

† ��a�,k
† a�,k−q�� . �21�

The set of Eqs. �15�–�17� defines the general semiconductor
Bloch equations. In addition, one finds quantum-optical cor-
rections of the form ��B†a1

†a2� �20,34–36�. However, these
are not relevant for the optical generation of quasiparticles as
long as classical excitation is used.

B. Exciton dynamics after classical excitation

The classical optical excitation induces the coupled dy-
namics of coherent polarization and densities described by
Eqs. �15�–�17�. However, the generated P experiences a
rather fast decay on a picosecond time scale due to the two-
particle correlations described by 
k. The singlet-doublet ap-
proach �8� allows us to analyze this decay as the dynamics of
the two-particle correlations is worked out. In this context,

the exciton correlation determined by cX
q,k�,k
cc,v,c,v

q,k�,k is the
most important long-living correlation. The explicit form of
its dynamics follows from �24,28,37�

i �
�

�t
cX

q,k�,k = �q,k�,kcX
q,k�,k + Sq,k�,k

+ �1 − f k
e − f k−q

h ��
l

Vl−kcX
q,k�,l

− �1 − f k�+q
e − f k�

h ��
l

Vl−k�cX
q,l,k

+ iGq,k�,k + Drest
q,k�,k + Tq,k�,k. �22�

The polarization decay 
k is related to the generation of
exciton correlations,

iGq,k�,k = �Pk
� − Pk−q

� �Vq�
n,�

cv,�,�,c
−q,n,k� + �Pk

� + Pk−q
� �Dk�,−q

v,c

+ �Pk� − Pk�+q�Vq�
n,�

cc,�,�,v
q,n,k + �Pk� + Pk�+q�Dk,q

c,v .

�23�

This source term contains precisely the same cv,�,�,c and Dv,c

correlations that led to a decay of P according to Eq. �19�.
The other elements of the exciton correlation dynamics

consist of the renormalized electron-hole-pair energy

�q,k�,k 
 �k−q
c − �k

v − �k�
c − �k�+q

v

− �
l

Vl�f k−q−l
e + f k−l

h − f k�−l
e − f k�+q−l

h � . �24�

The single-particle source originating from the Coulomb in-
teraction has the explicit form

Sq,k�,k = Vk�+q−k��1 − f k
e��1 − f k−q

h �f k�+q
e f k�

h − f k
e f k−q

h �1

− f k�+q
e ��1 − f k�

h �� + Vk�+q−k�Pk
�Pk�+q�f k−q

h − f k�
h �

+ Pk�Pk−q
� �f k

e − f k�+q
e �� + Vq�Pk

�Pk��f k−q
h − f k�+q

e �

− Pk−q
� Pk�+q�f k�

h − f k
e� − Pk−q

� Pk��f k
e − f k�+q

e �

+ Pk
�Pk�+q�f k�

h − f k−q
h �� . �25�

This equation has a rather intuitive interpretation since it
contains the usual Boltzmann scattering of carriers, f1f2�1
− f3��1− f4�− �1− f1��1− f2�f3f4, in the first part and nonlinear
polarization scattering in the remaining terms. We have also
presented explicitly the Coulomb sums with the phase-space
filling factor �1− f e− f h� since they describe the attractive
interaction between electrons and holes allowing them to be-
come truly bound electron-hole pairs, i.e., incoherent exci-
tons. If the carrier density is low enough, the polarization can
be efficiently converted into incoherent excitons as shown;
for a more detailed discussion, see also Refs. �25,37�.

Besides the contributions discussed so far, Eq. �22� also
contains a large number of additional terms which are pre-
sented here only symbolically. The remaining two-particle
contributions denoted as Drest include, e.g., Coulomb sums of
the generic form ��2��V�1� or �1��V��2� where the sums
involve either single-particle quantities or two-particle corre-
lations, respectively. The first group leads to microscopical
Coulomb screening effects in the single-particle terms via
their hierarchical coupling to the two-particle correlations.
The second group includes, e.g., the Coulomb scattering of
one electron or hole inside an exciton with another electron,
hole, or with an interband coherence. These terms, together
with the phase-space filling, influence how much the fermi-
onic substructure of excitons compromises the accumulation
of exciton populations for the given excitation condition.
Also coupling to other two-particle carrier, photon, and pho-
non correlations are included in Drest. The explicit form of
the quantum-optical correlations is discussed in connection
with our analysis of the quantum excitation below.

In addition to the two-particle correlations, Eq. �22� con-
tains also three-particle correlation terms symbolized by
Tq,k�,k, which are treated here at the scattering level. These
terms describe, e.g., the phonon scattering leading to the for-
mation and equilibration of excitons under incoherent exci-
tation conditions. For a detailed form of the phonon scatter-
ing terms, see Refs. �24,27�.

1. Excitons and pair-correlation function

Since our approach fully includes the nonbosonic aspects
of excitons �5,18�, we can directly evaluate how strongly the
fermionic phase-space filling as well as the Coulomb and
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phonon scattering compromise the generation of excitons.
Thus, it is always interesting to project exciton population
correlations from the full computations including the com-
plete excitonic dynamics �22�. This can be performed pre-
cisely by applying the exciton transformation �B4� discussed
in Appendix B in more detail. Thus, we can determine the
momentum distribution and density �24,28� of a specific ex-
citon state � by using

�N��q� 
 ��X�,q
† X�,q� = �

k,k�

��
L�k���

L�k��cX
q,k�−qh,k+qe,

�26�

�n� =
1

Ld�
q

�N��q� .

The physical relevance of these quantities becomes apparent,
e.g., in teraherz �THz� spectroscopy �25,28,38,37–39� where
the linear THz absorption measures �n�. This is in full anal-
ogy to the determination of the atom density via optical ab-
sorption spectroscopy in atomic systems.

For our analysis of the excited semiconductor state, it is
often useful to investigate the pair-correlation function

g�r� 
 ��P†�r�P�0��, P�r� 

1

S �
k,k�

av,k
† a

c,k�
ei�k�−k�·r,

�27�

where P�r� annihilates an electron-hole pair at position r and
g�r� contains just the two-particle correlation. This function
basically tells us how an electron-hole pair at position r is
correlated with another pair at r�=0. Thus, the spatial exten-
sion of g�r� into large distances implies that electron-hole-
pair correlations exhibit long-range order. From a practical
point of view, g�r� is a two-particle quantity that can be
evaluated exactly from the doublet correlations by using

g�r� =
1

S2 �
k,k�,q

cX
q,k�,ke−iq·r, �28�

after Eq. �20� is implemented.

C. Quantum excitation scheme

In the classical excitation scheme, one assumes semicon-
ductor excitation with coherent light that is fully defined by
its singlet part �Bq,q�

�. The related semiconductor dynamics
is discussed in Secs. III A and III B. A purely quantum-
mechanical excitation is realized for fields whose classical
parts vanish, i.e., where �Bq,q�

�=0. In the following, we con-
centrate on the simplest and most easily reachable quantum
excitation described entirely by its photon-number-like fluc-
tuations ��Bq,q�

† Bq�,q
��

� while its quantum statistics is ther-
mal, i.e., ��B†�JBK�=	J,KJ ! ���B†B��J. Before we analyze de-
tails of the semiconductor correlations resulting from true
quantum excitation, we first identify the parameter combina-
tions for which the relevant aspects—like intensity, temporal,
and spectral features—are equal for quantum and classical
optical fields.

The initial classical field is defined by �E�z��= �E0�z��
+ �E0

��z�� and it propagates according to the wave equation

�13�. As discussed in Appendix C, initial classical and quan-
tum fields have an identical intensity �but different quantum
statistics� if

EqEq���Bq,q�

† Bq,q
��

� =
1

L
F�q��E0

†�q����E0�q�� �� ,

1

S�
q

F�q� = 1, �29�

where F�q� defines the angular spread of the pure quantum
field and �E0�q���
�dz�E0�z��e−iq�z. In this paper, we as-
sume quantum excitation into an angular window determined
by �q � ��q where �q= ��0 /c�sin �� is defined by the cen-
tral energy of the light ��0=1.485 eV and the angular reso-
lution �� of the excitation. For this configuration, F�q�
= �4� /�q2����q− �q � �. As the material parameters are in-
serted, we find that the full 90° optical window corresponds
to the maximum in-plane photon momentum q0a0=0.094
presented in the excitonic units. In the computations, we use
either ��=45° or ��=90°. The spectral and temporal prop-
erties of the excitation are chosen to be either pulsed Gauss-
ian excitation or quasicontinuous wave �cw� quantum pumps
determined by

�E0�q��pulsed = E0e−�q − q0�2/�Q2
e−iqz0,

�E0�q��cw =
E0e−iqz0

sinh��q − q0�/�Q + i�cw�
, �30�

respectively. The spectral width and the temporal duration of
the excitation is defined by �Q, its central frequency is given
by �0=cq0, the intensity is controlled by �E0�2, z0 defines the
initial peak position of the excitation chosen to be far away
from the planar semiconductor structure, and the switch on
of the quasi-cw excitation follows from �cw. In general, we
tested several spectral shapes and also released the condition
�29�, implying Fourier-limited spectroscopy. In all cases
studied, the essential features of the quantum excitation were
unchanged.

1. Semiconductor luminescence equations

As a first step of the quantum excitation, we need to
propagate the quantum light field toward the planar structure
in order to generate quasiparticle excitations. The self-
consistent propagation of the quantum light follows from the
Heisenberg equation of motion determined for a doublet cor-
relation

�

�t
��Bq,q�

† Bq,q
��

� = i��q − �q����Bq,q�

† Bq,q
��

�

+ �
k

�Fq�k,q,q
��

� + Fq�
�

�k,q,q�
� .

�31�

This equation couples the quantum fluctuations of the light to
the photon-assisted polarization �k,q,q�


��Bq,q�

† av,k
† ac,k+q�

which is the unfactorizable photon-electron-hole-pair corre-
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lation. The strength of the coupling follows from Fq

dvcEqUq /�. Clearly, this equation involves only two-
particle correlations. Thus, Eq. �31� is exact and the quality
of the solutions depends on how accurately we can describe
�k,q,q�

.
The quantum statistics of the light becomes critically im-

portant as we investigate how it excites the matter. In order
to solve this quantum excitation problem, we have to evalu-
ate the dynamics of the photon-assisted polarization. As we
derive the Heisenberg equations of motion for � and apply
the cluster-expansion truncation �8�, we obtain

�

�t
�k,q,q�

=
1

i����̃k,q − � �q��k,q,q�
− �1 − f k+q

e − f k
h�

��
l

Vk−l�l,q,q�	 + Fq� f k+q
e f k

h + �
l

cX
q,k,l	

− �1 − f k+q
e − f k

h���Bq,q�

† Bq�
� − Tk,q,q�

� �32�

where we have defined the renormalized kinetic energy and
introduced an effective photon operator which includes all
photons with in-plane momentum q,

�̃k,q = �k+q
c − �k

v − �
l

Vk−l�f l+q
e + f l

h�, Bq�

 �

q�

Fq,q�
Bq,q�

.

�33�

The remaining triplet-scattering term Tk,q,q�

� is presented
only symbolically; its explicit form can be found in Refs.
�20,40�. If both quantum and classical fields are present si-
multaneously, Eq. �33� obtains additional coherent correla-
tion contributions of the type ��Bac

†ac� as discussed in Refs.
�20,34–36�. For the pure quantum excitation, such contribu-
tions are not present.

In general, Eqs. �31� and �32� define the fundamental
structure of the semiconductor luminescence equations.
These equations show that � is generated either via the
��B†B� term or via the spontaneous term including the
electron-hole plasma source �f ef h� as well as the exciton-
correlation contribution. As the quantum excitation generates
�, it also seeds exciton correlations via

�

�t
cX

q,k�,k�inc = − �1 − f k
e − f k−q

h ��k�,q�

− �1 − f k�+q
e − f k�

h ��k−q,q�
� , �34�

where �k�,q� contains the total Bq�
. The full equation for

�� /�t�cX
q,k�,k is obtained by including the other parts de-

scribed in Eq. �22�.
From Eq. �26�, we see that q plays the role of the center-

of-mass momentum of excitons in cX
q,k�,k. At the same time,

q appears as in-plane photon momentum in the � terms on
the right-hand side of Eq. �34�. Thus, the photon and exciton
momenta have to match once excitons are generated by the
quantum excitation. Since the photon momentum is very
small, the exciton correlations couple to the incoherent light
field only when their center-of-mass momentum q is nearly

vanishing. This selectivity exists only for excitons and not
for the carrier densities since their quantum dynamics fol-
lows from


 �

�t
f k

e

inc

= − 2Re��
q

�q�,k−q	 ,


 �

�t
f k

h

inc

= − 2Re��
q

�q�,k	 . �35�

This general form shows that the carrier momentum k can
have any value and is not limited by the photon momentum
q.

To find a closed set of equations for the quantum excita-
tion, one also has to solve, e.g., cc,c,c,c and cv,v,v,v correlations
as well as the phonon-assisted correlations appearing in the
carrier dynamics �16�,�17�. Since these contributions are not
directly involved in the quantum-excitation dynamics, we do
not elaborate the corresponding equation structure here. In
general, we numerically solve the full set of equations in-
cluding the semiconductor luminescence and Bloch equa-
tions with the microscopic Coulomb and phonon scattering.
Since the focus of this paper is to investigate the effect of
quantum statistics on semiconductor excitations, we have
presented only those equations that are relevant for this as-
pect; the remaining parts can be found in Refs.
�20,24,28,34,37,40�.

IV. ANALYTIC SOLUTIONS OF QUASIPARTICLE
EXCITATIONS

In order to illustrate the major features of classical and
quantum excitation spectroscopy, we look for analytic in-
sights by introducing few simplifications which do not com-
promise the qualitative characteristics of the problem. For
homogeneous excitation, the carrier excitations satisfy the
general relations

�a�,k
† a��,k�� = 	k,k��a�,k

† a��,k� ,

��a�,k
† a��,k�

† a��,k�+q�a�,k+q� = 	q,q�c�,��,��,�
q,k�,k . �36�

In this situation, polarization, exciton correlation, and
photon-assisted polarization can be projected into the exciton
basis by using the transformations

p� = �
k

��
L�k�Pk, Pk = �

�

p���
R�k� ,

��X�,q
† X�,q� = �

k,k�

��
L�k���

L�k��cX
q,k�−qh,k+qe,

cX
q,k�−qh,k+qe = �

�,�
��

R�k���
R�k����X�,q

† X�,q� ,
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��,0,q�
= �

k
��

L�k��k,0,q�
, �k,0,q�

= �
�

��,0,q�
��

R�k� .

�37�

The dynamics of these is given by Eqs. �B5� and �B6� for
classical excitation and by Eqs. �B9� and �B10� for quantum
excitation; see Appendix B for more details.

For our analytic considerations, we simplify the light-
propagation problem by neglecting the self-consistent back
coupling of the excitation to the polarization or photon-
assisted polarization in Eqs. �13� and �31�. This way, the
light field is determined externally while the reemission from
the quantum-well or -wire system is omitted. This is clearly
not a critical approximation since the reemission usually
does not much influence the excitation dynamics unless op-
tical feedback, as in a cavity, becomes important. Since we
are interested to determine the characteristics of the state that
is directly generated by the excitation, we also neglect the
subsequent scattering mechanisms.

A. Classical excitations

Under these conditions, the classical excitation is de-
scribed by Eqs. �16�, �17�, �B5�, and �B6� in Appendix B.
Especially, Eq. �B5� shows that one dominantly generates 1s
polarization when the excitation frequency coincides with
the 1s-exciton resonance. This argument is supported further
by noting that �1s�r=0� is an order of magnitude larger than
any other exciton state �5�. With these simplifications, Eqs.
�16�, �17�, �B5�, and �B6� reduce to

i �
�

�t
p1s = E1sp1s − dvc�1s

R �r = 0��E�t�� − i
1s,

�

2

�

�t
f k

e =
�

2

�

�t
f k

h = Im�Pk�k
�� ,

i �
�

�t
��X1s,q

† X1s,q� = + iG1s,1s�q� , �38�

where we have omitted the additional scattering terms for
simplicity and used Pk= p1s�1s

R �k�. Equation �38� indicates
that classical excitation directly generates polarization and
carrier densities which are both single-particle quantities.
True exciton populations are generated only via polarization-
to-population scattering described by 
 and G. Thus, the
classical excitation intrinsically induces only single-particle
quantities.

B. Quantum excitations

The features of quantum excitation can be accessed by
introducing an exciton basis. For simplicity, we assume that
the excitation involves only light propagating in the perpen-
dicular direction, i.e., F�q�=S	q,0. The analysis in Appendix
B shows that only the state

��X�,q
† X�,q� = 	�,�	�,1s	q,0��X1s,0

† X1s,0� = 	�,�	�,1s	q,0�N1s�0�
�39�

is generated and all other correlations are vanishingly small
for resonant quantum excitation. In addition, the essential
features of the quantum excitation Eqs. �32�, �34�, and �35�
are shown to follow from

�

�t
�1s,0,q�

= i��q�
−

1

�
E1s	�1s,0,q�

− �1s
R �r = 0���B0,q�

† B0�
� − Tk,0,q�

� , �40�

�

�t
f k

e =
�

�t
f k

h = − 2Re��1s,0,��1s
R �k�� , �41�

�
�

�t
��X1s,q

† X1s,q� = − 2	q,0Re��1s
R �r = 0��1s,0,�� , �42�

where only those scattering terms are written explicitly that
contribute to the generation of excitation.

We notice a critical difference between classical and
quantum excitation; while classical excitation does not di-
rectly generate an exciton population, the quantum excitation
scheme directly seeds excitons into the q=0 state. Thus, the
quantum excitation bypasses the polarization-to-population
conversion. As an even more intriguing feature, Eqs. �41�
and �42� suggest that each exciton occupies the lowest-
momentum exciton state since


 �

�t
�
k

f k
e


inc

= 
 �

�t
�
k

f k
h


inc

=
�

�t
��X1s,0

† X1s,0� , �43�

i.e., the generated number of excitons equals the total num-
ber of generated electrons or holes. This means that the
quantum excitation induces a quantum-degenerate exciton
state or equivalently an exciton condensate with a singular
population of the lowest exciton state.

V. FULL NUMERICAL ANALYSIS
OF QUANTUM-DEGENERATE EXCITON STATE

The analytical discussion of classical and quantum exci-
tations gives us direct insights into the nature of the semi-
conductor quasiparticle state generated by light with a given
quantum statistics. However, such investigations cannot re-
veal the importance and influence of the scattering and ef-
fects due to underlying electronic structure of quasiparticles
on that state. Since scattering and phase-space filling effects
are unavoidable in semiconductor systems, the corrections
and modifications of the analytical results have to be deter-
mined by solving the full equations numerically. For that
purpose, we perform a full numerical analysis using the com-
plete set of equations describing quantum-optical excitations
in semiconductors.

The numerically solved singlet-doublet equations with
triplet scattering lead to a closed set of equations consisting
of the semiconductor Bloch and luminescence equations as
well as the carrier-carrier, carrier-photon, and carrier-phonon
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correlation dynamics discussed in Sec. III. In practice, these
computations constitute a large set of coupled first-order
integro-differential equations which contain nonlinear
sources as well as several Coulomb-, photon- and phonon-
interaction-induced integrals. We solve the full excitation dy-
namics for a homogeneously excited quantum-wire system
such that the condition �36� is strictly satisfied. Since the
phonons exist in the entire semiconductor, not only in the
low-dimensional structure, it is reasonable to assume that
phonons act as a bath where the occupation of the phonon
states follows from a Bose-Einstein distribution at the lattice
temperature. The generated phonon-carrier correlations and
scattering terms are evaluated in the Markov limit as dis-
cussed in Appendix A. See also Refs. �24,27� for details of
the phonon scattering. The evaluation of the Coulomb as
well as the scattering integrals or sums consumes most of the
computation time such that special care is taken to design a
numerically feasible discretization grid. An accurate numeri-
cal solution is found by discretizing all single-particle quan-
tities and correlations with respect to their photon, phonon,
and/or carrier momenta around the physically relevant
ranges. In a typical calculation, one needs carrier momenta
up to kmaxa0=4, and photon energies within a 30 meV en-
ergy window around the 1s resonance. For a typical calcula-
tion, momenta are discretized into about 100 parts; this
means that, e.g., the excitonic correlations have 106

complex-valued elements. The resulting discrete set of equa-
tions are solved with the fourth-order Runge-Kutta method.
It is verified that the numerical results do not depend on the
discretization of the time or the momentum space.

A. Classical vs quantum excitation

We first discuss the situation where we excite the semi-
conductor ground state, �G�, with a classical light pulse that
is resonant with the 1s-exciton state. Figure 1�a� shows the
optical pulse �shaded area�, the induced optical polarization
�P�2= ��1/V��kPk�2 �dashed line�, and the resulting density of
optically active 1s excitons �dotted line�. We note that �P�2
increases and then decays exponentially with a rate of 2.6 ps
where the polarization is converted dominantly into
1s-exciton population. Due to the polarization-to-population
conversion process via phonon and Coulomb scattering, the
center-of mass distribution of the generated excitons,
�N1s�q�, is rather broad �solid line in Fig. 1�b��. Since only
the low-momentum excitons are directly coupled to the light,
the radiative recombination leads to a spectrally selective
depletion �hole burning� of bright excitons while a majority
of dark, large-momentum excitons remain in the system.
Thus, the overall exciton population is only weakly coupled
to the light field.

To obtain an interpretation of the classical excitation sce-
nario, we remember that the coherent state �19,33� of light
can be written as �
�=e
B†−
�B �0�
D�
� �0� with 
= �B� ac-
cording to Eq. �10�. If we ignore for the moment all quasi-
particle scattering processes, the coherent light excites the
state �̂S=DX �G��G �DX

† �25,37� as shown also in Appendix D
1. Since �G� corresponds to vacuum �0� and DX is equivalent
to D�
� where B is replaced by the 1s-exciton operator X1s,

we realize that the optically induced quasiparticle state �̂S
has the same formal statistics as the exciting light. At the
same time, �̂S represents an interband polarization where
each single carrier is in a coherent superposition state of
conduction and valence bands. This excited state can also be
described via a Gross-Pitaevski-type equation �41�—an ap-
proach famous in BCS theory and atomic condensates. How-
ever, a resonant excitonic polarization should not be con-
fused with exciton particle condensation since scattering
processes are needed to convert P into a population which
then exhibits a nondegenerate �N1s�q� as shown in Fig. 1�b�.

An example for a quantum excitation is shown in Fig.
1�a� where we assumed an excitation pulse �shaded area�
with thermal quantum statistics but otherwise the same prop-
erties as the classical pulse. The generated density of opti-
cally active 1s excitons is plotted as solid line. Its dynamics
reveals a striking phenomenon; the quantum excitation com-
pletely bypasses the polarization-to-population conversion

FIG. 1. Comparison of the excitation dynamics resulting from
excitation with pulsed quantum and classical pump light. �a� The
optical excitation pulse �arb. units� is shown as shaded area. Assum-
ing classical light, this excitation generates optical polarization
�dashed line, arb. units� �P�2 which is partly converted into a popu-
lation of 1s excitons �dotted line, cm−1� with the optical cone.
Quantum excitation directly generates density of optically active 1s
excitons �solid line, cm−1�. �b� The distribution of excitons,
�N1s�q�, resulting from quantum �dark area� and classical excita-
tion �solid line, multiplied by 5� is plotted at 11 ps after the pulse
maximum. �c� The pair-correlation function corresponding to the
situation in �b� is shown as function of electron-hole pair distance r.
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by directly generating an exciton population—it is the in-
verse of spontaneous emission that converts light to popula-
tion. The corresponding �N1s�q� is now almost singular
�dark area in Fig. 1�b�� indicating a macroscopic occupation
of the lowest-momentum state. Figure 1�c� shows the corre-
sponding pair-correlation function g�r� indicating that the
quantum excitation �dark area� leads to long-range order
while classical excitation �solid line� does not. Hence, the
thermal quantum excitation generates a quantum-degenerate
exciton state, i.e., an exciton condensate. These observations
verify the analytical predictions obtained in Sec. IV B.

The condensate in Fig. 1 is directly coupled to the light
field such that the entire population recombines radiatively,
here with a 10 ps decay constant which is a typical value for
a single GaAs-type quantum well �4�. The interesting next
question is to follow how the exciton distribution behaves as
it decays radiatively. More precisely, Fig. 2�a� shows a se-
quence of exciton distributions for the quantum excitation
used in Fig. 1; the same data are presented on a semiloga-
rithmic scale in Fig. 2�b�. We observe that the generated
distribution remains ultranarrow and only a small tail devel-
ops toward high-momentum states. Thus, the exciton state
remains degenerate throughout its radiative decay indicating
that the exciton condensate experiences an anomalous reduc-
tion of Coulomb and phonon scattering. This observation
actually validates the starting point of our analytic investiga-
tions, i.e., the assumption that scattering can be omitted to
understand what kind of quasiparticle excitation is created by
the quantum-excitation scheme. In addition, the semiloga-
rithmic presentation of distributions nicely identifies that ex-
citons, having momentum below �qa0 � =0.047, belong to the
condensate generated by the quantum excitation with the 45°

angular resolution. The remaining bright excitons are found
with 0.047� �qa0 � �0.094 corresponding to remaining
angles 45° –90° in the optical cone. Both condensate and
remaining bright excitons decay radiatively while the rest of
the excitons with higher momenta are optically dark.

Because of the reduced interaction, we may investigate
the basic properties of the quantum excitation by omitting
the Coulomb and phonon scattering. With this simplification,
the derivation in Appendix D 2 shows that thermal quantum
light generates a state with ��X1s

† �JX1s
K �=	J,KJ !��X1s

† X1s�J

+O�na0� corresponding to a thermal state for sufficiently di-
lute density n. Again, the quantum statistics of the exciting
light and the degenerate exciton states match. Furthermore,
�N1s�q� becomes a strict 	 function as the angular spread of
the quantum excitation approaches 0°. For example, two or-
ders of magnitude higher and narrower �N1s is reached by
simply using a 0.45° angular resolution instead of the 45°
angular resolution as in Figs. 1 and 2.

B. Directionality of quantum emission

In addition to the macroscopic exciton population and
anomalous reduction of scattering, one may anticipate that
the exciton condensate exhibits an unusual quantum emis-
sion. For this purpose, we follow

IPL�q� = �
q�

�

�t
��Bq,q�

† Bq,q�
� , �44�

which defines the total flux of photons emitted into the di-
rection q. Experimentally, we suggest that the exciton con-
densate can be observed most strikingly via the extreme di-
rectionality of the quantum emission.

Figure 3�a� presents the luminescence into the direction
allowed for the condensate emission �solid line� and into the
remaining bright direction �hatched area�. Here, we assumed
pulsed quantum excitation corresponding to Figs. 1 and 2. As
a comparison, the dashed line shows the photoluminescence
after the coherent excitation used in Fig. 1. In this case, all
emission directions are basically identical without preferred
directionality. To quantify the level of degeneracy, we have
also plotted the time evolution for the occupations of the
exciton condensate �solid line�, the bright excitons �hatched
area�, and the dark excitons �dark area� in Fig. 3�b�. We
observe that the emission from the condensate is more than
two orders of magnitude larger than that in any other direc-
tion. This same factor is found for populations where the
peak value of the exciton condensate is more than two orders
of magnitude higher than that of the other states, in agree-
ment with the analytic results for the generation of the exci-
ton condensate. Thus, the strongly directional quantum emis-
sion stems directly from the highly singular exciton
distributions. We also notice that both the exciton condensate
and bright excitons decay radiatively. At the same time, the
dark exciton populations increase very slowly, mainly due to
phonon-induced scattering processes. Thus, the exciton dis-
tribution remains more or less singular during its decay dy-
namics.

In addition, we observe that the quantum excitation leads
to orders of magnitude stronger quantum emission as com-

FIG. 2. �Color online� Computed dynamics of the exciton con-
densate after pulsed quantum excitation used in Fig. 1. �a� The
evolution of the 1s-exciton distribution �N1s�q� is shown as a func-
tion of time. �b� Same data presented on a semilogarithmic scale.
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pared with the classical excitation situation. Due to its
strongly enhanced quantum emission, it is clear that photo-
luminescence from the seeded exciton condensate can be de-
tected even for orders of magnitude lower excitation levels
compared with ordinary classical or nonresonant excitation
schemes. It is interesting to notice that the enhanced cou-
pling of the exciton condensate to the light field also means
faster radiative decay of quasiparticle excitations than that
observed after classical or nonresonant excitations. After
quantum excitation, the entire excitation decays with the ra-
diative decay constant of the condensate which was observed
to be roughly 10 ps for the conditions studied in Fig. 1. Con-
sequently, the excitation vanishes in some tens of picosec-
onds. In comparison to this, classical light generates quasi-
particle excitations that remain in the system typically for
nanoseconds due to the strongly reduced coupling of the qua-
siparticles to the light field.

C. Stability of exciton condensate

We test the stability of the seeded exciton condensate by
evaluating �N1s�q� as function of the lattice temperature T
�Fig. 4�a�� and the excitation intensity �I
��B†B� at 4 K
�Fig. 4�b��. In both cases, the degenerate state is remarkably
stable against increased scattering. To have a clearer analy-
sis, we use the full optical cone �0° –90° � in the excitation

and assume 1
10 reduction of the radiative coupling compared

with Fig. 1. The inset to Fig. 4�a� quantifies the level of
phonon scattering by showing the ratio of the low-
momentum and high-momentum populations as function of
T. Strongly singular �N1s is observed for all used T while
phonon scattering becomes orders of magnitude weaker as
T→0. In Fig. 4�b�, the macroscopic population of the 1s
state continuously increases up to the intensity level �I=10
which corresponds to the generated carrier density na0=0.1.
For higher excitation levels, the 1s-exciton population starts
to decrease because the underlying fermion character of the
electron-hole pairs gradually prevents further exciton accu-
mulation. The quantum-degenerate state ceases to exist
above �I=31 with na0=0.3.

Figure 4�b� gives an overview of our calculations for
pulsed quantum excitations. The generation of the exciton
condensate becomes less efficient as a carrier density is
reached where na0=0.1. In other words, the macroscopic
population is reduced even though the intensity of the exci-
tation is increased. This phenomenon originates from the fer-
mionic blocking and scattering effects omitted in the analytic
investigations. It is intuitively clear that it is more difficult to
generate the exciton condensate if this requires us to put two
or more similar fermions close to each other. The number
na0=0.1 estimates that one observes on average 0.1 similar
fermions within the radius of a bound electron-hole pair. Ac-
cording to our calculations, this seems to be the limit indi-
cating elevated fermion and scattering effects for the conden-
sate.

Since our theory can also be applied for the cases where
one mixes quantum and classical excitation schemes, we
may now investigate whether the observed quantum effects
are stable against the level of classical components in the

FIG. 3. Quantum emission after pulsed quantum excitation used
in Fig. 1. �a� The evolution of the total luminescence is presented by
plotting IPL�q� into the direction allowed for the condensate �solid
line� and the remaining bright excitons �hatched area�. For compari-
son, we also show the total luminescence resulting from the classi-
cal excitation in Fig. 1 as a dashed line. �b� The corresponding
occupations are plotted for the exciton condensate with �N1s�0�
�solid line�, the remaining bright excitons with �N1s�0.08� �hatched
area�, and the dark excitons �dark area� with �N1s�0.2�. The tem-
poral dynamics of the quantum pump is displayed as the dashed
line.

FIG. 4. �Color online� Stability of the exciton condensate after
quantum excitation. �a� The computed �N1s�q� is plotted 11 ps after
the pulse maximum �see Fig. 1�; the lattice temperature changes
from 1 to 24 K �bottom to top� and the inset shows the ratio
�N1s�0� /�N1s�0.2�. �b� Distribution �N1s�q� is shown as a function
of intensity of quantum excitation.
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pump source. As an example, we show in Fig. 5 the total
luminescence as function of pump intensity determined
16 ps after pure quantum excitation, i.e., 0% coherent part
�solid line�, mixed excitation with 40% coherent part �dashed
line�, and fully classical excitation with 100% coherent part
�shaded area�. To have a one-to-one comparison, we use the
same temporal and spectral pump pulses as in Fig. 1. We see
that for the relatively low levels of excitation studied here,
the total luminescence for the 100% coherent case exhibits
the expected practically linear dependence on the excitation
strength. However, when we include an incoherent quantum
component to the excitation process, IPL behaves nonmono-
tonically. Even more so, for weak to moderate intensities, the
quantum excitation scheme leads to light emission that is
enhanced by orders of magnitude in comparison to that of
classical excitation.

If we now return to the quantitative analysis, we observe
that the luminescence is maximized at the intensity level
�I=10 corresponding to the maximum singularity of exciton
distributions in Fig. 4�b� for 100% incoherent quantum exci-
tation. Since the population of the zero-momentum state de-
creases for elevated intensities, the luminescence decreases
also until it reaches the same level as that for coherent exci-
tation. This predicted, distinctively nonmonotonic, behavior
of IPL should be directly observable in experiments serving
as a clear signature for the formation of the quantum-
degenerate exciton state. We note in Fig. 5 that IPL has a
maximum even in the presence of 40% coherent excitation,
indicating that an appreciable population in the quantum-
degenerate state is generated even in this imperfect case.

D. Quantum excitation with quasi-cw source

For the experimental realization of quantum-optical spec-
troscopy, one needs well-characterized sources of thermal
light which can be realized by using spectrally narrow spon-
taneous emission of other systems. There is also the theoret-
ical prediction �42� of how to generate incoherent pulses by

controlling spontaneous emission coherently. After spectral,
temporal, and directional diagnostics of incoherent quantum
emission have been implemented, one may also ask how to
detect quantum-degenerate exciton states. Here, we think
that the conceptually simplest measurement would be to
monitor the directionality of the quantum emission, i.e., pho-
toluminescence. While a conventional exciton and/or
electron-hole-pair distribution emits into all directions, the
condensate emission is highly directional.

Since it may be experimentally challenging to obtain tem-
porally short incoherent light pulses, we also study excitation
with a long incoherent, i.e., a quasi-continuous-wave source
with thermal statistics. By using such an excitation, 45° an-
gular resolution, and 1 K lattice temperature, one generates
the exciton occupation �N1s�q� shown in Fig. 6�a� for degen-
erate �q=0, solid line�, bright �qa0=0.08, hatched area�, and
dark �qa0=0.2, dark area� excitons. We see that the degener-
ate and bright �N1s saturate toward a steady state due to

FIG. 5. Computed total photoluminescence IPL�0� in the direc-
tion allowed for the condensate resulting from a mixture of pulsed
classical and quantum excitations. The excitations have the same
temporal dynamics as in Fig. 1 and the luminescence is determined
16 ps after the pulse maximum. Full quantum excitation �solid line�
is compared with 40% coherent �dashed line� and 100% coherent,
i.e., fully classical, �shaded area� excitations.

FIG. 6. The exciton condensate induced by quasi-cw quantum
excitation. �a� Incoherent quantum excitation �dashed line, scaled�
predominantly generates a degenerate 1s-exciton occupation �light
area�; the residual bright �hatched area�, and dark �dark area� occu-
pations are multiplied by 25. �b� The directionality of quantum
emission is studied by plotting the ratio of the luminescence from
the degenerate and the other bright exciton states. The directionality
of the emission �schematic inset� is determined by the angular reso-
lution of the pump. �c� The computed �N1s�q� 34 ps after the onset
of excitation.
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radiative decay while the occupation of dark exciton states
continues to rise linearly mainly due to phonon scattering.
The complete range of �N1s�q� is shown in Fig. 6�c� at t
=34 ps. We observe a strongly peaked, degenerate exciton
state, hole burning for bright nondegenerate excitons, and
tailing of dark excitons beyond the optical cone �0° –90° �.
For the conditions assumed in this calculation, the popula-
tions in dark states reach the level of the degenerate state
after approximately 2 ns. However, this time can be made
considerably longer with a narrower angular resolution mak-
ing the exciton condensate observable via presently available
incoherent light sources.

Directional quantum emission is analyzed in Fig. 6�b� via
the ratio of photoluminescence into the degenerate �0° –45° �
vs remaining bright direction �45° –90° � resulting from the
excitation in Fig. 6�a�. After the initial transients ��0 ps�,
the quantum emission into the degenerate direction becomes
almost three orders of magnitude stronger than in other di-
rections. In comparison, the quantum emission after classical
excitation is not directional and its intensity is very small
compared with the quantum excitation case as shown in Fig.
3�a� for pulsed excitations. Thus, photoluminescence of a
degenerate state can be monitored with much lower excita-
tion levels compared with excitonic luminescence resulting
from electron-hole plasma or nondegenerate exciton distribu-
tions �43�.

To complete this investigation, we also performed the
analysis for quasi-cw quantum excitation by increasing its
intensity. Figure 7 presents the quantum emission from the
condensate into the degenerate direction �solid line� and
emission by bright excitons in all other directions �hatched
line� as function of quasi-cw pump intensity; see also inset to
Fig. 6�b� for a schematic distinction of these directions. The
same data are presented on a linear scale in Fig. 7�a� and on
a double-logarithmic scale in Fig. 7�b�. We observe that the
exciton condensate displays a nonmonotonic dependence on
the quasi-cw pump intensity whereas the remaining bright
excitons exhibit a linear intensity dependence. The maximum
condensate emission is obtained at the intensity �I=30 while
the emission becomes nearly nondirectional at �I=90. As
other general trends we observe that �i� the emission into the
bright direction grows linearly for almost all intensities and
�ii� it is more than two orders of magnitude lower than the
condensate emission.

Figure 8 shows the generated exciton distributions as
function of excitation intensity �I; the distribution is evalu-
ated 25 ps after the switch on of the quasi-cw quantum ex-
citation corresponding to Fig. 6�a�. We observe that the
population of the exciton condensate increases up to �I
=30 corresponding to the carrier density na0=0.1. As the
excitation level is increased further, the condensate becomes
less pronounced and it vanishes completely at �I=90 corre-
sponding to na0=0.25. These intensity values are synchro-
nized with those leading to the maximum condensate emis-
sion and the loss of directionality in Fig. 7. Thus, we observe
that the luminescence maximum and the peak value of the
condensate occupation are directly related such that the over-
all nonlinear behavior of the luminescence stems from the
interplay between buildup of a condensate and its eventual

destruction by fermionic scattering and blocking effects �see
also Figs. 4 and 5�. In addition, the limiting densities are
very similar to those obtained for the pulsed excitation in
Fig. 4 showing that the fermionic phase-space filling and
scattering effects are rather insensitive to the way the exciton
condensate is generated.

To explore the fermionic effects in more detail, we also
show the 1s-exciton occupations in the condensate �solid
line�, in the remaining bright states �hatched area�, and in

FIG. 7. Quantum emission for quasi-cw excitation. The com-
puted luminescence intensity �at 25 ps after the onset of excitation�
of the condensate �solid line� is compared with the emission of the
other optically active excitons �hatched area� for different excitation
intensities in �a� linear and �b� double-logarithmic scale. The nu-
merical parameters are the same as in Fig. 6.

FIG. 8. �Color online� Stability of the exciton condensate for
varying intensity of the quasi-cw quantum pump used in Figs. 6 and
7. The computed 1s distribution �N1s�q� is shown as a function of
exciton momentum and excitation intensity �I. Distributions are
evaluated numerically at 25.2 ps after the switch on of the excita-
tion �see Fig. 6 for a typical evaluation�.
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dark states �dark area� in Fig. 9�a� as function of excitation
intensity. The corresponding total 1s-exciton fraction X1s
=�q�N1s�q� /�kf k

e with respect to the generated carrier den-
sity n= �1/L��kf k

e is plotted in Fig. 9�b�. We observe now
that the generation of 1s excitons stops at the intensity �I
=90 because of exciton ionization, as discussed above. This
is further supported by the fact that the quantum emission
loses its directionality around this intensity �see Fig. 7�.
However, we find that the macroscopic occupation remains
orders of magnitude larger than that of other exciton states
almost up to the ionization threshold. This once again under-
lines the robustness of the condensate due to the anomalous
reduction in scattering.

In general, the results of our computations presented in
Figs. 1–9 show that quantum-optical spectroscopy leads to
intriguing effects due to the quantum-degenerate exciton
state. Testing parameter variations, we find that the predicted
phenomena can be observed as long as the excitation is
dominantly ��50% � quantum, lattice temperatures are be-
low roughly 20 K, and electron density is less than about 0.2
particles within the exciton Bohr radius. In practice, one
might use photoluminescence from other similar systems as
a quantum source, temperatures below 20 K are standard in
cryogenic experiments, and the limiting densities are reach-
able �e.g., typical GaAs parameters give a density estimate
2�105 cm−1 in quantum wires and 4�1010 cm−2 in quan-
tum wells for the upper-limit density where the exciton con-
densate can still be present� and the corresponding emission
is detectable in current experiments �40,43�. Thus, we be-

lieve that experiments on quantum-optical spectroscopy can
be realized in high-quality semiconductor samples along the
lines presented in this paper.

VI. GENERAL PRINCIPLE OF QUANTUM-OPTICAL
SPECTROSCOPY

Our results show that both classical and quantum excita-
tion induce quasiparticle states whose statistical properties
are close to those of the exciting light. In particular, a reso-
nant classical excitation generates a coherent excitonic polar-
ization which then decays to other states, whereby its coher-
ent features are rapidly erased as seen in Fig. 1. In contrast to
this, quantum excitation generates a degenerate exciton state,
i.e., a condensate. In this connection, several spectacular fea-
tures were found related to the state, its interactions, and
quantum-optical emission. These observations can be sum-
marized altogether as the general principle of quantum-
optical spectroscopy for direct-gap semiconductors: �i� light
seeds a quantum-degenerate quasiparticle state with nearly
identical quantum statistics as that of the light; �ii� the quan-
tum statistics of the degenerate state determines how it inter-
acts with other quasiparticles and states; and �iii� the proper-
ties of the state and its subsequent evolution show up in the
quantum emission.

In atomic systems, quantum-degenerate states have been
successfully realized via Bose-Einstein condensation
�44–47�. Several impressive features like interference ef-
fects, long-range order, and entanglement effects have been
observed �48,49�. As an even more intriguing feature, the
degenerate state is internally an infinite-dimensional quan-
tum object spanned by the number states of a harmonic os-
cillator. As our investigations show, exactly this quantum-
statistical extension controls the character of interactions
between the degenerate and other states or systems. In
atomic condensates, the connection of interactions and quan-
tum statistics of number, squeezed, and coherent state states
has already been experimentally established �50�. The depen-
dency of interactions on the quantum statistics is actually a
general feature since, e.g., analogous quantum-state-
dependent quantum-Rabi oscillations have been predicted
�51� and observed �52� between cavity photons and an atom.
Since semiconductors inherently are strongly interacting sys-
tems, one would ultimately like to use a variety of degener-
ate states to explore and control the many-body interaction
effects in solids via the different forms of quantum states
they can be excited into.

For this purpose, we consider the quantum statistics of a
generic bosonic state—which can describe either the quan-
tized light field or a degenerate semiconductor state at low
densities—defined by creation, b†, and annihilation, b, opera-
tors. Then the quantum statistics follows from the normally
ordered �J+K�-particle expectation values

IK
J 
 ��b†�JbK� = �− 1�K �J

��J
 �K

���K���,���

�=0

,

�45�

FIG. 9. Stability of the exciton condensate for varying intensity
of the quasi-cw-quantum pump used in Figs. 6–8; all quantities are
evaluated numerically at 25.2 ps after the switch on of the excita-
tion. �a� The occupations are shown for the exciton condensate with
�N1s�0� �solid line�, the remaining bright excitons with �N1s�0.08�
�hatched area, multiplied by 10�, and the dark excitons with
�N1s�0.2� �dark area, multiplied by 10�. �b� The corresponding total
fraction of 1s excitons, �n1s /n, with respect to total electron-hole
density n is shown.
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���,��� = �
J,K=0

�
�− 1�K

J ! K!
IK

J �J����K,

which also defines the characteristic function ��� ,���. The
Taylor expansion between IK

J and ��� ,��� shows that they
are uniquely connected when ��� ,��� is an analytic func-
tion, as it is for physical states.

The cluster expansion can also be applied to the quantum-
degenerate state, yielding

���,��� 
 e���,���,
�46�

���,��� = ln����,���� = �
J,K=0

�
�− 1�K

J ! K!
�IK

J �J��K,

where �IK
J corresponds to correlated �J+K�-particle clusters.

At the same time, this is a generalization of cumulants �53�
of statistical distributions; see also Ref. �54� where cumu-
lants of number distributions are derived for an atomic con-
densate. This allows us to generalize the principle of
quantum-optical spectroscopy beyond the examples pre-
sented in this paper since �IK

J of the light field and
�J+K�-particle correlations of the matter are directly coupled
within the same class of correlation equations whereas cou-
pling to other classes takes place via higher-order effects like
scattering. This conclusion follows from the light-matter in-
teraction HD in Eq. �2� and how it appears in the hierarchy
problem �5� as the cluster-expansion identification �6� is per-
formed. Thus, the �IK

J correlation of light drives and seeds a
degenerate quasiparticle state in the semiconductor with
nearly identical correlations. Since the nature of subsequent
scattering dynamics is strongly influenced by the seeded
quantum statistics and the realized excitation level, the gen-
eral quantum-optical spectroscopy should be a versatile
method to chart further quasiparticle excitations as well as to
enhance, suppress, and control interactions in semiconductor
many-body systems.

We now classify the different possibilities to apply
quantum-optical spectroscopy at the level of two-particle
correlations in Eq. �46�. In this case, ��� ,��� contains only
correlations up to �J+K��2. The corresponding density ma-
trix can be worked out:

�̂SD = D�
�S����̂th�nth�S†���D†�
�, S��� 
 e���2B2−�2B†2�/2,

�47�

where we recognize the displacement operator D�
� de-
scribed in the classical excitation scheme, the thermal state
�̂th used for the quantum excitation, and then a squeezing
operator S��� which leads to a more general quantum excita-
tion. Thus, the singlet-doublet level already includes the cen-
tral concepts used in quantum-optics theory �19,33�.

In general, the parameters 
, �, and nth classify the
quantum-optical spectroscopy performed at the level of two-
particle correlations. They have a simple form after we de-
fine canonical quadrature operators x= �B+B†� /2 and y= �B
−B†� /2i and their maximum and minimum fluctuations,

�x 
 ��xx� − �x��x��max
1/2 = 1

2
�1 + 2��B†B� + 2���BB�� ,

�48�
�y 
 1

2
�1 + 2��B†B� − 2���BB�� ,

respectively. Since x and y are a canonical pair, the fluctua-
tions must obey the Heisenberg uncertainty principle

�x�y �
1
4 . �49�

With help of these, one finds


 = �B�, nth = 2��x�y −
1

4
	, � =

q

�q�
ln

�y

�x
. �50�

In this form, we see that �B� defines the coherent—
classical—displacement, nth tells us how much the quantum
fluctuations exceed the Heisenberg minimum-uncertainty
limit equal to 1

4 , while � shows how much quadrature fluc-
tuation in y are squeezed with respect to those in quadrature
x. In our quantum excitation, we did not apply squeezed
states since squeezed sources are much more difficult to re-
alize experimentally than thermal sources.

VII. SUMMARY

In summary, our results promote the general principle of
quantum-optical spectroscopy where the statistical properties
of the exciting light strongly influence the nature of the gen-
erated quasiparticle state. We use the example of direct-gap
semiconductors to identify excitation conditions that induce
quantum states whose statistical properties differ drastically
from those of classically generated states. The calculations
show that experimentally feasible quantum light sources can
seed an exciton condensate which has a nearly singular mo-
mentum distribution leading to anomalously reduced Cou-
lomb and phonon scattering. The quantum emission from
that state is strongly enhanced, highly directional, and shows
an unusual nonmonotonic intensity dependence. These obser-
vations should encourage the expansion of optical spectros-
copy to a direction where both the exciting pulses and the
emission are controlled and diagnosed at the quantum-
statistical level.

The possibility of squeezing as well as other new classes
of quantum sources lead to schemes which are able to excite
different types of degenerate quasiparticle states. As a gen-
eralization of the examples shown so far, one can think of
using more complicated quantum fields yielding degenerate
quasiparticle states with higher-order correlations. The sub-
sequent quantum emission could then be used to gain infor-
mation on how those correlations are modified and eventu-
ally decay due to the many-body interactions. In this context,
a truly quantum-optical experiment should aim to control,
measure, and diagnose the quantum statistics of both the ex-
citing source and the light emission from the semiconductor.
Based on our results, one can anticipate that such measure-
ments not only should access a multitude of quantum-optical
phenomena but should also provide extraordinary and supe-
rior schemes to measure and control various many-body ef-
fects in semiconductors in comparison to similar classical
spectroscopy. Thus, we expect that quantum-optical spectros-
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copy will reshape the level of understanding and applicabil-
ity of semiconductors as true quantum devices.
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APPENDIX A: FORMAL ASPECTS OF THREE-PARTICLE
SCATTERING TERMS

In this Appendix, we present aspects of the formal cluster-
expansion truncation �7� up to the level of triplets. Specifi-
cally, we show how the three-particle scattering terms are
obtained. We start from Eq. �5� and include only terms up to
three-particle correlations, which leads to the general equa-
tion structure

i �
�

�t
�1� = T1��1�� + V1��2�S� + V1���2�� , �A1�

i �
�

�t
��2� = T2���2�� + V2a��3�SD� + V2b���3�� , �A2�

i �
�

�t
��3� = T3���3�� + V3��4�SDT� , �A3�

where T1�2,3� and V1�2,3� are known functionals defined by the
specific form of the corresponding Heisenberg equations of
motion. Consequently, the hierarchy is systematically trun-
cated resulting in a finite number of coupled equations.

The full singlet-doublet-triplet structure �A1�–�A3� is still
beyond the current numerical capabilities if one wants to
study quantum-well or quantum-wire systems numerically.
However, one can find a clear physical way to simplify the
triplet dynamics �A3� since it contains two distinct classes of
effects: �i� the simpler microscopic processes describe the
scattering of two-particle correlations from single-particle
quantities while �ii� the more complicated terms are respon-
sible for the formation of genuine three-particle correlations
like trions. For example, the first class implies that an exci-
ton can scatter with an electron, hole, or phonon, which leads
to screening of the Coulomb interaction, dephasing of coher-
ences, and formation or equilibration of excitons �28–30�.
Since the formation of trions is slow after optical excitations
and requires high densities beyond the exciton Mott transi-
tion to become relevant �31,32�, we omit genuine three-
particle correlations from the analysis. This considerably
simplifies the numerical effort and we end up with a consis-
tent singlet-doublet approach which includes electrons,
holes, excitons, and scattering among them as well as the
most important quantum-optical effects at the same funda-
mental level.

The structure of the corresponding numerically feasible
triplet equations follows from

i �
�

�t
��3� = T3���3�� + V3��4�SD� , �A4�

where the four-particle terms are factorized up to two-
particle terms. The simpler functional T3 can be written in
the form T3���3��= ��E− i����3� where �E is the energy
difference of the in- and out-scattering for single-particle
terms and two-particle correlations. Based on the approxima-
tion to omit genuine three-particle correlations, V3��4�SD�
does not contain triplets in contrast to the full Eq. �A3�.
Thus, ��3� can be solved analytically,

��3� =
1

i�
�

−�

t

V3��4�SD��u�ei��E−i���u−t�/�du . �A5�

As a general feature, the microscopic scattering effects in
semiconductors display non-Markovian characteristics that
are relevant mostly at femtosecond time scales. Since we are
interested in two-to-three orders of magnitude longer time
scales, Eq. �A5� can be solved using the Markov approxima-
tion leading to

��3� = −
V3��4�SD��t�

�E − i�
. �A6�

Inserting this solution into Eq. �A2�, we find

i �
�

�t
�1� = T1��1�� + V1��2�S� + V1���2�� , �A7�

i �
�

�t
��2� = T2���2�� + V2a��3�SD� + G��1�,��2�� ,

�A8�

where the functional G��1� ,��2�� indicates that three-
particle correlations are included at the scattering level. This
fundamental form is the starting point of our quantum-
optical investigations for semiconductors.

APPENDIX B: THE QUANTUM-OPTICAL EXCITATION
SCHEME IN THE EXCITON BASIS

In general, the precise solution of quantum-optical spec-
troscopy inevitably leads to a rather complicated set of non-
linear equations. However, it is often intuitively instructive
to view the underlying physics by expanding into an exciton
basis, which also establishes a convenient platform to per-
form approximations that can help us to understand how the
full equations describe a given physical phenomenon. Such
an approach is developed in this appendix.

Both Eq. �15� for the polarization and the exciton Eq. �22�
have a homogeneous part which defines an eigenvalue prob-
lem

�̃k��
R�k� − �1 − f k

e − f k
h��

k�

Vk−k���
R�k�� = E���

R�k� .

�B1�

In the low-density limit f k
e = f k

h =0, Eq. �B1� becomes math-
ematically equivalent to the Fourier-transformed hydrogen
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problem. Thus, for low densities Eq. �B1� has bound states,
i.e., exciton solutions �5�. For elevated densities, f k

e and f k
h

are nonzero such that the problem becomes non-Hermitian.
Consequently, Eq. �B1� has both left-handed, ��

L�k�, and
right-handed, ��

R�k�, solutions connected and normalized via

��
L�k� =

��
R�k�

1 − f k
e − f k

h , �
k

��
L�k���

R�k� = 	�,�, �B2�

respectively. Since �R/L can be chosen to be a real-valued
function, we implicitly apply this property in the following.
Using the exciton wave functions we can transform the po-
larization into the exciton basis

p� = �
k

��
L�k�Pk, Pk = �

�

p���
R�k� . �B3�

For the two-particle exciton correlation, we use an analogous
transformation,

��X�,q
† X�,q� = �

k,k�

��
L�k���

L�k��cX
q,k�−qh,k+qe,

cX
q,k�−qh,k+qe = �

�,�
��

R�k���
R�k����X�,q

† X�,q� , �B4�

with qe= �me / �me+mh��q and qh= �mh / �me+mh��q. By ap-
plying Eq. �B3� in Eq. �15� and Eq. �B4� in Eq. �22�, we
obtain

i �
�

�t
p� = E�p� − dvc��

R�r = 0��E�t�� − i
�, �B5�

i �
�

�t
��X�,q

† X�,q� = �E� − E����X�,q
† X�,q�

− �E� − E���X�,q
† X�,q�S + iG�,��q�

+ Drest
�,��q� + T�,��q� , �B6�

where ��
R�r=0�
�k��

R�k�. The singlet scattering Sq,k�,k in
Eq. �22� leads to a source

�X�,q
† X�,q�S = �

k
��

L�k�f k+qe

e f k−qh

h ��
L�k� . �B7�

The other sources are expressed symbolically as 
�, G�,��q�,
Drest

�,��q�, and T�,��q�.
Even though Eqs. �B5�–�B7� have a seemingly simple

form, the consistent solution is highly nontrivial since the
two-particle correlations in 
�, G�,��q�, Drest

�,��q�, and T�,��q�
contain truly fermionic contributions which do not have a
simple form in the exciton basis. Thus, it is always advanta-
geous to numerically evaluate the full problem in the original
electron-hole picture. However, Eqs. �B3�–�B7� allow us to
obtain the interesting excitonic quantities by projecting the
results of the full computation into the exciton basis.

The features of quantum excitation can be elucidated by
introducing an exciton basis. For simplicity, we assume that
the excitation propagates in the perpendicular direction, i.e.,
F�q�=S	q,0. As discussed in Sec. IV, we additionally assume
that the back coupling of the photon-assisted polarization can
be neglected.

We introduce the photon-assisted polarization in the
exciton-basis representation via

��,q,q�
= �

k
��

L�k��k,q,q�
, �k,q,q�

= �
�

��,q,q�
��

R�k� .

�B8�

As for the classical excitation, the essence of quantum exci-
tation can be analyzed by omitting the scattering processes.
Thus, the exciton representation of Eq. �32� leads to

�

�t
��,q,q�

= i��q�
−

1

�
E�,q	��,q,q�

− 	q,0��
R�r = 0���B0,q�

† B0,�� − T�,0,q�

� ,

�B9�

where we have omitted the spontaneous emission source be-
cause the reemission from the generated carrier excitation is
assumed to have a small influence on the generated state.
From here we see that one dominantly generates the 1s com-
ponent of � once the frequency of the quantum excitation
coincides with the 1s resonance. Since the quantum excita-
tion is present only for q=0, ��,q,q�

is negligible for q�0.
As a consequence of the observations above, we can set

��,q,q�
=	�,1s	q,0�1s,0,q�

and use it when we express the
source term �34� in the exciton basis. Combining this result
with Eq. �B6�, we obtain

i �
�

�t
��X�,q

† X�,q� = �E� − E����X�,q
† X�,q� − �E� − E��

��X�,q
† X�,q�S + iG�,��q� + Drest

�,��q�

+ T�,��q� − 2i � 	q,0�	�,1s��
R�r = 0��1s,0,�

+ 	�,1s���
R�r = 0��1s,0,���� , �B10�

where �1s,0,� contains the collective photon operator B0,�
defined by Eq. �33�. The last term in Eq. �B10� is responsible
for the generation of excitons. It shows that only q=0 exci-
tons are created and that one of the exciton indices has to be
1s. In addition, the assumed excitation, spectrally at the 1s
resonance, exclusively generates the exciton population
��X1s,q

† X1s,q� since all other contributions are nonresonant
with the quantum pump and have a smaller ��

R�r=0� than the
1s state.

As a result, only the state

��X�,q
† X�,q� = 	�,�	�,1s	q,0��X1s,0

† X1s,0� = 	�,�	�,1s	q,0�N1s�0�
�B11�

is generated and all other correlations are vanishingly small
for resonant quantum excitation. Thus, the essential features
of the quantum excitation are described by the closed set of
equations

�

�t
�1s,0,q�

= i��q�
−

1

�
E1s	�1s,0,q�

− �1s
R �r = 0���B0,q�

† B0�
� − Tk,0,q�

� ,

�B12�
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�

�t
f k

e =
�

�t
f k

h = − 2Re��1s,0,��1s
R �k�� , �B13�

�
�

�t
��X1s,q

† X1s,q� = − 2	q,0Re��1s
R �r = 0��1s,0,�� ,

�B14�

where only those scattering terms have been written that con-
tribute to the generation of excitation.

APPENDIX C: CLASSICAL AND QUANTUM
EXCITATIONS WITH EQUIVALENT

INTENSITY CHARACTERISTICS

The position-dependent intensity of the initial pump light,
which may be quantum or classical, follows from

�E�r,z�E�r,z��N

=
2

V �
q,q�

�
q�,q��

EqEq��Bq,q�

† Bq�,q
��

�ei�q�−q�·rei�q�� −q��z,

�C1�

where the subscript N indicates normal ordering of the op-
erators related to the free-space eigenmodes of light. Also
terms �BB� and �B†B†� are omitted in this expression since

they lead to strongly oscillating terms like ei�q�� +q��z which
average to zero as the overall intensity is analyzed. Since the
pump is initially propagating freely far away from the planar
structure, we use a plane-wave presentation of the modes
with a quantization volume V=LS which can be divided into
the quantization area S and length L. For simplicity, we as-
sume homogeneous quantum excitation such that the inten-
sity varies only in the direction perpendicular to the planar
structure. Such a dependency is found only if the in-plane
momenta of the photon operators match according to
�Bq,q�

† Bq�,q
��

�=	q,q��Bq,q�

† Bq,q
��

�. This condition implies a
generalized incoherent intensity

�E�r,z�E�r,z���N = �E�z�E�z���N

=
2

V �
q,q�,q��

EqEq��Bq,q�

† Bq,q
��

�ei�q�� z�−q�z�,

�C2�

which depends only on the z coordinate. Applying now the
cluster expansion, we find a separation into singlets and dou-
blets

�E�z�E�z���N

=
2

S�
q
� 1

�L�
q�

Eq�Bq,q�

† �e−iq�z	
�� 1

�L�
q��

Eq��Bq,q
��

�eiq�� z�	

+
2

S�
q
� 1

L �
q�,q��

EqEq���Bq,q�

† Bq,q
��

�ei�q�� z�−q�z�	 .

�C3�

For a purely classical field propagating perpendicular to the
planar structure only the component q=0 contributes to the
classical factorization. Thus, the excitation intensity in its
classical and quantum form is classified by

�E�z�E�z���N 
 �E�z�E�z���classical + �E�z�E�z���quantum,

�C4�

�E�z�E�z���classical = 2�E0
†�z���E0�z��� ,

�E0�z�� 

1

�SL�
q�

iEq�B0,q�
�eiq�z, �C5�

�E�z�E�z���quantum

= 2
1

LS �
q,q�,q��

EqEq���Bq,q�

† Bq,q
��

�ei�q�� z�−q�z�. �C6�

In this notation, the initial classical field is defined by
�E�z��= �E0�z��+ �E0

��z�� and it propagates according to the
wave equation �13�.

For purely classical excitation �E�z�E�z���quantum vanishes
whereas for pure quantum excitation �E�z�E�z���classical is
zero. Since we want to concentrate on the question of how
the quantum-statistical aspects of light influence the excita-
tion, we want to make sure that the configurations of the pure
quantum and classical excitations are as close to each other
as possible with respect to their intensity, temporal, and spec-
tral features. The general form of the intensity Eq. �C4� sug-
gests that we can make the pure quantum and classical exci-
tations nearly identical—apart from their drastic difference
in their quantum statistics—by demanding that the initial
quantum pulse has the same spatial dependence as its classi-
cal counterpart such that

�E�z�E�z���quantum = �2�E0
��z���E0�z����classical. �C7�

By taking a Fourier transformation of Eq. �C7� and inserting
Eqs. �C5� and �C6� explicitly we find the condition

L
S�

q

EqEq���Bq,q�

† Bq,q
��

� = �E0
†�q����E0�q�� �� ,

�E0�q��� 
 � dz�E0�z��e−iq�z. �C8�

Since this condition can be satisfied by quantum fields that
have different distributions of in-plane momenta, we specify
the initial condition

EqEq���Bq,q�

† Bq,q
��

� =
1

L
F�q��E0

†�q����E0�q�� �� ,
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1

S�
q

F�q� = 1, �C9�

where F�q� defines the angular spread of the pure quantum
field.

Before the quantum excitation reaches the unexcited
semiconductor structure, �k,q,q�

and all other carrier excita-
tions vanish. Under such conditions, Eq. �31� can be solved
analytically giving ��Bq,q�

† Bq,q
��

�=��Bq,q�

† Bq,q
��

�0ei��q−�q��t.
If we assume a narrow angular spread for the quantum exci-
tation, i.e., F�q�=S	q,0, this together with Eq. �C6� produces

�E�z,t�E�z�,t�� = �
q�,q��

2EqEq�

LS
��B0,q�

† B0,q
��

�ei�q�� z�−q�z� = �
q�,q��

2EqEq�

LS
EqEq���B0,q�

† B0,q
��

�0

ei���q−�q��t+�q�� z�−q�z��

= �
q�,q��

2EqEq�

LS
��B0,q�

† B0,q
��

�0ei�q�� �z�−ct�−q��z−ct�� = �E�z − ct�E�z� − ct��quantum. �C10�

Hence, the quantum excitation propagates the same way as
the classical one. This observation also shows that choice
�C8� provides the same temporal and spectral features for the
quantum and the classical excitations since the spatial fea-
tures of the initial excitation are matched.

APPENDIX D: QUANTUM STATISTICS
OF THE GENERATED STATES

Since the simplified models of the classical and quantum
excitation schemes very well describe the nature of the exci-
tation, we use them further to analyze the specific quantum
statistics of the quasiparticle excitations before the onset of
scattering processes. In particular, we investigate the quan-
tum statistics of the generated excitonic state.

1. Quantum statistics of coherent excitons

When the two-particle correlation terms in Eqs. �15�–�17�,
e.g., the 
 term in Eq. �15�, can be neglected, these equations
are closed and no doublets are involved in the description of
the classical excitation. As a result, the system is in the so-
called coherent limit �5�, where the excitation does not suffer
from irreversible decay and we have the strict conservation
law

� f k −
1

2
	2

+ �Pk�2 =
1

4
, �D1�

where fk
 f k
e = f k

h. Since the coherent limit implies that the
system does not have correlations, the Hartree-Fock factor-
ization is exact. The resulting wave function is a Slater de-
terminant �25,37�

��coh�t�� = �
k

Lk
†�t���0� ,

Lk
†�t� = ei�k�t�sin 
k�t�ac,k

† + cos 
k�t�av,k
† , �D2�

where ��0� is the empty semiconductor without carriers and
Lk

† is a fermion creation operator defined by


k�t� = arcsin�fk, ei�k�t� =
Pk

�Pk�
. �D3�

Since fk and Pk can be chosen arbitrarily as long as they
obey Eq. �D1�, ��coh�t�� is the exact quantum state after ar-
bitrary classical excitation before the onset of scattering pro-
cesses.

To find the connection to exciton states, it is convenient to
introduce a unitary transformation �25,37�,

S = �
�

�c�
�X�,0 − c�X�,0

† � ,

eSav,k
† e−S = ei�k�t�sin 
k�t�ac,k

† + cos 
k�t�av,k
† = Lk

†�t� ,

�D4�

which produces the fermionic Lk
†�t� operator after we make

the identification

ei�k�t�
k�t� 
 �
�

c��t���
R�k� . �D5�

Consequently, we can use Lk
†�t�=eSav,k

† e−S to express the
coherent-limit wave function via

��coh�t�� = �
k

�eSav,k
† e−S���0� = eS��

k
av,k

† 	e−S��0�

= eS�
k

av,k
† ��0� , �D6�

since eSe−S=1 and e−S ��0�= ��0�. We also observe that
�kav,k

† ��0�
�G� is the ground state of a semiconductor
where the valence band is completely filled. This allows for
a compact form to describe the coherent limit via
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��coh�t�� = eS�G� , �D7�

which indicates that the operator eS generates the state re-
lated to classical excitations.

A weak resonant classical excitation induces polarization
Pk= p1s�1s

R �k� having �p1s � �1. In this situation,

Pk = p1s�1s
R �k�, fk = �p1s�1s�k��2 + O��p1s�4� ,

c� = 	�,1sp1s + O��p1s�2� , �D8�

such that in leading order ��coh�t�� involves only 1s excitons.
The corresponding generating function and the coherent-
limit state then have the forms

DX 
 eS�c� = ep1s
� X1s,0−p1sX1s,0

†
, ��coh�t�� = DX�G� , �D9�

respectively. Now, the functional form of DX is identical to
that of the displacement operator �10� generating the classi-
cal light field when we identify 
↔p1s, B↔X1s, and
�0�↔ �G�. Due to this formal analogy, one can say that
��coh�t�� defines coherent excitons. Even more so, the quan-
tum statistics of coherent excitons is identical to that of the
exciting classical field. However, one should note that the
operator X�,0 is fundamentally nonbosonic �18� such that
��coh�t�� cannot be interpreted as a bosonic exciton. More-
over, ��coh�t�� is still a Slater determinant of single-electron
functions in a conduction-valence-band superposition state.
Hence, a coherent exciton is not a truly bound electron-hole
pair which must be—by definition—a correlated two-particle
electron-hole-pair object.

2. Quantum statistics of exciton condensate

The quantum excitation scheme generates an exciton con-
densate as indicated by Eqs. �40�–�42�. Since the scattering
terms are irrelevant in this process, we may investigate the
quantum statistics of the generated state in its purest form by
omitting them completely. In this limit, the singlet-doublet
truncation describes the state and its statistics exactly. In this
connection, we have direct access to the quantum statistics
by solving all possible combinations of exciton operators.

The simplest expectation value follows from

�X�,q
† X�,q� = �X�,q

† X�,q�S + ��X�,q
† X�,q� . �D10�

Its singlet contribution can be evaluated with help of Eq.
�B7� while the correlated part follows from ��X�,q

† X�,q�
=	�,�	q,0	�,1s�N1s�q� based on Eq. �39�. The singlet part can
now be evaluated further by noting that f k

e = f k
h are of the

order of or smaller than �a0
2n�, which can be concluded by

evaluating n
�1/S��kf k
e = �1/ �2��2��d2k f k

e =a−2f 0
e for a

two-dimensional carrier system where a−1 is the typical ex-
tension of f k

e in momentum space. Since f k
e follows the ex-

citon wave function after the resonant quantum excitation,
we may choose a=a0 such that f e=O��na0

2��. Thus, we find

�X�,q
† X�,q�S = �

k
���

L�k��2f k+qe

e f k−qh

h � �na0
2�2�

k
���

L�k��2

= O��na0
2�2� , �D11�

which results from Eq. �B7�. Using Eq. �D11� in Eq. �D10�,
we observe that

�X�,q
† X�,q� = 	�,�	q,0	�,1s�N1s�0� + O��na0

2�2� . �D12�

Here, the quantity �na0
2� defines how many identical fermi-

onic particles can be found within the typical 1s-exciton ra-
dius a0. Since the quantum excitation leads to singularly
large macroscopic �N1s�0�, the singlet part appears only as a
small correction in the exciton expectation value.

To analyze the quantum statistics, we need to evaluate
now the expectation values with all possible combinations of
X1 and X1

†. Here, we use the implicit notation where 1

��1 ,q1� denotes all the relevant exciton indices. Then the
general exciton expectation values follow from

�X1
†
¯ XJ

†XK ¯ X1� = �X1
†
¯ XJ

†XK ¯ X1�SD, �D13�

which is a �J+K�-particle expectation value evaluated via the
singlet-doublet truncation. Since the quantum-excitation
scheme leads to entirely incoherent dynamics, only incoher-
ent expectation values are nonvanishing. In the case of Eq.
�D13� this means that J and K must be equal. Furthermore,
e.g., �X1s,0�= p1s must vanish since it is directly related to the
polarization. Consequently, we only have to analyze the
�2J�-particle expectation values

�X1
†
¯ XJ

†XK ¯ X1� = 	J,K�2J�SD = 	J,K�
k=0

J

�2k�S�2�J − k��D.

�D14�

After the carrier operators have been normally ordered, we
introduced here a formal separation into all possible combi-
nations of pure singlet, �2k�S, and doublet, �2�J−k��D, terms
allowed under incoherent conditions. Since �2k�S consists of
2k singlets which are either f e or f h, we find a proportion-
ality �2k�S=O��a0

dn�2k� where d refers to the dimensionality
of the semiconductor system. As a result, Eq. �D14� reduces
to

�X1
†
¯ XJ

†XK ¯ X1� = 	J,K�X1
†
¯ XJ

†XK ¯ X1�D + O��a0
dn�2� ,

�D15�

where only the pure two-particle correlation terms contribute
at the lowest order. Clearly, Eq. �D12� obeys this more gen-
eral relation.

Since the incoherent quantum excitation predominantly
populates the state ��X1s,0

† X1s,0�, we need to consider only
index combinations 1= ¯ =J= �1s ,0�. Other combinations
can be generated only via scattering and, thus, are of the
order O��a0

dn�2�. Hence, we use
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�X1
†
¯ XJ

†XK ¯ X1� = 	J,K�
k=1

J

	k,�1s,0���X1s,0
† �J�X1s,0�J�D

+ O��a0
dn�2� . �D16�

To evaluate ��X1s,0
† �J�X1s,0�J�D, we need to consider all pos-

sible factorizations into doublets, which can be separated
into two classes: �i� factorizations that do not separate the
fermion operators inside any of the exciton operators X1s; �ii�
the remaining factorizations originating from fermionic ex-
change terms where one or more fermion operators are ex-
changed within X1s=�1�1av,1

† ac,1. Here 1 denotes the carrier
momentum and �1 the 1s exciton wave function.

The part without separation follows from a recursion re-
lation

�X1
†
¯ XJ

†XJ ¯ X1�D
unbreak

= �
k=1

J

��X1
†Xk��X2

†
¯ XJ

†XJ ¯ Xk+1Xk−1 ¯ X1�D
unbreak

= J�N1s�0���X1s,0
† �J−1�X1s,0�J−1�D

unbreak

= J ! ��N1s�0��J, �D17�

as the recursion is performed J times. As a remaining task,
we have to evaluate the fermionic exchange terms. The sim-
plest example follows from ��X1s,0

† �2�X1s,0�2�D
exc which among

many similar terms has one contribution

��X1s,0
† �2�X1s,0�2�D

exc,one

= �
1,2,3,4

�1
��2

��3�4��ac,1
† ac,2

† av,3
† av,4

† ac,4ac,3ac,2av,1�D
exc,one

= − �
1,2,3,4

�1
��2

��3�4��ac,1
† av,3

† ac,4av,1���ac,2
† av,4

† ac,3ac,2�

= − �
1,2,3

�1
��2

��3�3��ac,1
† av,3

† ac,3av,1���ac,2
† av,3

† ac,3av,2�

= − �
1,2,3

��1
��2��2

��2��3�4�N1s�0��N1s�0�

= − ��N1s�0��2�
3

��3�4  ��N1s�0��2a0
d

S �
3

��3�2

= − �N1s�0�
�N1s�0�

S
a0

d = O��na0
d�� , �D18�

where the third and fourth fermion operators are exchanged.
In the evaluation of this term, we have applied the homoge-
neity �36� and then converted the exciton correlation into the
exciton basis via �B4�. The final form is obtained by replac-
ing one ��3�2 by its upper limit ��3�2�a0

d /S and then using
the earlier result �43� implying �N1s�0� /S=n. In general,
any exchange of fermion operators leads to a similar propor-
tionality such that overall the fermionic exchange terms scale
like O��na0

d�� which is much smaller than the generated mac-
roscopic population.

By collecting the results �D13�–�D18�, we find that quan-
tum excitation seeds a state whose quantum statistics is

�X1
†
¯ XJ

†XK ¯ X1� = 	J,K�
k=1

J

	k,�1s,0�J ! ��N1s�0��J

+ O��na0
d�� , �D19�

which shows that for sufficiently low carrier density the
quantum excitation scheme generates an exciton condensate
with precisely the same statistics as that of the light.
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