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We derive semiclassical transport equations for a trapped atomic Fermi gas in the BCS phase at temperatures
between zero and the superfluid transition temperature. These equations interpolate between the two well-
known limiting cases of superfluid hydrodynamics at zero temperature and the Vlasov equation at the critical
one. The linearized version of these equations, valid for small deviations from equilibrium, is worked out and
applied to two simple examples where analytical solutions can be found: a sound wave in a uniform medium
and the quadrupole excitation in a spherical harmonic trap. In spite of some simplifying approximations, the
main qualitative results of quantum mechanical calculations are reproduced, which are the different frequencies
of the quadrupole mode at zero and the critical temperature and strong Landau damping at intermediate
temperatures. In addition we suggest a numerical method for solving the semiclassical equations without
further approximations.
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I. INTRODUCTION

Due to improved cooling techniques, current experiments
with trapped fermionic atoms like 6Li or 40K reach very low
temperatures of the order of T�0.03TF �1�, where TF
=�F /kB denotes the degeneracy temperature. The main moti-
vation for these experiments is to study the so-called BEC-
BCS crossover by tuning the magnetic field around a Fesh-
bach resonance, thus changing the atom-atom scattering
length a from the repulsive side �a�0� through the unitary
limit �a→�� to the attractive side �a�0�. On the BEC side,
where the system forms a Bose-Einstein condensate �BEC�
of tightly bound molecules, as well as on the BCS side of the
crossover, where the atoms form Cooper pairs that are very
large compared with the mean distance between atoms, one
expects that the system is superfluid, provided the tempera-
ture lies below a certain critical temperature Tc. Until now
the experiments have concentrated on the crossover region,
but the low temperatures that are currently reached suggest
that future experiments will also be able to study the super-
fluid BCS phase �a�0 and kF�a��1�, although its critical
temperature will be extremely low.

In order to find signals for superfluidity, some recent ex-
periments with ultracold trapped Fermionic atoms looked at
dynamical observables like the expansion of the atom cloud
after the trap has been switched off �2�, or collective oscilla-
tions of the cloud �1,3�. The theoretical interpretation of such
experiments is usually based on a theory called “superfluid
hydrodynamics” �4–6�, which is valid for a superfluid at zero
temperature if the trap potential is sufficiently smooth to jus-
tify a local-density approximation. Apart from the latter con-
dition, which is not necessarily fulfilled in the experiments
�7�, it is also clear that experiments are not done at zero
temperature.

Very recently, Landau’s two-fluid hydrodynamics has
been used to describe collective modes in trapped superfluid
gases at a nonzero temperature �8�. In this approach, in the
temperature range 0�T�Tc, a certain fraction of the atoms
is not superfluid, but forms a normal-fluid component with

density �n, while the remaining atoms with density �s=�
−�n still behave like a superfluid. It is also assumed that the
atoms undergo enough collisions to be always in local equi-
librium. This condition, however, cannot be taken for
granted. In Ref. �9� it was found that even in the unitary
limit, where the scattering length a diverges, the collision
rate might be too low to ensure hydrodynamic behavior of
the normal phase. This is certainly true in the BCS phase,
where kF�a� and the temperature are so small that one can
safely assume that the system is in the so-called collisionless
regime. Collisionless means in this context that the collision
rate 1 /� is much smaller than the trap frequency �, i.e., an
atom performs several oscillations in the trap before collid-
ing with another atom. Since the frequencies of the collective
oscillations are of the order of the trap frequency �, this
implies that it is impossible to reach local equilibrium during
the oscillation.

Nevertheless, the idea of a two-fluid model is useful in the
collisionless regime, too. It has been developed for this case
in the theory of superconductivity �10–13�. Similar ap-
proaches to describe liquid 3He should be mentioned as well,
although they are more complicated because of the spin
structure of the order parameter �14,15�. Recently the two-
fluid model has also been applied to the case of trapped
fermionic atoms in the BCS phase �16,17�. Because of the
possibility of Fermi-surface deformations, the normal com-
ponent of a collisionless gas does not behave hydrodynami-
cally, but more like an elastic body. A semiclassical method
for treating the Fermi surface deformation in a normal Fermi
gas is given by the Vlasov equation. The latter was used with
great success in nuclear physics, e.g., in order to describe
giant resonances in atomic nuclei �18�, and recently it was
also applied to trapped atomic Fermi gases in order to predict
the frequencies of collective modes in the collisionless re-
gime �4�. Contrary to hydrodynamical equations, where all
quantities are local �i.e., functions of the spatial coordinate r
only�, the Vlasov equation requires a phase-space description
�i.e., the quantities are functions of r and p�. Our aim in the
present article is to derive a hydrodynamical equation for the
superfluid component coupled to a Vlasov equation for the
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normal component, interpolating between superfluid hydro-
dynamics at T=0 and the usual Vlasov equation at T=Tc. In
principle, as it was done in the theory of liquid 3He �14�, one
could also think of including a collision term into this equa-
tion, in order to treat systems that are neither collisionless
nor hydrodynamical, but somewhere in between. However,
in the present article we will restrict ourselves to the colli-
sionless case.

Like the semiclassical description of the ground state
�Thomas-Fermi approximation�, the semiclassical descrip-
tion of the dynamics of the system can be expected to be-
come more and more accurate if the number of atoms in the
trap increases. This was the main motivation for us to de-
velop the semiclassical approach presented here. A fully
quantum-mechanical description of the collective modes of a
trapped Fermi gas can be obtained, e.g., by the quasiparticle
random-phase approximation �QRPA�, corresponding to the
linearization of the time-dependent Bogoliubov-de Gennes
equations around equilibrium. The latter are also known as
time-dependent Hartree-Fock-Bogoliubov �TDHFB� equa-
tions, especially in nuclear physics. QRPA calculations be-
come tremendously difficult and time consuming if the num-
ber of particles increases. At present, they are restricted to
systems of �104 atoms �7,19,20�, while the numbers of at-
oms in the experiments are at least ten times larger. In addi-
tion, all present QRPA calculations are done for the case of
spherically symmetric traps, while the traps used in the ex-
periments are generally not spherical. The numerical solution
of the QRPA equations without spherical symmetry seems to
be almost unfeasible, unless one reduces drastically the num-
ber of particles. Therefore semiclassical approaches are at
the moment the only way to perform calculations for large
numbers of atoms in realistic trap geometries.

Our article is organized as follows. In Sec. II we will
present the formalism. Having derived a quasiparticle trans-
port equation in Sec. II A, an important point will be to work
out the linearized version of this equation in order to apply it
to oscillations around the equilibrium state. This is done in
Sec. II B. In Sec. II C we will show explicitly that our equa-
tions indeed reproduce superfluid hydrodynamics and the
Vlasov equation in the limits of zero and critical tempera-
ture, respectively. The next part, Sec. III is devoted to two
simple examples for which our equations can be solved more
or less analytically. The first example, discussed in Sec.
III A, is a sound wave in a uniform gas. The second one,
described in Sec. III B, concerns a quadrupole oscillation of
a harmonically trapped gas with some additional simplifica-
tions. Finally, in Sec. IV we will summarize and draw our
conclusions.

II. FORMALISM

A. Derivation of a quasiparticle transport equation

In this section we will derive a quasiparticle transport
equation for a superfluid gas of trapped fermionic atoms in
the BCS phase. Throughout this article we will assume that
the two spin states ↑ and ↓ are equally populated, which
allows us to remove the spin degree of freedom from the
beginning. However, the generalization to include the spin,

which in fact would be necessary, e.g., in order to describe
spin waves or systems with unequal populations, is straight-
forward. In order to be in the BCS phase, the atoms must
have an attractive interaction, i.e., a negative scattering
length a�0, which, on the other hand, must be weak enough
for the BCS approximation to be valid.

Let us start by writing down the TDHFB equations �18�.
To that end we define the nonlocal normal and anomalous
density matrices,

��r,r�� = �	↑
†�r��	↑�r�	 = �	↓

†�r��	↓�r�	 , �1�


�r,r�� = �	↑�r��	↓�r�	 = − �	↓�r��	↑�r�	 , �2�

where 	 is the field operator. The single-particle Hamiltonian
�minus the chemical potential �� reads as

h = −
�2�2

2m
+ Vext�r� + g��r� − � , �3�

where m is the atomic mass, Vext�r� is the potential of the
trap, and g��r� is the mean-field potential. The coupling con-
stant g is related to the atom-atom scattering length a by g
=4�2a /m and the density per spin state ��r� is just equal to
the local part of the density matrix,

��r� = ��r,r� . �4�

According to the usual regularization prescription �21�, the
pairing gap is related to the anomalous density by

��r� = − g lim
s→0

d

ds
s

r +

s

2
,r −

s

2
� . �5�

Combining all quantities in the 2�2 matrices,

H = 
 h �

− �† − h̄
�, R = 
 � − 


− 
† 1 − �̄
� , �6�

where �̄ and h̄ denote the time-reversed operators to � and h,
respectively, the TDHFB equation can be written in the com-
pact form �18�

i�Ṙ = �H,R� . �7�

In analogy to the derivation of the Vlasov equation in the
normal phase from the Hartree-Fock equation �18�, it is use-
ful to introduce the Wigner transform of the density matrix,

��r,p� =� d3s e−ip·s/��
r +
s

2
,r −

s

2
� . �8�

It is appealing, although strictly speaking not correct, to in-
terprete the function ��r ,p� as a distribution function of par-
ticles in phase space. In a completely analogous way we
define the Wigner transform of the anomalous density ma-
trix, 
�r ,p�, and the Wigner transform of the Hamiltonian,
h�r ,p�, which is equal to the classical Hamiltonian,

h�r,p� =
p2

2m
+ Vext�r� + g��r� − � . �9�

�For the sake of readability we are using the same symbol for
the operators and their Wigner transforms, but whenever
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there is a risk of confusion we will write down the argu-
ments.� Equations �4� and �5� can be written in terms of the
Wigner transformed quantities as follows:

��r� =� d3p

�2��3��r,p� , �10�

��r� = − g� d3p

�2��3

�r,p� −
��r�
p2/m

� . �11�

We also need the Wigner transforms of the time-reversed

operators �̄ and h̄, and the Wigner transforms of the adjoint
operators 
† and �†. To that end we recall the general rela-
tions

Ā�r,p� = A�r,− p�, �A†��r,p� = A*�r,p� , �12�

which are valid for an arbitrary operator A. The usefulness of
the Wigner transform lies in the fact that, to first order in an
expansion into powers of �, the Wigner transform of the
product of two operators A and B can be obtained according
to

�AB��r,p� � A�r,p�B�r,p� +
i�

2
A�r,p�,B�r,p�� , �13�

where ·,·� denotes the Poisson bracket,

A,B� = �
i=x,y,z


 �A

�ri

�B

�pi
−

�A

�pi

�B

�ri
� . �14�

Applying this product rule to the Wigner transform of the
TDHFB equation �7�, one obtains four coupled equations:

i��̇ = i�h,�� + 2i Im��*
� − i� Re�*,
� , �15a�

i�
̇ = �h + h̄�
 +
i�

2
h − h̄,
�

+ ��� + �̄ − 1� −
i�

2
�,� − �̄� , �15b�

i�
̇* = − �h + h̄�
* +
i�

2
h − h̄,
*�

− �*�� + �̄ − 1� −
i�

2
�*,� − �̄� , �15c�

i��̇̄ = − i�h̄,�̄� + 2i Im��*
� + i� Re�*,
� . �15d�

In order to proceed further, it is useful to separate the
collective superfluid motion from the dynamics due to qua-
siparticle excitations. This can be achieved by a gauge trans-

formation, 	̃�r�=	�r�exp�i��r�� �13,14�. According to their
definitions, the normal and anomalous density matrices be-
have very differently under this transformation. The corre-
sponding Wigner transforms are given by

�̃�r,p� = ��r,p − � � ��r�� , �16�


̃�r,p� = 
�r,p�e2i��r�. �17�

If the Hamiltonian and the gap are changed according to

h̃�r,p� =
�p − � � ��r��2

2m
− ��̇�r� + V�r� − � , �18�

�̃�r� = ��r�e2i��r�, �19�

the equation of motion of the gauge-transformed quantities
looks exactly like Eq. �7�. The superfluid velocity is propor-
tional to the gradient of the phase of the gap. Hence, if we
choose the gauge transformation such that the transformed

gap �̃ is real, we have completely separated the collective
motion of the superfluid component from the motion due to
quasiparticle excitations. A formal argument for the necessity
of this choice of the gauge is given in Ref. �14�.

From now on we will suppose that �̃ is real. Splitting �̃

and h̃ into time-even and time-odd parts,

�̃ev =
1

2
��̃ + �D �, �̃od =

1

2
��̃ − �D � , �20�

h̃ev =
1

2
�h̃ + hD � =

p2

2m
+

�� � ��2

2m
+ V − � − ��̇ , �21�

h̃od =
1

2
�h̃ − hD � = −

�

m
p · �� , �22�

and 
̃ into real and imaginary parts,


̃re = Re 
̃, 
̃im = Im 
̃ , �23�

one can rewrite the gauge transformed version of the system
of Eqs. �14� as follows:

��̇̃ev = �h̃ev,�̃od� + �h̃od,�̃ev� + 2 �̃
̃im, �24a�

��̇̃od = �h̃ev,�̃ev� + �h̃od,�̃od� − ��̃,
̃re� , �24b�

�
̇̃re = 2h̃ev
̃im + �h̃od,
̃re� − ��̃,�̃od� , �24c�

�
̇̃im = − 2h̃ev
̃re + �̃�1 − 2�̃ev� + �h̃od,
̃im� . �24d�

For a semiclassical � expansion it seems disturbing that
these equations mix different orders in �. However, it is pos-
sible to decouple the equations of motion for the leading-
order quantities from those of the higher-order ones. In order
to show this, we expand �̃ and 
̃ into powers of �. Since
Eqs. �24� themselves are only valid up to order �, it does not
make sense to go beyond the first order in this series. From
Eqs. �24a� and �24c� it is evident that 
̃im must be suppressed
by one power of � with respect to the other quantities. We
therefore write

�̃ev,od = �̃ev,od
�0� + ��̃ev,od

�1� + ¯ , �25�


̃re = 
̃re
�0� + �
̃re

�1� + ¯ , �26�
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̃im = �
̃im
�1� + ¯ . �27�

Inserting these expansions into Eqs. �24a�–�24d� and retain-
ing only the leading order in each equation �order � in the
case of Eqs. �24a�–�24c�; order 1 in the case of Eq. �24d��,
one obtains

�̇̃ev
�0� = h̃ev,�̃od

�0�� + h̃od,�̃ev
�0�� + 2�̃
̃im

�1�, �28a�

�̇̃od
�0� = h̃ev,�̃ev

�0�� + h̃od,�̃od
�0�� − �̃,
̃re

�0�� , �28b�


̇̃re
�0� = 2h̃ev
̃im

�1� + h̃od,
̃re
�0�� − �̃,�̃od

�0�� , �28c�

2h̃ev
̃re
�0� = �̃�1 − 2�̃ev

�0�� . �28d�

Only one of the higher-order quantities, namely 
̃im
�1�, appears

in these equations, but it can be expressed in terms of the
leading-order quantities, e.g., with the help of Eq. �28a�:


̃im
�1� =

1

2�̃
��̇̃ev

�0� − h̃ev,�̃od
�0�� − h̃od,�̃ev

�0��� . �29�

By taking a linear combination of Eqs. �28a� and �28c�, one
can eliminate 
̃im

�1�. The resulting equation reads as

h̃ev�̇̃ev
�0� − �̃
̇̃re

�0� = EevEev,�̃od
�0�� + h̃evh̃od,�̃ev

�0�� − �̃h̃od,
̃re
�0�� ,

�30�

where we have introduced the abbreviation

Eev = �h̃ev
2 + �̃2. �31�

Equations �28b�, �28d�, and �30� form a system of three
coupled equations for the three leading-order quantities �̃ev

�0�,
�̃od

�0�, and 
̃re
�0�.

From now on we will suppress the index “�0�” and simply
write �̃ev, �̃od, and 
̃re instead of �̃ev

�0�, �̃re
�0�, and 
̃re

�0�. The next
step is to exploit Eq. �28d� in order to reduce the number of
unknown functions. To that end we introduce a new phase-
space function �ev�r ,p�, the so-called “quasiparticle distribu-
tion function,” which is defined in such a way that the two

members of Eq. �28d� are equal to h̃ev�̃�1−2�ev� /Eev. In
other words, �̃ev and 
̃re can be expressed in terms of this
function �ev as follows:

�̃ev =
1

2
−

h̃ev

2Eev
�1 − 2�ev� , �32�


̃re =
�

2Eev
�1 − 2�ev� . �33�

In fact, the definition of �ev has been chosen such that these
relations resemble the well-known expressions for � and 
 in
equilibrium, where �ev has to be replaced by the Fermi dis-
tribution function for quasiparticles, f�E� �see Sec. II B�.
With the help of Eqs. �32� and �33�, the remaining two equa-
tions, �28b� and �30�, take the rather simple form

�̇̃od = Eev,�ev� + h̃od,�̃od� , �34a�

�̇̃ev = Eev,�̃od� + h̃od,�ev� . �34b�

Since the first of these equations is purely time odd while the
second one is purely time even, we can add both equations
without any loss of information. The result can be written as

�̇ = E,�� , �35�

where we have introduced the new functions

� = �ev + �̃od, E = Eev + h̃od. �36�

Equation �35� resembles very much the usual Vlasov equa-
tion for the normal Fermi gas, which can be written as �̇
= h ,��. One just has to replace the distribution function �
by the quasiparticle distribution function � and the Hamil-
tonian h by the quasiparticle energy E. It should be men-
tioned that Eq. �35� or similar kinetic equations have already
been derived in the literature several times. Probably for the
first time it was given by Betbeder-Matibet and Nozières
�13� in a linearized form for small deviations from equilib-
rium. In order to be self-contained, we gave here our own
way to arrive at Eq. �35�.

In order to obtain a closed system of equations, Eq. �35�
must be complemented by an equation for the so-far un-
known phase �. As stated above, the phase is fixed by the

requirement that the gauge-transformed gap �̃ is real, i.e.,

Im �̃=0. With the help of the relation �29� and of the gap
equation �11�, this can be rewritten as

� d3p

�2��3 ��̇̃ev − h̃ev,�̃od� − h̃od,�̃ev�� = 0. �37�

As we will see in a moment, this is nothing but the continuity
equation. This observation confirms earlier statements in the
literature that the continuity equation should be used for the
determination of the phase �13�. In order to derive the con-
tinuity equation from Eq. �37�, we write down explicitly the
Poisson brackets and integrate by parts. In this way we ob-
tain

� d3p

�2��3
�̇̃ + � · �̃
p − � � �

m
� = 0. �38�

Using Eq. �16� and changing the integration variable accord-
ing to p→p+� ��, this can be transformed into the usual
continuity equation,

�̇�r� + � · j�r� = 0, �39�

with

j�r� =� d3p

�2��3

p

m
��r,p� . �40�

B. Linearization around equilibrium

From now on we will assume that the external potential
Vext can be written as
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Vext = V0 ext + V1 ext, �41�

where V0ext is time independent and V1 ext can be considered
a small perturbation. The equilibrium quantities correspond-
ing to the static potential V0 ext will be marked by an index
“0,” e.g.,

�0�r,p� = f�E0�r,p�� , �42�

�0�r� = 0, �43�

where f�E� denotes the Fermi function

f�E� =
1

eE/�kBT� + 1
�44�

and

E0�r,p� = �h0
2�r,p� + �0

2�r� , �45�

h0�r,p� =
p2

2m
+ V0 ext�r� + g�0�r� − � , �46�

etc. Our aim is to calculate the small deviations from equi-
librium induced by the perturbation V1 ext, which will be
marked by an index “1.” To that end we linearize the equa-
tion of motion �35� for the quasiparticle distribution func-
tion:

�̇1 − E0,�1� = f��E0�E1,E0� , �47�

where f��E0�=df /dE0. We also linearize the continuity equa-
tion �38�:

�̇1�r� + � · j1��r� −
�

m
� · �0�r� � �1�r� = 0, �48�

with

j1��r� =� d3p

�2��3

p

m
�1�r,p� . �49�

In order to have a closed system of equations, we must
express E1�r ,p� and �1�r� in terms of equilibrium quantities,
the perturbation V1 ext�r�, and the unknown functions �1�r ,p�
and �1�r ,p�. Linearizing E�r ,p�, one obtains

E1 =
h0

E0
h̃1ev +

�0

E0
�̃1 + h̃1od, �50�

with

h̃1ev�r,p� = V1 ext�r� + g�1�r� − ��̇1�r� , �51�

h̃1od�r,p� = −
�

m
p · ��1�r� . �52�

The most difficult part is to derive the expressions for

�1�r� and �̃1�r�. We start by linearizing Eqs. �32� and �33�:

�̃1ev =
h0

E0
�1ev +

1 − 2f�E0�
2E0

3

��− �0
2�V1 ext + g�1 − ��̇1� + h0�0�̃1� , �53�


̃1re = −
�0

E0
�1ev −

1 − 2f�E0�
2E0

3 �h0�0�V1 ext + g�1 − ��̇1�

+ �0
2�̃1� +

1 − 2f�E0�
2E0

�̃1. �54�

According to Eqs. �10� and �11�, �1 and �̃1 can be obtained
by integrating Eqs. �53� and �54� over p. This gives a
coupled system of two linear equations,

�1�r� = �1��r� − A�r��V1 ext�r� + g�1�r� − ��̇1�r��

+ B�r��̃1�r� , �55a�

�̃1�r� = �1��r� + gB�r��V1 ext�r� + g�1�r� − ��̇1�r��

+ �gA�r� + 1��̃1�r� , �55b�

where the gap equation �11� for the equilibrium case has
been used in the derivation of the last term, and the follow-
ing abbreviations have been introduced:

�1��r� =� d3p

�2��3

h0�r,p�
E0�r,p�

�1ev�r,p� , �56�

�1��r� = g� d3p

�2��3

�0�r�
E0�r,p�

�1ev�r,p� , �57�

A�r� = �0
2�r� � d3p

�2��3

1 − 2f�E0�r,p��
2E0

3�r,p�
, �58�

B�r� = �0�r� � d3p

�2��3h0�r,p�
1 − 2f�E0�r,p��

2E0
3�r,p�

. �59�

Later we will show that the coefficient B is negligible
compared with the coefficient A. In the limit B→0 the two
equations �55a� and �55b� are decoupled and can immedi-

ately be solved for �1 and �̃1:

�1�r� =
�1��r� − A�r��V1 ext�r� − ��̇1�r��

1 + gA�r�
, �60�

�̃1�r� =
�1��r�
gA�r�

. �61�

We will now calculate the coefficients A and B for the
case that both �0�r� and kBT are small compared with the
local Fermi energy,

�F�r� =
pF

2�r�
2m

= � − V0 ext�r� − g�0�r� . �62�

�Note that in the case of a trapped system, the condition
�0�r���F�r� is automatically fulfilled everywhere in the trap
if it is valid at the center.� In this case, the relevant contri-
butions to the integrals �58� and �59� come from momenta
near the Fermi surface. As usual, the integrals over p can be
simplified by transforming them into integrals over the en-
ergy variable �= p2 /2m−�F�r� and approximating the density
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of states by its value at the Fermi energy, i.e., p2 dp
�mpF�r�d�. For the coefficient A, one obtains in this way

A�r� =
mpF�r�
22�3 �1 − ��r�� , �63�

where the function � describes the temperature dependence:

��r� = −� d�� �2

E2 f��E��
E=��2+�0

2�r�
. �64�

One can show that �=0 for T=0 and �=1 for �0=0. In all
other cases, the function � must be evaluated numerically.
From its definition one can see that � depends on r only
through the dimensionless parameter T /Tc�r�, where Tc�r�
=0.57�0�r ;T=0� /kB is the local critical temperature. �It is
evident that � is a function of �0�r� / �kBT�, but �0�r� can, in
turn, be written as kBTc�r� times a universal function of
T /Tc�r�.� For an illustration, the numerical result for � as a
function of this parameter is shown in Fig. 1.

If one applies the same method to the coefficient B, one
obtains B=0. This is because the integrand in Eq. �59� is odd
in � if one neglects the energy dependence of the density of
states. Already from this argument one can conclude that the
coefficient B must be suppressed by at least one power of
�0 /�F or T /�F. Indeed, after a rather lengthy and delicate
analysis, one finds

B�r� =
�0�r�
2�F�r�
mpF�r�

22�3 �2 + ��r�� −
1

g
� . �65�

This is the justification for neglecting the coefficient B when
solving Eqs. �55a� and �55b�.

Finally, let us put everything together and give a concise
summary of the system of equations that has to be solved.
First of all, there is the equation of motion �47� for the qua-
siparticle distribution function. After the Poisson bracket on
the rhs has been written down explicitly, it can be trans-
formed into

�̇1 − E0,�1� = −
f��E0�

m
�− p · �

V1 ext + g�1� − ��̇1

1 + gA

+
�0

E0
2 p · �

�0�V1 ext + g�1� − ��̇1�

1 + gA

+
h0

E0
2p · �

�0�1�

gA
+

�

m

h0

E0
�p · ��2�1

− �
 h0

E0
� �V0 ext + g�0� +

�0

E0
� �0� · ��1� .

�66�

The second equation is the continuity equation,

�̇1��r� − A�r��V̇1 ext�r� − ��̈1�r��

1 + gA�r�
+ � · j1��r�

−
�

m
� · �0�r� � �1�r� = 0. �67�

The definitions of �1�, �1�, and j1� in terms of �1 are given
by Eqs. �56�, �57�, and �49�.

C. Limiting cases

We are now going to check that our equations reproduce
superfluid hydrodynamics and the Vlasov equation in the
cases T=0 and T�Tc, respectively. In the limit of zero tem-
perature, Eq. �66� becomes extremely simple since f�E�=0,
and therefore the rhs of Eq. �66� vanishes identically. The
corresponding solution is of course �1=0, which implies
�1�=�1�= j1�=0. �This trivial solution is unique if we as-
sume that the system was in equilibrium at the moment when
the time-dependent perturbation was switched on.� As a con-
sequence, the continuity equation �67� reduces to

V̇1 ext�r� − ��̈1�r�

22�3

mpF�r�
+ g

+
�

m
� · �0�r� � �1�r� = 0. �68�

Here we have used the explicit expression for A�r� and the
fact that �=0 at zero temperature.

How does Eq. �68� compare to superfluid hydrodynamics?
The continuity and Euler equations of superfluid hydrody-
namics can be written as �5�

�̇�r� + � · ��r�v�r� = 0, �69�

v̇�r� = − �
v2�r�
2

+
Vext�r�

m
+

�loc�r�
m

� , �70�

where v�r� denotes the velocity field and �loc�r� is the local
chemical potential, which in the BCS phase ����F� is re-
lated to the density ��r� by the Thomas-Fermi relation

�loc�r� =
pF

2�r�
2m

+ g��r� , �71�

with

FIG. 1. Temperature dependence of the function � defined in
Eq. �64�.
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pF�r� = ��62��r��1/3. �72�

Writing the irrotational velocity field in the form

v�r� = −
�

m
� ��r� �73�

and linearizing Eqs. �69� and �70� around equilibrium, one
obtains

�̇1�r� −
�

m
� · �0�r� � �1�r� = 0, �74�

��̇�r� = V1 ext�r� + 
 22�3

mpF�r�
+ g��1�r� . �75�

Solving Eq. �75� for �1 and inserting the result into Eq. �74�,
one reproduces exactly Eq. �68�. This can be seen as an
alternative to the recent derivation of superfluid hydrody-
namics from the underlying microscopic theory in Ref. �22�.

The analysis of the other limit, T�Tc, is more difficult. In
this limit, the gap �0 vanishes and, consequently,

E0�r,p� = �h0�r,p�� , �76�

�1ev�r,p� = sgn�p − pF�r���̃1ev�r,p� . �77�

In addition, one has ��r�=1, A�r�=0, �1�r�=�1��r�, and

�̃1�r�=�1��r�=0. Using these relations, and considering
separately the two cases p� pF �i.e., h0�0� and p� pF �i.e.,
h0�0�, one can convince oneself that Eqs. �66� and �67�
reduce to

�̇̃1 − h0,�̃1� =
f��h0�

m

− p · ��V1 ext + g�1 − ��̇1�

+
�

m
�p · ��2�1 − ����V0 ext + g�0�� · ��1�

�78�

and

�̇1�r� + � · j1��r� −
�

m
� · �0�r� � �1�r� = 0. �79�

As we will see in a moment, these two equations are not
independent of each other. Hence, they do not allow us to
determine �̃1�r ,p� and �1�r� in a unique way. This is, in

fact, very reasonable since the condition Im �̃=0 fixing the

phase � becomes meaningless above Tc, where �̃=0, and
therefore the function � should be completely arbitrary in
this case. The relevant physical quantity, which of course
should be unique, is �1�r ,p�. Linearizing Eq. �16� and using
�0�r ,p�= f�h0�r ,p��, we can express �̃1�r ,p� in terms of
�1�r ,p� as follows:

�̃1�r,p� = �1�r,p� −
�

m
f��h0�r,p��p · ��1. �80�

If we insert this into Eq. �78�, all terms containing the phase
�1 drop out, and we are left with

�̇1 − h0,�1� = f��h0�
p

m
· ��V1 ext + g�1� . �81�

This is nothing but the linearized form of the Vlasov equa-
tion,

�̇1 − h0,�1� = h1,�0� , �82�

with h1=V1 ext+g�1. It remains to check that the continuity
equation �79� is satisfied for arbitrary functions �1, if �1
fulfills Eq. �81�. To that end, we multiply Eq. �81� by p and
integrate over p, which leads to the usual continuity equation

�̇1�r� + � · j1�r� = 0. �83�

With the help of Eq. �80� the current j1 can be written as

j1�r� = j1��r� −
�

m
�0�r� � �1�r� . �84�

Inserting this into Eq. �83�, we indeed recover Eq. �79�.
Since we did not make any assumptions about the function
�1�r�, we conclude that it is completely arbitrary, as it should
be.

III. SIMPLE EXAMPLES

A. Sound wave in a uniform system

In this section we are considering a particularly simple
excitation, namely a sound wave traveling through a uniform
medium. This case has already been studied by Leggett �12�
many years ago �except for the numerical evaluation of the
integrals� by using the standard techniques of normal and
anomalous Green’s functions. Our purpose in the present
section is therefore to check that our apparently very com-
plicated equations �66� and �67� correctly interpolate be-
tween the limits of zero and critical temperature.

Since the medium is assumed to be uniform, the equilib-
rium quantities do not depend on r. We consider an excita-
tion operator of the form

V1 ext�r;t� = V̂1 exte
ik·r−i�t. �85�

As usual, in order to ensure that the perturbation vanishes for
t→−�, one can assume that � has an infinitesimal positive
imaginary part. From translational invariance it is clear that
all quantities describing the deviations from equilibrium will
also have the form of a plane wave, with the same wave

vector k and frequency � as the excitation. Like V̂1 ext, the
amplitudes will be marked by a hat over the corresponding
symbol. Concerning the phase �1, it turns out to be conve-
nient to parametrize it in the form

�1�r;t� = �6 1
i

�
eik·r−i�t. �86�

The Poisson bracket on the lhs of Eq. �66� now becomes

E0,�1� = − i
h0

E0

p · k

m
�̂1eik·r−i�t, �87�

and Eq. �66� can easily be solved for �̂1:
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�̂1 =

− f��E0�
p · k

m�

h0

E0


 h0

E0

V̂1 ext − ��6 1 + g�̂1�

1 + gA
−

�0

E0

�̂1�

gA
+

p · k

m�
��6 1�

1 −
h0

E0

p · k

m�

. �88�

Of course, the quantities �̂1� and �̂1� on the rhs depend
themselves on �̂1. Therefore the next step consists in insert-
ing this expression for �̂1 into Eqs. �56� and �57�. The inte-
grals over the angle between p and k can be evaluated in
closed form. For the remaining integrals over p, we will
again exploit the fact that the gap and the temperature are
much smaller than the Fermi energy, as we did already in
Sec. II B. We thus replace p2dp by mpF d�, and in the inte-
grand we replace p by pF, except for h0 and E0, which must

be replaced by � and ��2+�0
2, respectively. Like the coeffi-

cient B in Sec. II B, the integrals that lead to the coupling

between the equations for �̂1� and �̂1� are zero within this
approximation, i.e., they are of higher order in � /�F or T /�F
and can be neglected. The resulting equation for �̂1� reads as

�̂1� = −
mpF

22�3
 V̂1 ext − ��6 1 + g�̂1�

1 + gA
I2�s� + ��6 1I0�s�� .

�89�

Here we have introduced the abbreviation

In�s� = −� d� f��E�
 �

E
�n�1 −

sE

�
arctanh
 �

sE
�� , �90�

where E=��2+�0
2, and s denotes the dimensionless ratio of

the sound velocity c=� /k and the Fermi velocity vF= pF /m,

s =
c

vF
=

m�

pFk
. �91�

Although not marked explicitly, In�s� depends not only on s
but also on the ratio T /Tc �analogously to the function ��.
Note that the integrals In�s� have a branch cut along the real
axis from s=−1 to s=1. The infinitesimal imaginary part of
�, i.e., of s, fixes the sign of the imaginary part of In�s�.

Until now we have one equation for two unknown quan-

tities, �̂1� and �̂̇1. The second equation can be obtained from
the continuity equation �67�. It is evident that the current j1�

flows in the longitudinal direction, such that it can be written
in the form

j1��r;t� = ĵ1�

k

k
eik·r−i�t. �92�

We will now express ĵ1� in terms of V̂1 ext, �̂̇1, and �̂1� by
inserting Eq. �88� into Eq. �49�. The integration over p is
done as explained above for the case of �̂1�, and the result
reads as

ĵ1� = −
mcpF

22�3
 V̂1 ext − ��6 + g�̂1�

1 + gA
I0�s� + ��6 1I−2�s��

−
�n��6 1

mc
. �93�

In the last term, we have introduced the “normal density” of
the system, �n, which is given by

�n = �0 − �s = − �0� d� f��E0� . �94�

Correspondingly, �s is the “superfluid density.” Note that the
ratios �n /�0 and �s /�0 depend only on one parameter, namely
T /Tc. The numerical results for �n /�0 and �s /�0 as functions
of T /Tc are shown in Fig. 2.

Inserting Eq. �93� into the continuity equation �67�, one
obtains the second equation that is needed for determining

�̂1� and �̂̇1:

�̂1� − A�V̂1 ext − ��6 1�

1 + gA
+

mpF

22�3
 V̂1 ext − ��6 + g�̂1�

1 + gA
I0�s�

+ ��6 1I−2�s�� −
�s��6 1

mc2 = 0. �95�

In principle, we could now solve Eqs. �89� and �95� for the

two unknown variables �̂1� and �̂̇1. However, it is more
transparent to use the amplitude of the total density oscilla-
tions, �̂1, as a variable instead of the auxiliary quantity �1�.
Expressing �̂1� in terms of �̂1 with the help of Eq. �60�, we
rewrite Eqs. �89� and �95� as

FIG. 2. Temperature dependence of �n /�0 �solid line� and �s /�0

�dashed line�.
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1 +
gmpF

22�3 �1 − � + I2�s����̂1 −
mpF

22�3 �1 − � + I2�s� − I0�s����6 1 = −
mpF

22�3 �1 − � + I2�s��V̂1 ext, �96a�


1 +
gmpF

22�3 I0�s���̂1 +
mpF

22�3
I−2�s� − I0�s� −
1

3s2

�s

�0
���6 1 = −

mpF

22�3 I0�s�V̂1 ext. �96b�

It is straightforward to solve this 2�2 system of equations
for �̂1. Let us introduce the response function �, defined
such that

�̂1 =
mpF

22�3��s;T/Tc;kFa�V̂1. �97�

The first term has been factored out in order to make �
dimensionless. From the system of equations �96� one can
see that � is a function of s and the two parameters T /Tc and

kFa =
gmpF

4�3 . �98�

The explicit expression for � can most conveniently been
expressed in the form

��s;T/Tc;kFa� =
�0�s;T/Tc�

1 −
2kFa


�0�s;T/Tc�

, �99�

where �0 is the response function in the limit kFa→0:

�0 =

�1 − � + I2�
 1

3s2

�s

�0
− I−2� + I0

2

1 −
1

3s2

�s

�0
− � + I2 + I−2 − 2I0

. �100�

Note that these expressions coincide exactly with the
quantum mechanical result in the long-wavelength and low-
frequency limit, as given by Eqs. �68� and �69� of Ref. �12�.
In order to see this, it is sufficient to observe that after inte-
gration over the solid angle the quantities �, �, and � defined
in Eq. �65� of Ref. �12� can be expressed in terms of our
integrals as �= �1−�+ I2− I0� /2, �= ��s / �3�0�+s2�I0

− I−2�� /2, and �=−I0. In our case of a pure s-wave interac-
tion, the Landau parameters in Eq. �68� of Ref. �12� are
given by F0=2kFa / and F1=0. Then the quantities K1 and
Q of Ref. �12� correspond to our � and �0, respectively. As
stated in Ref. �12�, the long-wavelength and low-frequency
limit is valid if �� ,vF�k��. Since our semiclassical result
coincides with this limit of the quantum mechanical result,
we conclude that this is the condition for the validity of our
semiclassical theory. A calculation of the response function
beyond the long-wavelength and low-frequency limit can be
found in Ref. �23�.

The excitation spectrum of the system is characterized by
the imaginary part of �, which is plotted in Fig. 3 for kFa
=−0.25 and several temperatures between 0.8Tc and Tc. One

can see that at 0.8Tc the excitation spectrum exhibits a peak
near s�0.5, which becomes broader and finally disappears
when the temperature approaches Tc.

In order to interprete this behavior, let us again consider
the two limits T→0 and T→Tc. In the zero-temperature
case, all integrals containing the term f��E0� in the integrand
vanish, i.e., �=�n /�0= In�s�=0, and the response function re-
duces to

��s;0;kFa� =
1

3s2 − 1 − 2kFa/
. �101�

This means that the excitation spectrum is a � function at

s =�1

3
+

2kFa

3
, �102�

corresponding to the hydrodynamic speed of sound.
In the other limit, T→Tc, one has �=�n /�0=1. The inte-

grals In�s� reduce to

In�s;T/Tc � 1� = 1 − s arctanh
1

s
, �103�

independent of n, since the factors � /E in the integrand of
Eq. �90� can be replaced by 1. As a consequence, the two
equations of the system �96� become identical and the coef-

ficients in front of �̇
ˆ

1 vanish, in accordance with the more
general arguments of Sec. II C. Solving for �̂1 gives

FIG. 3. Excitation spectrum −Im � of a uniform medium as
function of the reduced sound velocity s=c /vF for different
temperatures.
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��s;T/Tc � 1;kFa� =

− 
1 − s arctanh
1

s
�

1 +
2kFa



1 − s arctanh

1

s
� ,

�104�

in agreement with the usual result of Landau’s Fermi-liquid
theory for the case of a pure s-wave interaction. If the inter-
action was repulsive �a�0�, Eq. �104� would have a pole at
s�1, corresponding to the propagation of zero sound. How-
ever, here we are considering the case of an attractive inter-
action, where zero sound does not exist. Instead there is a
continuous spectrum of particle-hole excitations ranging
from s=0 to s=1.

Our numerical results shown in Fig. 3 can be interpreted
as follows. At zero temperature, there exists a collective hy-
drodynamic sound, which is undamped �at least within the
present theoretical treatment�. As the temperature increases,
a normal component consisting of thermally excited quasi-
particles builds up. However, at temperatures where �n is
already considerably different from zero, the hydrodynamic
sound is still practically undamped. The reason for this is
that all thermally excited quasiparticles contribute equally to
�n, whereas only those quasiparticles whose velocity
dE /dp�vF� /E is at least equal to the sound velocity c con-
tribute to the Landau damping. At sufficiently high tempera-
ture, the Landau damping becomes very strong and the hy-
drodynamic sound ceases to exist. What remains is a
continuum of particle-hole excitations, and the interaction
manifests itself only in the rounded edge near s=1.

B. Quadrupole mode in a spherical trap

Our main motivation for developing the present semiclas-
sical approach was to apply it to the case of trapped atomic
Fermi gases. The simplest example that comes to our mind is
the quadrupole oscillation of a Fermi gas in a spherical trap.
Even in this case, the r dependence of the equilibrium quan-
tities induced by the trap potential makes our equations very
complicated. Since in this first investigation we are interested
in problems that can be solved analytically, we will apply
two additional simplifying approximations, which allow us
to obtain explicit solutions. A numerical method for solving
our equations without additional approximations will be pro-
posed at the end of this section.

Let us start with the linearized equation �66�, which has
the form

�̇1�r,p;t� − E0�r,p�,�1�r,p;t�� = F�r,p;t� . �105�

For its solution we adopt the Green’s function method used
in Ref. �24� to solve the linearized Vlasov equation for
nuclear giant resonances, which is formally very similar to
our problem. The starting point is to write the solution of Eq.
�105� in the form

�1�r,p;t� =� dt�� d3r�� d3p� G�r,p,r�,p�;t − t��

� F�r�,p�;t�� , �106�

where G is the Green’s function of the differential operator
on the lhs of Eq. �105�, satisfying

� �

�t
− �

i=xyz

 �E0

�ri

�

�pi
−

�E0

�pi

�

�ri
��G�r,p,r�,p�;t�

= ��t���r − r����p − p�� . �107�

Denoting by R�r ,p ; t� and P�r ,p ; t� the solutions of the clas-
sical equations of motion,

Ṙi =
�E0�R,P�

�Pi
, Ṗi = −

�E0�R,P�
�Ri

, �108�

satisfying the initial conditions R�r ,p ;0�=r and P�r ,p ;0�
=p, one can show that

G�r,p,r�,p�;t� = ��t���r − R�r�,p�;t����p − P�r�,p�;t��
�109�

fulfills Eq. �107�. Due to time-reversal symmetry and Liou-
ville’s theorem, this Green’s function can be rewritten as

G�r,p,r�,p�;t� = ��t���r� − R�r,− p;t����p� + P�r,− p;t�� .

�110�

The latter form renders the phase-space integrals in Eq. �106�
trivial. Changing the time integration variable according to
�= t− t�, one obtains

�1�r,p;t� = �
0

�

d� F�R�r,− p;��,− P�r,− p;��;t − �� .

�111�

In the case of a harmonic perturbation,

V1 ext�r;t� = V̂1 ext�r�e−i�t, �112�

the time dependence of �1 as well as the explicit time depen-
dence of F will be harmonic, too. We will denote the ampli-
tudes by a hat over the corresponding symbols. Multiplying
Eq. �111� by ei�t, one finds that �̂1 is given by the Fourier
integral

�̂1�r,p� = �
0

�

d� ei��F̂�R�r,− p;��,− P�r,− p;��� .

�113�

For the purpose of illustration we want to discuss a simple
case in which the classical trajectories are analytically
known. We make two approximations: First, we replace the
r-dependent gap �0�r� by a constant �0. This approximation

implies that �1ev is odd in � and �̃1� can be neglected, as was
the case in the preceding section. Second, we will neglect
effects from the Hartree mean field as well in the equilibrium
state as in the deviations from equilibrium. The second ap-
proximation, which is by far not as unrealistic as the first
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one, amounts to neglecting all g�0 and g�1� terms and replac-
ing the denominators 1+gA in Eq. �66� by 1. The trap po-
tential is assumed to be a spherical harmonic oscillator,

V0 ext =
1

2
m�2r2. �114�

It is evident that the equations of motion �108� conserve E0.
However, if �0 is a constant, this implies that h0 is con-
served, too, and the solutions of Eqs. �108� are closely re-
lated to the those of the ordinary harmonic oscillator. Indeed,
it is straightforward to show that the trajectories are given by

R�r,p;t� = r cos
h0�t

E0
+

p

m�
sin

h0�t

E0
, �115a�

P�r,p;t� = p cos
h0�t

E0
− m�r sin

h0�t

E0
. �115b�

Since h0 and E0 are constants of the motion, they can like-
wise be evaluated at �r ,p� or �R ,P�.

Due to our approximations, the function F �given by the
rhs of Eq. �66�� reduces to

F̂ = − f��E0��−
h0

2

E0
2

p

m
· ��V̂1 ext + i���̂1� +

h0

E0

 p

m
· ��2

��̂1

− �2 h0

E0
r · ���̂1� . �116�

As excitation we choose the quadrupole operator

V̂1 ext�r� = �m�2�r ‹ r�20, �117�

where, explicitly,

�v ‹ w�20 = �
��

�1�1��20�v�w� =
2vzwz − vxwx − vywy

�6
.

�118�

The prefactor in Eq. �117� has been chosen such that the
coefficient � is dimensionless. Due to the spherical symme-
try of the trap, the angular dependence of �̂1 must be of the

same quadrupolar form as that of V̂1 ext, but the radial depen-
dence could, in principle, be different. Here we make the

ansatz that �̂1 is proportional to V̂1 ext, i.e.,

�̂1�r� = �
m�

�
�r ‹ r�20, �119�

and we will show afterward that with this ansatz for �̂ the
continuity equation can be satisfied by an appropriate choice
of the coefficient �. Quadratic ansätze like Eq. �119�, corre-
sponding to a superfluid velocity field that is linear in the
coordinates, have frequently been used �see, e.g., Ref. �5��
for the calculation of the frequencies of collective modes in
the limit of superfluid hydrodynamics �T=0�.

Inserting Eqs. �117� and �119� into Eq. �116� and using the
explicit form of the trajectories, Eq. �115�, we can evaluate
the Fourier integral in Eq. �113�, with the result

�̂1 = − 2f��E0��
 �p ‹ p�20

m
− m�2�r ‹ r�20� h0

E0

i�
�

�

�0
2

E0
2 − �

h0
2

E0
2

�2

�2 − 4
h0

2

E0
2

+ ��r ‹ p�20
h0

2

E0
2�� −

4�
�0

2

E0
2 + i�

�

�

�2

�2 − 4
h0

2

E0
2
�� . �120�

Now we have to calculate the corresponding current ĵ and
density oscillations �̂1�. As detailed in the preceding section,
this is accomplished by integrating p�̂1 /m and �̂1, respec-
tively, over p. Replacing in the integrals p2 dp by mpF�r�d�,
p by pF�r�, h0 by �, and E0 by ��2+�0

2, we obtain

ĵ1��r� = �0�r��„��� − 4I22�z�� − i�zI20�z�… � �r ‹ r�20,

�121�

�̂1��r� =
m2�2pF�r�

2�3 ��I40�z� − i�zI22�z���r ‹ r�20,

�122�

with the abbreviations

z =
�

�
, �123�

Iij�z� = −� d� f��E�
�i�0

j

Ei+j

1

z2 − 4�2/E2 , �124�

where E=��2+�0
2. From its definition it is evident that I40

= I20− I22, such that it is sufficient to evaluate two of these
integrals numerically. The functions Iij�z� have a branch cut
along the real axis from z=−2 to z=2. Remember that �, and
therefore also z, is assumed to have an infinitesimal positive
imaginary part, fixing the sign of the imaginary part of Iij�z�.

As stated above, the coefficient � must be determined by
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the continuity equation �67�. Due to our approximation to
neglect the Hartree field, the denominator 1+gA�r� in the
first term of Eq. �67� can be replaced by 1, and the Fermi
momentum can be given in closed form:

pF�r� =�2m
� −
1

2
m�2r2� . �125�

Inserting the results for ĵ1� and �̂1� into the continuity equa-
tion, one finds that the ansatz �119� indeed allows us to sat-
isfy the continuity equation, and the corresponding solution
for the coefficient � reads as

� = iz�
1 − � + 2I22�z�

�1 − ���z2 − 2� + 2I22�z��z2 − 4�
. �126�

This expression can be used to obtain �̂1�. Here we will
immediately give the result for the amplitude of the total

density oscillations, i.e., �̂1= �̂1�−A�V̂1 ext+ i���̂1�, which
we write in the form

�̂1�r� = �
m2�2pF�r�

2�3 �r ‹ r�20��z� , �127�

with

��z� = I20�z� +
�1 − � + 2I22�z���1 − � + 4I22�z��
�1 − ���z2 − 2� + 2I22�z��z2 − 4�

.

�128�

Before discussing numerical results, let us again study the
two extreme cases T=0 and T�Tc. In the zero-temperature
limit, all integrals � and Iij are zero, and hence the response
function becomes

��z;T/Tc = 0� =
1

z2 − 2
, �129�

i.e., it has a single pole at the hydrodynamical frequency

� = �2� . �130�

In the case T�Tc, i.e., in the normal phase, we have �=1,
and in the definition �124� we can replace �0 and E0 by 0 and
�, respectively, such that we obtain

I20�z;T/Tc � 1� =
1

z2 − 4
, �131a�

I22�z;T/Tc � 1� = 0. �131b�

Thus, the response function reduces to

��z;T/Tc � 1� =
1

z2 − 4
. �132�

Like in the zero-temperature case, we have a single pole, but
now at a frequency that is higher by a factor of �2. The
reason for the difference of the two frequencies is as follows.
In the superfluid phase, the momentum distribution stays
spherical during the oscillation. In contrast to this, in the
normal phase, the momentum distribution is deformed in the
opposite direction as the density in coordinate space. This

deformation of the Fermi sphere costs kinetic energy, which
increases the restoring force and thereby the frequency of the
oscillation.

At intermediate temperatures 0�T�Tc, the excitation
spectrum is continuous and it is characterized by the imagi-
nary part of ��z�, which is shown in Fig. 4 for a set of
temperatures between 0.5Tc and Tc. At 0.5Tc, the spectrum
exhibits a sharp peak at the hydrodynamic frequency z=�2,
the weak broadening being due to Landau damping. With
increasing temperature, the Landau damping becomes more
important, and at the same time the centroid of the distribu-
tion moves to higher frequencies. Above 0.8Tc, however, the
width of the peak does not increase any more with tempera-
ture, but it decreases. Finally, when the temperature ap-
proaches Tc, the peak becomes again very sharp and, not
surprisingly, it lies at the frequency z=2 predicted by the
Vlasov equation.

One might ask the question whether the approximations
made in this section are justified or not. Let us therefore
compare our results with those of a QRPA calculation �7�,
where, apart from the mean-field approximation leading to
the Bogoliubov-de Gennes equations, no approximations are
made. Qualitatively our semiclassical results show the main
features of this quantum-mechanical calculation: the hydro-
dynamic mode at zero temperature, its damping at interme-
diate temperatures, and the subsequent reappearance of an
undamped collective mode with a higher frequency in the
normal phase. That our frequency in the normal phase is
exactly equal to z=2 is a consequence of neglecting the Har-
tree mean field. However, in the range of validity of our
theory �kF�a��1�, the Hartree mean field cannot shift the
frequency very much �in Ref. �7�, e.g., the frequency is
shifted from 2 to �2.2�. We therefore believe that this effect
is not very important. More problematic is the constant-gap
approximation that we needed for the analytical solution of
the equations of motion �108�. Because of this approxima-
tion, there are no quasiparticles having energies below �0,
and, as a consequence, the Landau damping sets in at rather
high temperatures. In the full calculation, however, the
lowest-lying quasiparticles are those whose wave functions
are localized near the surface, where the gap is small, and

FIG. 4. Quadrupole excitation spectrum —Im � of a harmoni-
cally trapped gas as a function of the excitation frequency �in units
of the trap frequency� for different temperatures. The spatial depen-
dence of the gap as well as the Hartree mean field have been
neglected.
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that have much smaller energies than the central value of the
gap. Therefore within the full calculation the Landau damp-
ing is already quite important at very low temperatures. In
the semiclassical formalism these low-lying quasiparticles
can be understood as quasiparticles bouncing back and forth
between the potential wells created by the trap potential and
the spatially varying gap �Andreev reflection� �20,25�. The
inclusion of this effect would require a numerical solution of
the equations of motion �108�.

This leads us to a possible numerical method for solving
even the original �i.e., not linearized� kinetic equation �35�.
In nuclear physics, the Vlasov equation �usually comple-
mented by a collision term� is routinely solved by the so-
called test-particle method, e.g., in order to simulate heavy-
ion collisions �26�. Recently this method has also been
applied to the solution of the Vlasov equation with collision
term for trapped atomic Fermi gases �27� and of a Vlasov-
like equation for trapped fermion-boson mixtures �28�, and it
seems to be straightforward to generalize it to our case. The
basic idea of the method is as follows. Instead of calculating
the time evolution of the continuous quasiparticle distribu-
tion function ��r ,p ; t�, one can use a finite number of “test
quasiparticles” and follow their motion in phase space by
solving numerically the equations of motion,

Ṙi =
�E�R,P�

�Pi
, Ṗi = −

�E�R,P�
�Ri

, �133�

for all test quasiparticles simultaneously. Of course, the qua-
siparticle energy E�r ,p ; t� contains the mean fields g��r ; t�
and �̃�r ; t�, which must be calculated at each time step from
the actual quasiparticle distribution. At the same time, the
phase � must be calculated at each time step from the con-
tinuity equation. This seems to be a tractable task, which will
be adressed in a subsequent publication.

IV. SUMMARY AND CONCLUSIONS

In the first part of the present article, we derived a set of
semiclassical equations describing the dynamics of a colli-
sionless superfluid Fermi gas by taking the �→0 limit of the
TDHFB or time-dependent Bogoliubov-de Gennes equa-
tions. In the limits of zero and critical temperature, these
equations reproduce superfluid hydrodynamics and the Vla-
sov equation, respectively. At intermediate temperatures,
there is a complicated interplay between the dynamics of the
superfluid component of the system, governed by the func-
tion ��r�, which is related to the phase of the gap ��r�, and
the dynamics of the normal component, which is described
by the quasiparticle distribution function ��r ,p�. The dy-
namical equation for � formally corresponds to the usual
Vlasov equation with � and h replaced by � and E, respec-
tively, while the function � is determined by the continuity
equation. The latter point can be seen most easily in the
linearized version of the equations for small deviations from
equilibrium.

In the second part, we gave an illustration of our equa-
tions by applying them to two simple cases, where analytical

solutions could be found. The first example we studied was a
sound wave traveling in a uniform system. In this case we
could reproduce the usual hydrodynamic speed of sound at
zero temperature. At nonzero temperatures below Tc, the
sound wave suffers strong Landau damping because of its
coupling to thermally excited quasiparticles. For T→Tc the
excitation spectrum continuously goes over into that of the
usual particle-hole continuum �with RPA corrections� that is
found above Tc.

The second example was the quadrupole mode of a Fermi
gas in a spherical trap. Applying the approximation of a con-
stant gap and neglecting the Hartree field, we were able to
solve the linearized quasiparticle kinetic equation exactly
also for this case. We could qualitatively reproduce the most
important results of quantum mechanical QRPA calculations:
At zero temperature, there is an undamped collective mode
at the hydrodynamic frequency �=�2�, which becomes
strongly damped at low temperatures �0�T�Tc�. At a cer-
tain temperature the damping rate reaches a maximum, and
above that temperature it decreases until at T=Tc an un-
damped collective mode reappears at the frequency predicted
by the Vlasov equation, which is higher than the hydrody-
namic frequency. However, quantitatively the agreement
with the QRPA calculation is not yet satisfactory, essentially
because we replaced the gap by an r-independent constant.
We suggested to use the test-particle method for the numeri-
cal solution of the equations in the case of a spatially varying
gap ��r�, which at the same time would allow us to include
the Hartree field and to treat strong deviations from equilib-
rium, like the expansion of the gas after the trap is switched
off.

As long as the gas is close to equilibrium, i.e., as long as
the Fermi surface can be regarded as spherical, the effect of
collisions is very small due to Pauli blocking of the final
states. However, in the case of strong deviations from equi-
librium, like during the expansion of the cloud when the trap
is switched off, the deformation of the Fermi sphere can lead
to rather important collisional effects �29�. Therefore, in this
case it is necessary to include the collision term into the
theory. This is an interesting problem that should be ad-
dressed in a future investigation. For normal-fluid trapped
Fermi gases there exist already some calculations that take
the collision term into account �27,29�. The more compli-
cated case of paired Fermi systems with collisions has been
considered, e.g., in the context of superfluid 3He �14,15�.

Since our equations were obtained as the �→0 limit of
the TDHFB equations, only the leading gradient terms are
included. This can be seen, e.g., in our results for the sound
wave, which in fact are the long-wavelength and low-
frequency limit of the quantum mechanical result that can be
obtained by diagrammatic techniques. For the system in a
trap this means in particular that the gradients of the trapping
potential, which are related to the trap frequency �, must not
be too strong. But what is “too strong”? In the normal phase
��=0� the �→0 limit works extremely well if ����,
which is always the case in the experimental situations. In
the superfluid phase ���0� the relevant condition reads
���� �7,16�, which is much more difficult to satisfy, espe-
cially for the radial trap frequency, which is usually much
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larger than the axial one. In spite of this limitation, we be-
lieve that the semiclassical approach presented here will be
useful, since at present no quantum mechanical calculation is
able to describe the dynamics of systems with more than
�104 atoms, especially in the case of deformed traps.
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