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A quantum-field-theory approach is put forward to generalize the concept of classical spatial light beams
carrying orbital angular momentum to the single-photon level. This quantization framework is carried out both
in the paraxial and nonparaxial regimes. Upon extension to the optical phase space, closed-form expressions
are found for a photon Wigner representation describing transformations on the orbital Poincaré sphere of
unitarily related families of paraxial spatial modes.
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I. INTRODUCTION

Photons are among the main carriers of information. This
information can be encoded in their energy, linear momen-
tum, and polarization state. In recent years, another degree of
freedom for photons has been recognized: their orbital an-
gular momentum �OAM�. In 1992 Allen and co-workers �1�
showed that optical paraxial cylindrical beams having an azi-
muthal phase dependence of the form exp�il�� carry a dis-
crete OAM of l� units per photon along their propagation
direction. This angular momentum produces a mechanical
effect �induces a torque� when suitable light patterns interact
with matter; it can be transferred from spatial beams contain-
ing phase dislocations on their axis �e.g., optical vortices� to
suitable trapped microscopic particles in optical tweezers �2�.

At the quantum level, considerable interest has been
brought for quantum information processing exploiting
single and entangled photons prepared in a superposition of
states bearing a well defined OAM �3–12�. Indeed, one of
their main distinguishing features is that, at variance with
two-level quantum states, or qubits, OAM photon eigenstates
involve the more general case of d-level �d�2� quantum
states or qudits. Such a generalization to multidimensional
states would allow to extend quantum coding alphabets with-
out the need to increase the number of entangled photons,
providing also a more secure quantum cryptography. Since
fewer photons are needed, the multidimensional approach
reduces the decoherence associated to many photon en-
tanglement. Moreover, a striking consequence of such a
higher dimensional encoding is that violation of local realism
for two maximally entangled qudits is stronger than for two
maximally entangled qubits, and increases with d �6,13�. For
quantum computation applications, OAM photon eigenstates
could even enable to optimize certain quantum computing
architectures, where a compromise between the number of
required qubit and qudit states exists �14�.

The aim of this paper is to develop a general quantization
scheme of field operators in both the nonparaxial and
paraxial regimes of light propagation. Within the nonparaxial
regime, the obtained operators possess the suitable phase
structure that will straightforwardly allow us to proceed, at a
later stage, to paraxial field operators. In this regime, the
field operators can conveniently be expressed in terms of
eigenstate modes of the paraxial orbital and spin angular mo-

mentum operators. Our approach is further extended to the
optical phase space. The paper is organized as follows: Sec-
tion II reexamines the problem of the separation of the an-
gular momentum of a classical electromagnetic field into or-
bital and spin angular momentum components and provides
a general approach as to whether such a decomposition is
physically meaningful. Section III adapts the previous ap-
proach into the field quantization formalism. Section IV pre-
sents a powerful scheme, based on the Wigner representa-
tion, to describe geometric transformations of photons
prepared in states bearing OAM. Conclusions of the paper
are drawn in Sec. V.

II. CLASSICAL APPROACH REVISITED

Energy, linear momentum, and angular momentum consti-
tute the key physical quantities that characterize the electro-
magnetic field configurations. First of all, they are constants
of motion. Their conservation can be cast as a continuity
equation relating a density and a flux �tensor� density, or
current, associated to the conserved quantity. The total free
electromagnetic angular momentum J�r0� in a given volume
V with respect to a point r0 is defined by �15�

J�r0� = �0�
V

d3r�r − r0� � �E � B� = J�0� − r0 � P , �1�

where r is the position vector, E and B are the electric and
magnetic fields, and P denotes the total linear momentum of
the free electromagnetic field. We shall focus our study on
J�0��J. Notice that J is defined in an analogous manner as
the angular momentum of a system of massive particles. It
can be expressed as the integral of an angular momentum
density which is equal to the cross product of r with the
linear momentum density �0�E�B�. The conservation of J
is guaranteed if the flux of angular momentum through the
surface S enclosing V vanishes �e.g., for fields that decay
sufficiently fast when V becomes large�. This is reflected by
the integral form of the continuity equation for the i compo-
nent of the angular momentum �16�
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�Ji

�t
= − �

S
MlidSl, �2�

where Mli=�ijkrj��kl��0E2+	0
−1B2� /2−�0EkEl−	0

−1BkBl� is
the angular momentum flux tensor �66�.

It is well known that in classical mechanics the total an-
gular momentum of a system of point matter particles can be
separated into two contributions. A first one describes the
angular momentum associated with the center-of-mass mo-
tion of the whole system, while the second one refers to the
relative angular momentum of the constituent particles with
respect to the total center of mass. The center-of-mass con-
tribution is thus dependent on the choice of the reference
frame, whereas the relative part is independent. Both quan-
tities obey independent evolution equations. In quantum me-
chanics, in addition to these two contributions �which one
could consider as giving rise to a purely orbital angular mo-
mentum�, there is an intrinsic or spin angular momentum
�independent of the choice of a reference frame� with no
classical analog for point particles. Now, the situation for the
free electromagnetic field is more subtle. A similar separation
of J into strict orbital and spin angular momentum vectors is
known to be impossible because no reference frame exist for
the photon in which it is at rest �15,17,18�. It is, however,
feasible to decompose J into two observables �19�, whose
physical meaning will be provided below, as

J = L + S , �3�

with

L = �0�
j
�

V
d3rEj

��r � ��Aj
�, �4�

S = �0�
V

d3rE� � A�, �5�

where the symbol � denotes the transverse component of the
fields �recall that transverse components of any field F sat-
isfy � ·F�=0�. Since L and S involve the transverse part of
the vector potential A, they are gauge invariant. Notice that,
at variance with L, S is independent of the definition of the
origin of the coordinate system. As it occurs for J, one may
show that both L and S satisfy continuity equations similar
to Eq. �2�.

Within a purely classical description of paraxial light
propagation, the total optical angular momentum along the
propagation direction can be decomposed into spin and
OAM contributions, each associated with polarization and
phase distribution of the beam, respectively �1,20� �see also
the excellent reviews and references therein on this subject
�21,22��. As we will prove below, these two contributions
correspond to the paraxial versions of L and S along that
same direction. Our framework is completely general, thus
allowing us to envisage the proper quantization of the fields
at a later stage.

We begin by considering in the Coulomb gauge the well-
known expansion in the continuous plane-wave basis of the
vector potential A �which is henceforth assumed to be
transverse�,

A�r,t� = �


� d3k

�16�3�0c�k��1/2 � ��
�k��
�k�ei�k·r−c�k�t�

+ c.c.� , �6�

where �
�k� are the complex amplitudes corresponding to
the two circular polarization unit vectors �
�k� �
= +1 for
right-handed and 
=−1 for left-handed�. They satisfy
�
�k� ·�
�

* �k�=�

� and k ·�
�k�=0. Expansion �6� is a solu-
tion of the d’Alembert wave equation.

Inspired by the work of Aiello and Woerdman �23�, we
rewrite Eq. �6� in a way useful to derive its paraxial limit.
The essential feature of any paraxial field is that it can be
represented as an envelope field modulating a carrier plane
wave with wave vector k0. Without loss of generality we
take k0=k0uz, with k0
0 and unitary vector uz, which im-
plies that the carrier plane wave propagates along the posi-
tive z direction.

Let us introduce the trivial identity

�
0

�

dk0
eik0�z−ct�

eik0�z−ct���k0 − f�k�� = 1, �7�

where the function f�k�
0, which at this stage can be any
arbitrary function, will be specified below. Upon multiplica-
tion of Eq. �6� by Eq. �7� and rearranging, we have

A�r,t� = �
0

�

dk0eik0�z−ct�Ak0
�r,t� . �8�

Now, by imposing Ak0
�r , t� to obey the paraxial wave equa-

tion, we obtain the explicit dependence of f�k�,

f�k� =
kz + 	kz

2 + 2q2

2
, �9�

where we have denoted k=q+kzuz, q and kz being the trans-
verse �in the x-y plane� and longitudinal �along the z axis�
wave vectors, respectively. Equation �9� yields a dispersion
relation between k0 and k which gives rise to the constraint
imposed by the argument f�k� in the delta function of Eq.
�7�. Namely, ��k0− f�k��=��kz− �k0− �q2 /2k0����1+�2�,
with �=q /	2k0

2 a parameter that governs the degree of
paraxiality.

The above transformations enable us to map the variable
kz, defined in the whole real axis, into the more convenient
positive variable k0. In this way, one may easily carry the
integration with respect to kz and cast Eq. �6� in a form that
displays both the paraxial and nonparaxial contributions in a
more transparent fashion,
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A�r,t� = �


�

0

�

dk0� d2q
 �1 + �2�2

16�3�0ck0
	1 + �4�1/2

���
�q,k0�1 − �2���
�q,k0�1 − �2��eik0�z−ct�

� exp�iq · r� − ik0�2z − ick0�	1 + �4 − 1�t� + c.c.
 .

�10�

Isotropy of free space allows us to choose the unit polariza-
tion vectors �
�q ,k0�1−�2�� in a variety of ways. In what
follows, it will be convenient to write them as

�
�q,k0�1 − �2�� =
e−i
�

	2

u�

�1 − �2�
	1 + �4

− i
u� − uz	 2�2

1 + �4� ,

�11�

where u�=q /q, u�=uz�q /q, and � is the polar angle in
cylindrical coordinates. The circular polarization vectors
�
�q ,k0�1−�2�� are both orthogonal to q+uzk0�1−�2�, as
they should be. It is important to emphasize that the field
�10� is exactly equal to the starting expansion �6�. It still
obeys the d’Alembert equation for all times t
0. However,
it now exhibits the suitable structure to perform the paraxial
approximation for which ��1. In this limit, Eq. �10�
reduces to

AP�r,t� = �


�

0

� dk0

�16�3�0ck0�1/2 � d2q��
�
�q,k0�

� eik0�z−ct�ei�q·r�−k0�2z� + c.c.� , �12�

where we have only retained the quadratic dependence on �
in the second phase factor of Eq. �10� as the relevant paraxial
contribution. The polarization vectors �
= �ux− i
uy� /	2 are
now independent of q and k0 �ux and uy are the unit vectors
along x and y directions�. Notice that the structure of the q
integrand on the right-hand side of Eq. �12� resembles the
well-known paraxial angular spectrum �24�. One may exploit
this fact and expand, rather than in transverse plane-wave
components, into a different transverse state basis: that of
Laguerre-Gaussian �LG� modes, LGl,p�r� ,z ;k0�, and their
Fourier-transformed profiles, LGl,p�q�, at z=0 �see the Ap-
pendix for details�. Using their closure relation, one has

ei�q·r�−k0�2z� = �
l,p

LGl,p
* �q�LGl,p�r�,z;k0� . �13�

Since the LG modes constitute a complete, infinite-
dimensional basis for the solutions of the paraxial wave
equation, any spatial beam satisfying the paraxial wave equa-
tion can therefore be represented in the LG basis in terms of
an infinite expansion with complex amplitudes �
,l,p defined
by

�
,l,p�k0� =� d2qLGl,p
* �q��
�q,k0� . �14�

Hence one may cast Eq. �12� as

AP�r,t� = �

,l,p

�
0

� dk0

�16�3�0ck0�1/2 ��
�
,l,p�k0�

� eik0�z−ct�LGl,p�r�,z;k0� + c.c.� . �15�

The paraxial electric and magnetic fields follow from Eq.
�15� via the well-known relations EP=−�AP /�t and BP=�
�AP. It is now possible to show, by employing our conve-
nient representation of these paraxial fields into expressions
�4� and �5�, that the z components of L and S are given by

Lz = �

,l,p

l�
0

�

dk0��
,l,p�k0��2, �16�

Sz = �

,l,p


�
0

�

dk0��
,l,p�k0��2. �17�

That is, within the paraxial approximation, the total angular
momentum Jz along the beam propagation direction, i.e.,
along z, can be decomposed into the so-called orbital Lz and
spin Sz angular momenta which are related to the azimuthal
phase dependence of the LG mode basis and their corre-
sponding circular polarization state, respectively. Equations
�16� and �17� generalize the well-known results of Allen
and co-workers �1� with the remarkable feature that they
now possess the appropriate form to carry out the field
quantization. Notice also that, since the total energy of
any paraxial spatial beam is HP=�0�d3r�EP

2 +c2BP
2 � /2

=�
,l,p�0
�dk0ck0��
,l,p�k0��2, in units of �, the ratio Lz /HP can

be conceived from a semiclassical point of view as the OAM
per photon.

III. PARAXIAL QUANTIZATION

In the previous section we have derived general classical
paraxial expressions for the orbital and spin angular mo-
menta starting from the continuous plane-wave expansions
of the fields in free space. In this section we shall undertake
the paraxial quantization of the fields. This problem has been
considered by several authors in the past �see Ref. �25� and
references therein�. There, the approach was approximated,
often requiring perturbation expansions which did not pro-
vide any clear and manageable expressions for the paraxial
quantum modes, and, more important, they resorted to the
quasimonochromatic approximation which is unsuitable for
describing such nonclassical processes as the propagation of
broadband entangled photons generated by spontaneous
parametric down conversion.

The framework developed in the previous section can eas-
ily be adapted for field operators �see also Ref. �23��. The
essential step is to substitute the set of complex amplitudes �
by creation and annihilation operators. At a suitable stage we
will find more convenient to introduce a different set of cre-
ation and annihilation operators: those associated with the
LG modes.

The expansion for the vector potential operator Â�r , t� in
terms of continuous plane-wave mode operators �recall Eq.
�6�� is
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Â�r,t� = �


� d3k� �

16�3�0c�k��
1/2

���
�k�â
�k�ei�k·r−c�k�t� + H.c.� . �18�

The annihilation and creation operators â
 and â

† satisfy the

usual canonical commutation rules �â
�k� , â
�
† �k���

=�

��
�3��k−k��.

Using again the trivial identity �7�, we can derive the
quantized version of Eq. �10�,

Â�r,t� = �


�

0

�

dk0� d2q
 ��1 + �2�2

16�3�0ck0
	1 + �4�1/2

���
�q,k0�1 − �2��â
�q,k0�1 − �2��eik0�z−ct�

�exp�iq · r� − ik0�2z − ick0�	1 + �4 − 1�t� + H.c.
 .

�19�

The unit polarization vectors �
�q ,k0�1−�2�� are given by
Eq. �11�. Equation �19�, together with its classical counter-
part �10�, constitute the first main results of this work. We
stress that the field operator �19� is exactly equal to expan-
sion �18�, and thus it obeys the d’Alembert wave equation
for any time t
0.

We may now build the paraxial version of Eq. �19�. As
mentioned previously, this corresponds to the limit with �
�1. Recalling the transformation �13� for the LG modes
basis, Eq. �19� reduces to the form

ÂP�r,t� = �

,l,p

�
0

�

dk0� �

16�3�0ck0
�1/2

��
â
,l,p�k0�

� eik0�z−ct�LGl,p�r�,z;k0� + H.c.� , �20�

where the circularly polarized vectors �
= �ux− i
uy� /	2 are
again independent of q and k0. At this point, we have intro-
duced the LG mode annihilation operators

â
,l,p�k0� =� d2qLGl,p
* �q�â
�q,k0� , �21�

which, by employing the commutation relations
�â
�q ,k0� , â
�

† �q� ,k0���=�

��
�2��q−q����k0−k0��, and the or-

thonormalization conditions for the LG modes, satisfy the
commutators

�â
,l,p�k0�, â
�,l�,p�
† �k0��� = �

��ll��pp���k0 − k0�� . �22�

We have now at our disposal all the necessary ingredients
to examine the quantization of angular momentum. For
massless particles, such as the photon, the only physically
meaningful component of the total angular momentum op-

erator Ĵ is the one along their propagation direction �17�. Of

course, one may formally quantize the decomposition of Ĵ
= L̂+ Ŝ where the operators L̂ and Ŝ are given by Eqs. �4� and
�5� with the classical fields replaced by field operators. They
can be cast in the form �26�

L̂ = −
i�

2 �
j,
,
�

� d3k�� j,

* �k�â


†�k�eic�k�t�k � �k�

� � j,
��k�â
��k�e−ic�k�t − H.c.
 , �23�

and

Ŝ = ��




� d3k
k

k
â


†�k�â
�k� . �24�

Notice, however, that neither component of L̂ and Ŝ is a true
angular momentum operator since they do not fulfill the
usual SU�2� commutation relations. Instead, they read as

�Ŝi , Ŝj�=0, �L̂i , Ŝj�= i��ijkŜk, and �L̂i , L̂j�= i��ijk�L̂k− Ŝk�. Nev-
ertheless, it is still possible to choose any two commuting

components L̂i and Ŝi, and thus construct simultaneous eigen-
states of these operators.

Within the paraxial approximation discussed above, we
may concentrate ourselves on the two commuting operators

L̂z and Ŝz. Upon inverting Eq. �21�, yielding â
�q ,k0�
=�l,pLGl,p�q�â
,l,p�k0�, we find from Eqs. �23� and �24� that
the paraxial OAM and spin operators are finally given by

L̂z = � �

,l,p

l�
0

�

dk0â
,l,p
† �k0�â
,l,p�k0� , �25�

Ŝz = � �

,l,p


�
0

�

dk0â
,l,p
† �k0�â
,l,p�k0� . �26�

This means that the most general paraxial one-photon
state can then be described as consisting of arbitrary super-

positions of eigenstates of L̂z and Ŝz,

��� = �

,l,p

�
0

�

dk0C
,l,p�k0�â
,l,p
† �k0��0� , �27�

where �0� is the vacuum state. The complex coefficients
C
,l,p�k0� satisfy the normalization condition
�
,l,p�0

�dk0�C
,l,p�k0��2=1, and can be interpreted as the prob-
ability amplitudes for finding the photon in an eigenstate
�
 , l , p ,k0� �Fock state� with circular polarization 
, wave
vector k0 along the z axis and corresponding to a LG mode
having indices l and p, that is, with a well defined spin and
OAM in the direction of the z axis.

Interestingly enough, if one uses Eq. �21� and rewrites the
one-photon state �27� as

��� = �

,l,p

�
0

�

dk0� d2qf
,l,p�q,k0�â

†�q,k0��0� , �28�

where f
,l,p�q ,k0�=C
,l,p�k0�LGl,p�q�, one can conceive
f
,l,p�q ,k0� as the components of the paraxial photon wave
function in momentum representation. This implies that,
within the paraxial approximation, the energy density of a
single photon can be localized in the transverse plane or-
thogonal to their main propagation direction �z axis� with a
Gaussian-dependence falloff. Such a spatial localization is
not in contradiction with the exponential �but less than
Gaussian� falloff localization limit shown by Bialynicki-
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Birula �27� which applies to three �and thus to nonparaxial
photons� rather than to two spatial dimensions �see also Refs.
�28–31� for closely related discussion on this�. In fact, the
Paley-Wiener theorem still affects the maximum localization
of the energy density along the propagation direction. More-
over, the characteristic length that controls the transverse
spatial extension of the LG mode cannot certainly take arbi-
trarily small values, but those which are compatible with the
paraxial approximation, i.e., much larger than the photon
wavelength �=2� /k0.

It is important to point out that although the described
paraxial quantization has been carried out for LG modes,

which constitute the natural basis for operator L̂z, it is
straightforward to show that one could have chosen as well
other paraxial modes such as the Hermite-Gaussian �in Car-
tesian coordinates� and the Ince-Gaussian �32� �in elliptical
coordinates�. Moreover, our nonparaxial expression �19�
could readily accommodate photon states in Bessel
�diffraction-free� modes �33,34� and oblate spheroidal mode
solutions of the Helmholtz equation �35�, to name just a few
examples.

IV. PHASE-SPACE PICTURE OF OAM PHOTON STATES

Phase space, which is a fundamental concept in classical
mechanics, remains useful when passing to quantum me-
chanics. In a similar fashion with probability density distri-
bution functions in classical systems governed by Liouville
dynamics, quasiprobability distributions have been intro-
duced in quantum mechanics. They can provide a description
of quantum systems at the level of density operators �al-
though not at the level of state vectors�. Among them, the
Wigner function stands out because it is real, nonsingular,
yields correct quantum-mechanical operator averages in
terms of phase-space integrals, and possesses positive-
definite marginal distributions �36–38�. It is, however, only
positive for Gaussian pure states, according to the Hudson-
Piquet theorem.

By exploiting the analogy between classical and quantum
mechanics with geometrical and wave optics, Wigner distri-
butions have been developed in the context of classical wave
optics of both coherent and partially coherent light fields
�39–41�, where they are Fourier-related to the cross-spectral
densities. Particularly outstanding has been the symplectic
invariant approach by Simon and Mukunda �42�, which has
been applied to anisotropic Gaussian Schell-model beams via
the relation between ray-transfer matrices of first-order opti-
cal systems and unitary �metaplectic� operators acting on
wave amplitudes and cross-spectral densities.

It is well known that a convenient way to visualize the
transformation of qubits is provided by the Poincaré �also
known as the Bloch� sphere representation. For polarization
states, the north and south poles correspond to right- �
=
+1� and left-handed �
=−1� circularly polarized eigenstates,
respectively. More generally, any completely polarized state
can be described as a linear superposition of left- and right-
handed circular polarization in the form �up to a global
phase�

��,�� = cos
�

2
�
 = + 1� + ei� sin

�

2
�
 = − 1� , �29�

which, on the Poincaré sphere, corresponds to a point on the
surface having angular coordinates � and �.

In an analogous manner with the above picture for polar-
ization states, a Poincaré sphere was introduced by Padgett
and Courtial to represent paraxial first-order-mode spatial
beams carrying OAM �43�. Its underlying SU�2� symmetry
was subsequently shown �44�. In this picture, the poles of the
sphere correspond to LG modes with radial-node number p
=0 and topological charge l= ±1 �plus and minus standing
for the north and south poles, respectively�. Hence, in com-
plete analogy with Eq. �29�, any state on the first-order-mode
sphere can be written as

��,��l=1,p=0 = cos
�

2
�l = 1,p = 0� + ei� sin

�

2
�l = − 1,p = 0� .

�30�

This superposition generates other structurally stable states.
For example, in the equatorial plane of the sphere, combina-
tions with �=� /2 and �=0 ��=� /2, �=�� give rise to
Hermite-Gaussian modes �nx ,ny� having indexes nx=1, ny
=0 �nx=0, ny =1�.

Though the first-order orbital Poincaré sphere constitutes
an elegant framework to represent families of states bearing
OAM and their transformation, as points and paths connect-
ing these points on the sphere, higher-order modes cannot be
described by Eq. �30�. That is, states on higher-order
Poincaré spheres involve more complex superpositions of
LG mode states. A generalization would provide, among the
many possibilities, direct means to visualize the development
of geometric phases in optical beams �45,46� and photon
states.

Recently, we were able to carry out the above-mentioned
generalization to all higher-order orbital Poincaré spheres,
and extend the concept of geometric phases in paraxial opti-
cal beams under continuous mode transformations �47�. Via
an SU�2� Lie-group operator algebra, we mapped spin coher-
ent states �48� onto families of spatial modes carrying OAM
and belonging to such generalized Poincaré spheres. Re-
markably, these families of spatial modes could be repre-
sented in a compact form by resorting to the Wigner function
formalism, allowing us to reveal their hidden symmetries.
Our aim here is to explicitly show this generalization by
constructing sets of OAM photon states �� ,��l,p as points
�� ,�� on orbital Poincaré spheres Ol,p �which can be labeled
by l and p or equivalently by l and the sphere order N=2p
+ �l��0�. The continuum of states on Ol,p can be generated
from LG mode states �67� �l , p�= âl,p

† �0� �fixed on the poles of
the sphere� through the following unitary operations:

��,��l,p = exp�− i�L̂ · u���l,p� � Û��,���l,p� . �31�

Here, L̂ is a true angular momentum operator �not to be

confused with L̂, see below� and u�= �−sin � , cos � ,0� a unit
vector in the equatorial plane of the sphere. The action of the

unitary �metaplectic� operator Û on states �l , p� can be inter-
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preted as a counterclockwise rotation of � about u� that takes
the axis containing the poles into the direction with unit vec-
tor ur= �cos � sin � , sin � sin � , cos ��. The important obser-
vation is that such a rotation gives rise to multidimensional
superpositions of LG mode states that can be cast as

��,��l,p = �
l�=−l

l

�
p�=0

p

Cl�,p���,�;l,p��l�,p�� , �32�

where 2p�+ �l��=2p+ �l��N. The complex coefficients
Cl�,p��� ,� ; l , p� depend on the point �� ,�� on the Nth-order
Poincaré sphere Ol,p. One may easily verify that Eq. �32�
includes the particular case of Eq. �30� with C1,0�� ,� ;1 ,0�
=cos � /2, C0,0�� ,� ;1 ,0�=0 and C−1,0�� ,� ;1 ,0�
=ei� sin � /2. Figure 1 depicts representative modes associ-
ated to their angular orientations on the second-order-mode
Ol,p sphere �N= l=2�.

The �� ,�� distribution of states �31� on Ol,p can be ob-
tained by employing the Wigner function representation. In
the optical phase space, let r�= �x ,y� and p= �px , py� denote
the transverse position and momentum �normalized wave
vector� variables, respectively, and r̂�, p̂ be the associated
canonical Hermitian operators. The only nonvanishing com-
mutation relations among these operators are �x̂ , p̂x�= �ŷ , p̂y�
= i�. The reduced wavelength �=� / �2��=1/k0 plays here
the optical analog of �. For convenience, we arrange the
phase space variables and the canonical operators in column

vectors �= �x ,y , px , py�, and �̂= �x̂ , ŷ , p̂x , p̂y�. In terms of �̂,

the components of the operator L̂ are

L̂x =
x̂2 − ŷ2

2w0
2 +

�p̂x
2 − p̂y

2�w0
2

8�2 , �33a�

L̂y =
x̂ŷ

w0
2 +

p̂xp̂yw0
2

4�2 , �33b�

L̂z =
x̂p̂y − ŷp̂x

2�
. �33c�

They satisfy the usual SU�2� angular momentum commuta-

tors �L̂i , L̂ j�= i�ijkL̂k �at variance with the components of op-

erator L̂�. Of these SU�2� generators, only Lz represents real

spatial rotations on the transverse x-y plane, whereas L̂x and

L̂y represent simultaneous rotations in the four-dimensional

phase-space: L̂x produces rotations in the x-px and y-py

planes by equal and opposite amounts, whereas L̂y gives rise
to rotations in the x-py and y-px planes by equal amounts.

Hence only L̂z does actually correspond �it is proportional�
to component L̂z of Eq. �25�. There is, however, no analog

correspondence between L̂x and L̂y and the x and y compo-

nents of the operator L̂, respectively. Operators L̂x and L̂y
necessarily involve a change of the spatial modes.

The Wigner representation of a photon in a pure state
��p�= �p ��� is

W��� =
1

�2���2�
−�

�

d2� exp�ir� · �/��

� ��p +
1

2
���*�p −

1

2
�� . �34�

As shown recently in Ref. �47�, it is possible to obtain the
Wigner representation of states �� ,��l,p without explicitly
calculating the integrals in Eq. �34�. To this end, we invoke
two remarkable properties: �i� On account of the Stone–von
Neumann theorem, unitary operators whose generators are

quadratic in �̂ �such as Û�� ,��� induce linear canonical

transformations, T : �̂�→T�̂, in the optical phase space; �ii�
under the action of T the Wigner function experiences a
simple point transformation W���→W����=W�T−1�� �42�. In
our case, the linear canonical transformation generated by

the quadratic operators �33� results from the relation T�̂

= Û−1�̂Û, and reads as

T =�
c� 0 − z0s�s� z0s�c�

0 c� z0s�c� z0s�s�

s�s�

z0
−

s�c�

z0
c� 0

−
s�c�

z0
−

s�s�

z0
0 c�

� , �35�

where c�=cos�� /2�, s�=sin�� /2�, c�=cos �, s�=sin � �recall
that z0=w0

2 / �2�� is the Rayleigh range and w0 the mode
width at z=0�. Notice that T has the form of a symplectic
ray-transfer matrix of a generally anisotropic first-order sys-
tem �49,50�; it is an element of the symplectic group
Sp�4,R�, that is, det T=1, and, under transposition, T�T t

FIG. 1. Orbital Poincaré sphere of second-order modes. The
poles of the sphere correspond to Laguerre-Gaussian modes with
l= ±2 and p=0 �positive and negative signs for north and south
poles, respectively�. The states in the equatorial plane ��=� /2�
with �=0, and �=� yield the Hermite-Gaussian modes having in-
dexes nx=2, ny =0, and nx=0, ny =2 �not shown�, respectively.
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=T t�T=�, where � is a real antisymmetric nonsingular
four-dimensional symplectic metric matrix

� = � 02�2 12�2

− 12�2 02�2
� . �36�

Also, the action of T is independent of the chosen states at
�=�=0, that is, besides �l , p�, one could have chosen other
state vectors, for instance, Hermite-Gaussian states �nx ,ny�
with sphere-order N=nx+ny =2p+ �l�.

The key point is thus to observe that owing to the unitary
relation �31� between states belonging to the same sphere
Ol,p, knowledge of the Wigner function of any given state on
Ol,p allows one to determine the Wigner function of all states
on that same sphere. LG states constitute the convenient
choice here. Using their Wigner representation �51�, together
with property �ii� and Eq. �35�, the found normalized Wigner
function is �47�

Wl,p��;�,�� =
�− 1�N

�2�2 e−Q0L�N−l�/2�Q0 − 4Q · ur�

� L�N+l�/2�Q0 + 4Q · ur� , �37�

where Q0=2�x2+y2+ �px
2+ py

2�z0
2� /w2, Lm��� are the mth order

Laguerre polynomials, and the quadratic polynomials Q���
��Qx ,Qy ,Qz� follow from L̂x, L̂y, and L̂z in Eqs. �33� by

replacing �̂→�. When �=0 ��=�� one recovers from Eq.
�37� the Wigner function of LG states �l , p� ��−l , p��. If �
=� /2 and �=0 ��=� /2 and �=�� one obtains the Wigner
function of Hermite-Gaussian states �nx ,N−nx� ��N−ny ,ny��.

Equation �37� is a strictly positive and angle-independent
Gaussian distribution only when l= p=0 �in this case its as-
sociated Poincaré sphere becomes degenerated, i.e., all
points �� ,�� on the sphere represent the same Gaussian
mode state�. Moreover, though Wl,p�� ;� ,�� does not explic-
itly contain the propagation variable z, its spatial evolution
along z can be fully described by applying a Galilean boost
r�→r�−zp.

The orthogonality relations �scalar product� satisfied by
states �� ,��l,p and ��� ,���l�,p� are given by the overlap inte-
gral of their associated Wigner functions

�l�,p�
���,����,��l,p�2

= �2���2�
−�

�

d4�Wl�,p���;��,���Wl,p��;�,��

= � �
k=0

�N−l�/2

�− 1�k�N + l

2

k
��N − l

2

k
��1 − �

�
�k�

2

� �N�l,l��p,p�, �38�

where parameter �=cos2���−��� /2�cos2���−��� /2�
+cos2���+��� /2�sin2���−��� /2� �notice that 0���1�.
Equation �38� implies the following: �i� any two states be-
longing to different spheres are mutually orthogonal; �ii� if
l
0 and p=0, only states corresponding to antipodal points
are mutually orthogonal. However, if l
0 and p
0, addi-

tional points exist on the sphere �apart from the antipodal�
where their associated states are also orthogonal �e.g., if p
=1, Eq. �38� vanishes when �= �l+1� / �l+2��; �iii� when l
=0, antipodal points no longer correspond to orthogonal
states but to identical states.

The expectation value l,p�� ,��L̂�� ,��l,p may be easily
evaluated with the help of the Wigner function �37�. Since
the operators �33� do not involve products of noncommuting
canonically conjugated operators, their corresponding phase-
space representation in the Wigner-Weyl ordering is simply

given by replacing �̂→� in Eqs. �33�. Therefore

�L̂� � l,p��,��L̂��,��l,p = �
−�

�

d4�L���Wl,p��;�,�� =
l

2
ur.

�39�

Via the Heisenberg-Robertson uncertainty relation and using

Eq. �39� we obtain that the variances �L̂i of operators �33�
satisfy the following inequalities:

�Li�L j �
1

2
��ijk�L̂k�� . �40�

In particular, states on the sphere equator �with �=� /2� yield
�Lx�Ly �0. Moreover, the OAM carried by states �� ,��l,p
follows immediately from Eq. �39�. The key observation is to

notice that the operator L̂z, given by Eq. �25�, for a given

polarization 
 and wave vector k0, is related to operator L̂z

by L̂z=2�L̂z. The result, l,p�� ,��L̂�� ,��l,p= l� cos �, has a
very simple geometrical interpretation. It is the projection of
the unit vector ur corresponding to �� ,��l,p along the vertical
axis of Ol,p. Hence arbitrary states on any sphere bear frac-
tional OAM in units of �. The limiting cases, being repre-
sented by LG and Hermite-Gaussian states, have the well-
known l� and zero values, respectively �1,21�.

V. CONCLUSIONS

We have presented a detailed description of classical op-
tical beams and single-photon states bearing OAM. Our
quantum-field-theory formalism generalizes previous studies
on this subject and, via phase-space methods, highlights the
inherent symmetries of unitarily related families of paraxial
spatial modes, of which, those carrying integer OAM �in
units of �� constitute one particular subset. The Nth-order
orbital Poincaré sphere representation enables us to visualize
mode transformations. These transformations correspond to
first-order optical systems with symplectic ray-transfer ma-
trix T �given by Eq. �35�� and evidence that it is possible to
manipulate single photons prepared in superpositions of
OAM states, and thus implement single qubit gates �which
correspond to particular rotations on the Poincaré sphere�.
Combination of these gates with two-photon quantum gates
exploiting OAM entangled states generated from parametric
down conversion �3,6–8,10,52–55� constitutes a realistic and
a fascinating possibility towards quantum computation with
linear optical networks �56–60�. One could also exploit the
multidimensional Hilbert structure of OAM photon states for
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quantum key distribution �QKD� protocols. At variance with
QKD schemes employing polarization states, which only al-
low transmission of one key bit per photon and require the
reference frames of the sender and receiver to be aligned
with each other �61�, OAM photon states are invariant under
rotations along their propagation direction. The continuous
reference frame alignment monitorization for polarization
states may not seem to strong of a restriction for ground-
based stations, but it could be an important limitation on a
moving station such as a satellite. The distortions created by
atmospheric turbulence on OAM photon states could be cor-
rected using two-dimensional filtering techniques that have
been proposed for image recovering �adaptive optics� under
various degradation mechanisms �62�. To conclude, we also
wish to point out that detection of phenomena related to
highly energetic photons �63� �x rays and gamma rays� car-
rying OAM could be of interest for astrophysical measure-
ments of distant cosmic entities �pulsars, quasars, black
holes� through Compton scattering experiments.
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APPENDIX

For completeness, we provide here a resume of the main
expressions and properties of Laguerre-Gaussian �LG�
modes �see also Ref. �64��. Starting from Maxwell’s equation
in vacuum, one obtains the scalar wave equation

�2F =
1

c2

�2F

�t2 , �A1�

for any of the field components F�r , t� �potential vector, elec-
tric and magnetic fields, etc�. The paraxial approximation
assumes that if, under propagation along one given direction
�e.g., the z axis�, the field components evolve in an essen-
tially plane-wave fashion modulated by some slowly varying
amplitude u�r�, so that F�r , t�=u�r�eik0�z−ct� �k0 is the wave
vector along the z axis�, then, u�r� is a solution of the
paraxial wave equation 2ik0��u /�z�+��

2 u=0. Depending on
the particular geometry considered, one may distinguish sev-
eral families of complete, orthogonal set of solutions which
include the well-known Hermite-Gaussian beams �in Carte-
sian coordinates�, the LG beams �in cylindrical coordinates�
and the more recently discovered Ince-Gaussian beams �32�
�in elliptical coordinates�.

LG modes satisfy the paraxial wave equation, which, in
cylindrical coordinates, reads as

2ik0
�u

�z
+

�2u

�r2 +
1

r

�u

�r
+

1

r2

�2u

��2 = 0. �A2�

Their whole z-propagating normalized profiles are

LGl,p�r,�,z;k0� =	 2p!

���l� + p�!
1

w�z�
� 	2r

w�z�
��l�

Lp
�l�� 2r2

w2�z�
�

�exp
−
r2

w2�z�
+ il� + i

k0r2

2R�z�
+ i�G�z�� ,

�A3�

where w�z�=w0	1+ �z /z0�2 with w0 being the width of the
mode at z=0, R�z�=z�1+ �z0 /z�2� is the phase-front radius,
z0=k0w0

2 /2 is the Rayleigh range, �G�z�=−�2p+ �l�
+1�arctan�z /z0� is the Gouy phase �65�, and Lp

�l��x� are the
associated Laguerre polynomials

Lp
�l��x� = �

m=0

p

�− 1�m ��l� + p�!
�p − m�!��l� + m�!m!

xm. �A4�

The indices l=0, ±1, ±2, . . . and p=0,1 ,2 , . . . correspond to
the winding �or topological charge� and the number of non-
axial radial nodes of the mode. The wave front �equal phase
surface� forms in space part of a helicoidal surface given by
l�+kz=const. The topological charge attributed to this
wave-front manifold is positive �l
0� for right-handed heli-
coids, and vice versa.

Of equal importance are the normalized Fourier-
transformed LG modes, which, at z=0, are given by

LGl,p��,�� =	 w0
2p!

2���l� + p�!�w0�

	2
��l�

Lp
�l��w0

2�2

2
�

� exp�−
w0

2�2

4
�exp
il� − i

�

2
�2p + �l��� ,

�A5�

where � and � denote the frequency-space cylindrical coor-
dinates. They fulfill the orthogonality conditions
�d2qLGl,p

* �q�LGl�,p��q�=�ll��pp�. With the help of their clo-
sure relation �l,pLGl,p

* �q�LGl,p�q��=��2��q−q�� one has the
following identity:

ei�q·r�−k0�2z� =� d2q�ei�q�·r�−k0�2z���2��q − q��

=� d2q�ei�q�·r�−k0�2z�
�
l,p

LGl,p
* �q�LGl,p�q���

= �
l,p

LGl,p
* �q� � d2q�ei�q�·r�−k0�2z�LGl,p�q��

= �
l,p

LGl,p
* �q�LGl,p�r�,z;k0� ,

where in the last step we employed the propagation formula
of the angular spectrum �24�. This proves Eq. �13�.
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