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A common approximate way to study the time evolution of a superfluid Fermi gas is to consider the
mean-field time-dependent BCS equations. We show that, by inclusion of an appropriate fluctuating term in
these mean-field equations, the exact quantum evolution of the Fermi gas is recovered, after an average over all
possible realizations of the noise term: this leads to an exact quantum Monte Carlo technique for the real-time
evolution of an interacting fermionic system. In practice, we derive the general conditions on the noise term,
ensuring that the exact dynamics is reproduced, and we explore several explicit realizations of this noise term,
trying to minimize the statistical spreading of the quantum Monte Carlo simulations. The convergence issue is
discussed in detail, with upper bounds obtained on the statistical spreading, and the relation between the
stochastic and the mean-field equations is analyzed. Finally, we apply the method to a simple two-site model,
to exemplify that the simulations can display effects out of reach of the mean-field approximation.
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I. INTRODUCTION

The numerical solution of a time-dependent many-body
problem is a formidable task for large quantum systems. For
example, for a system of an arbitrary number of fermions
with M possible modes of the quantum field—e.g., in a lat-
tice model—the dimension of the Hilbert space is 2M so that
both the computer time and the memory requirements scale
exponentially with the number of modes and becomes rap-
idly intractable when M increases. A similar situation occurs
also in classical mechanics, when we describe the dynamics
as the evolution of a probability distribution.

To circumvent the problem on the memory requirement in
classical physics, an approach is not to solve numerically the
equation of motion of the probability distribution, but to
solve the statistical evolution of the variables and to evaluate
the mean value of some quantities over a finite number of
realizations. Such a Monte Carlo approach can be used also
in quantum mechanics, the most famous example being the
path-integral Monte Carlo method based on Feynman’s path-
integral formulation �1�. However, apart from notable excep-
tions �such as the imaginary-time evolution of bosons with
real Hamiltonians or the imaginary-time evolution of some
models of fermions �2��, for a general quantum problem, the
known quantum Monte Carlo methods do not solve the com-
puter time problem, which remains exponentially long be-
cause an exponentially large number of Monte Carlo realiza-
tions is usually required �3�. For fermions, this problem is
the celebrated sign problem, which has been the subject of
many efforts, for both real-time and imaginary-time simula-
tions �4–13�.

In Monte Carlo techniques with a path integral, the ran-
domly generated states are generally mutually orthogonal. In
the original formulation of Feynman, they are the eigenvec-
tors of the particle coordinates. As an alternative, we can
randomly explore an overcomplete set of states. Since the
dynamics of degenerate bosonic gas with weak interactions

is approximatively described by the evolution of a Hartree-
Fock state, it can be convenient to evaluate the exact dynam-
ics using a superposition of paths of Hartree-Fock states �14�.
A similar approach has been used for fermion systems �15�.
In Ref. �14� the case of bosonic coherent states is also stud-
ied.

The number of random paths necessary to describe the
dynamics can be reduced by increasing the number of ele-
ments of the overcomplete set. In the extreme limit where
every state of the Hilbert state is an element of the explored
set, the dynamics can be described with a single, determin-
istic path: this corresponds to solving directly the
Schrödinger equation, but this faces again the memory prob-
lem. As an intermediate possibility, we can choose a set of
elements whose single path is a better approximation to the
exact solution than the Hartree-Fock ansatz, but which is still
numerically tractable. Attractive interactions in a fermionic
gas can lead to the condensation of Cooper pairs in the su-
perfluid state, as currently investigated experimentally in
atomic gases close to a Feshbach resonance �16�. It is ex-
pected that such a superfluid state is reasonably well de-
scribed by a BCS state, much better indeed than by a
Hartree-Fock state. For this reason we study here an exact
stochastic approach with BCS states.

In this article we consider the dynamics in real time of a
system of fermions with binary interactions on a spatial lat-
tice. The Hamiltonian is

Ĥ = �
kl

hklĉk
†ĉl +

1

2�
kl

Vklĉk
†ĉl

†ĉlĉk, �1�

where h and V are Hermitian and real symmetric matrices,
respectively, and ĉk and ĉk

† are Fermi annihilation and cre-
ation operators. The mode index k labels the spin state �k
and the lattice node in position rk. In what follows, we shall
denote as ms the total number of lattice nodes.
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We wish to obtain the dynamical evolution of the quan-
tum state as the average of stochastic trajectories of BCS
states. The exact evolution is achieved by averaging an infi-
nite number of stochastic trajectories. The BCS-state ansatz
that we use is

��,�� � �S����0� � � exp	1

2�
kl

�klĉk
†ĉl

†
�0� , �2�

� being an antisymmetric matrix, involving for spin-1 /2 fer-
mions a number of variables 2ms�2ms−1� /2, and � being a
multiplicative complex variable. Note that the state in Eq. �2�
is in general not normalized. We shall consider the case
where both � and � are stochastic variables solving Ito sto-
chastic equations.1

In Sec. II we find the necessary and sufficient conditions
on the stochastic equations in order to have an exact descrip-
tion of the dynamics. These constraints do not fix univocally
the stochastic scheme; thus, we shall use this freedom to
reduce the statistical spreading of the trajectories. In Sec. III
we construct explicit stochastic schemes. The growth rate of
the spreading is evaluated and an upper limit for the statisti-
cal error on the observables is established, which shows that
the statistical uncertainty is finite at every finite time. In Sec.
IV the stochastic approach is illustrated on a two-site model.

II. STOCHASTIC EQUATIONS

A. Conditions for the stochastic evolution to be exact

We want to evaluate exactly the quantum-state evolution
using a superposition of the BCS states �� ,������� with a
stochastic evolution of � and �. For an infinitesimal varia-
tion of � and � we calculate the variation of the ansatz by
expanding ��+�� ,�+��� in powers of �� and ��: we
have from Eq. �A4� that

���,�� = ���

�
+

1

2�
ij

��ijĉi
†ĉj

† +
1

8�
ijkl

��ij��klĉi
†ĉj

†ĉk
†ĉl

†

+
1

2�
�
ij

����ijĉi
†ĉj

† + ¯ ���,�� . �3�

On the other hand, the Hamiltonian evolution during �t of

the state equal to �� ,�� at time t is given to first order in �t
by Schrödinger’s equation

− iĤ�t��,�� = � i

2�
ijkl

Vij�ik� jlĉi
†ĉj

†ĉk
†ĉl

†�t − i�
ij
	1

2
Vij�ij

+ �
k

hik�kj
ĉi
†ĉj

†�t���,�� , �4�

where we used Eq. �A5� to express ĉ�� ,�� in terms of
ĉ†�� ,�� and where we took �=1. If � and � satisfy a deter-
ministic equation, it is obvious that the first term of the right-
hand side of Eq. �4� does not in general coincide with the
third term of the right-hand side of Eq. �3�. As we shall
prove, Eqs. �4� and �3� can become equal when we consider
stochastic equations and we average Eq. �3� over every pos-
sible realization of the stochastic variation during �t:

���,�� = − iĤ�t��,�� . �5�

Since S��� is invertible, we have to find a stochastic equation
for � and � that satisfies the equality

���

�
+

1

2�
ij

��ijĉi
†ĉj

† +
1

8�
ijkl

��ij��klĉi
†ĉj

†ĉk
†ĉl

†

+
1

2�
�
ij

����ijĉi
†ĉj

†��0�

= � i

2�
ijkl

Vij�ik� jlĉi
†ĉj

†ĉk
†ĉl

†�t

− i�
ij
	1

2
Vij�ij + �

k

hik�kj
ĉi
†ĉj

†�t��0� . �6�

Equation �6� is equivalent to

��

�
= 0, �7�

��ij = −
1

�
����ij − iVij�ij�t − i�

k

hik�kj�t + i�
k

hjk�ki�t ,

�8�

�
permutation of ijkl

�− 1�p�1

8
��ij��kl −

i

2
Vij�ik� jl�t� = 0,

�9�

where �−1�p is the signature of the permutation. The first
equation implies that the deterministic term of � is zero. The
second equation gives the deterministic term for �; the last
one gives a condition for the noise term of �. This last con-
dition can be written explicitly:

��ij��kl + �� jk��il + ��ik��lj + i�t�Vij + Vkj + Vil

+ Vkl��ik�lj + i�t�Vik + Vkj + Vil + Vjl��ij�kl + i�t�Vik

+ Vlk + Vij + Vlj�� jk�il = 0. �10�

1One may be worried by the fact that the stochastic ansatz does
not have a well-defined number of particles. E.g., for bosons it was
shown that using a Glauber coherent-state ansatz �which is the
bosonic analog of the BCS state� leads to divergences in the statis-
tical error �17�. However, such a pathology cannot occur for fermi-
ons with a finite number of modes: the total number of fermions is
bounded from above by the number of modes in the system. In a
BCS ansatz, one has even that the variance of the number of par-
ticles is less than twice the mean number of particles. Furthermore,
if the initial BCS state of the fermions corresponds to the limit of
pairs localized on individual lattice sites, one shall find in the opti-
mized scheme of Sec. III B 1 that the initial growth rate of the
statistical error is zero. This is not the case for the stochastic coher-
ent scheme for bosons for an initial coherent state localized on a
single lattice site.
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Note that this equation is automatically fulfilled when two of
the four indices ijkl are equal.

B. Growth of the statistical error

To estimate the statistical error of the method, we con-
sider the growth rate of the mean-squared distance between
the true state of the system and a single realization of the
stochastic ansatz, �����− �� ,���2=�M, where

M = �,���,�� . �11�

This will allow us to prove that the statistical error remains
finite at all finite evolution times, and this will provide a
strategy to identify optimal stochastic schemes in trying to
minimize the growth rate �M /M.

To the first order in �t,

�M = ���,�����,�� + �,������,��� + ���,�������,��� .

�12�

On the right-hand side, the sum of the first two terms gives

exactly zero, since by construction ��� ,��=−i�tĤ�� ,�� /�.
In the last term, we can replace ��� ,�� by its stochastic
component:

���,��stoch � ���,�� − ���,��

= ���

�
+

1

2�
ij

��ij
stochĉi

†ĉj
†���,�� , �13�

where we used the fact that �� is purely stochastic and
where ��ij

stoch is the stochastic part of ��ij. Equation �12�
leads to

�M

M
=

����,��stoch�2

�,���,��
, �14�

which can be evaluated using Wick’s theorem:

�M

M
= ���

�
+

1

2�
ij

��ij
stochĉi

†ĉj
†��2

+
1

2�
ijkl

��ij
* ��klĉiĉk

†�

�ĉjĉl
†� , �15�

where the expectation value is taken in the ansatz, ¯�
= � ,��¯ �� ,�� /M. A clear step for the minimization of the
error growth is to choose �� in order to set to zero the first
term on the right-hand side of the above expression:

��

�
= −

1

2�
kl

��kl
stochĉk

†ĉl
†� . �16�

We shall always choose �� in this way in what follows. It is
then easy to show �see Eq. �13�� that

�M = �M; �17�

i.e., the stochastic terms of �M are exactly zero. Further-
more, the deterministic part of �� is now slaved to the sto-
chastic part of ��, according to Eq. �8�: the only increments
that remain to be specified to fully determine the stochastic
scheme are ��ij

stoch, and this we shall do in the next section.

III. EXPLICIT EXACT STOCHASTIC SCHEMES

A. Our solution for an arbitrary interaction potential

This most general solution relies on the following ansatz
for the stochastic increment:

��ij
stoch = ��f i + �f j��ij �18�

where the noise terms �fk are independent of �ij. Inserting
this ansatz into the validity condition, Eq. �10�, we find that
if the noise terms have the correlation function

�f i�f j = − iVij�t , �19�

this validity condition is satisfied.2 Since the matrix Vij is
real symmetric, it can be diagonalized; a noise having this
correlation function may then be explicitly constructed using
the corresponding eigenbasis.

In the specific case of a discrete 	 interaction potential
between two opposite spin components,

Vij = V0	ri,rj
	�i,−�j

, �20�

where ri and �i are the lattice position and the spin compo-
nent of the mode of index i, the following explicit noise may
be used:

f i = �− iV0�1/2��
ri
	�i,↑ + �
ri

* 	�i,↓� , �21�

where the �
r’s are statistically independent complex Gauss-
ian noises of variance �t. For this specific noise implemen-
tation, f i

*f j = �V0��t	ij, so that the growth rate of the statistical
error can be expressed by the simple formula3

�M

M
= �V0��t�

k

ĉkĉk
†�ĉk

†ĉk� �
1

2
�V0��tms, �22�

where ms is the number of lattice nodes and where we used
the Eqs. �A8�, �A11�, and �A9�. �M / �M�t� has a constant as
an upper bound; thus, the norm squared of �� ,�� is bounded
at every time by exp��V0�mst /2� times its initial value. A
similar bound was derived in the stochastic Hartree-Fock
scheme in �15�, with a larger exponent.4 Consequently, the
Monte Carlo statistical variance of an observable O is finite
when Tr�O2� is finite �see Ref. �17�, Eq. �30��.

To be complete we also give the corresponding determin-
istic part of the evolution of �:

2Note that imposing such a correlation function on the f i’s is suf-
ficient but not necessary; this is exemplified by the fact that the two
other schemes of this section, though of the form Eq. �18�, lead to
�f i’s with different correlation functions.

3To get the upper bound, we used the fact that nk�1−nk��1/4
where nk= ĉk

†ĉk�.
4In �15� one has to write the interaction term as �s��sOs

2 /4,
where Os, are Hermitian one-body operators. A natural choice is to
take s=r, and Or= ĉ↑r

† ĉ↑r− ĉ↓r
† ĉ↓r, and ��r=−2V0. When expanding

the square Or
2 one indeed uses the fact �for fermions� that the square

of an occupation number is equal to the occupation number, which
allows us to reincorporate the undesired terms into the one-body
part of the Hamiltonian. From Eq. �19� of �15� one then gets M�t�
�exp�t�V0�ms�, so that the rate inside the exponent is 2 times larger
than the one for the stochastic BCS ansatz.
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��ij/�t = − iVij�ij − i�
k

�hik�kj + hjk�ik� − i�
k

�Vik + Vjk�

�ĉk
†ĉk��ij . �23�

We note that the last sum over k on the right-hand side is
simply the Hartree mean-field term.

B. Case of an off-diagonal � and a � interaction

We now restrict ourselves to useful limiting cases where
the one-body Hamiltonian h is spin diagonal, the interaction
potential is an on-site discrete 	 between two distinct spin
components, as defined in Eq. �20�, and the matrix � in the
ansatz has initially zero matrix elements between identical
spin components. We have then identified exact stochastic
schemes that preserve at any time this block off-diagonal
structure of �.

1. Solution that we have found with minimal error growth

A general strategy to find the “best” stochastic scheme
among a very large number of possibilities is to try to mini-
mize the growth rate of the statistical error, Eq. �14�.
Whereas this program is easily fulfilled for bosons �14� it
seems to be more difficult to achieve for the stochastic BCS
ansatz. Here we report the solution that we have found with
minimal error growth. It is possible that a better solution
exists. The stochastic increment is given by

��↑ri,↓rj

stoch = �iV0�1/2��
ri
− �
rj

��↑ri,↓rj
, �24�

where the �
r are ms independent real Gaussian noises of
variance �t. The corresponding growth rate of the statistical
error is exactly given by

�M

M
= �t�V0��

r

�ĉ↑r
† ĉ↑r�ĉ↑rĉ↑r

† � + ĉ↓r
† ĉ↓r�ĉ↓rĉ↓r

† � − 2ĉ↑r
† ĉ↓r

† �

�ĉ↓rĉ↑r�� , �25�

which is indeed smaller than the general result, Eq. �22�,
because of the occurrence of a negative term involving
anomalous averages. In this scheme the deterministic part of
the evolution of � is given by

��↑ri,↓rj
/�t = − iV0�↑ri,↓rj

�ĉ↓ri

† ĉ↓ri
� − ĉ↑ri

† ĉ↑ri
� − �i ↔ j��

− iV0	ri,rj
�↑ri,↓rj

− i�
rk

�h↑ri,↑rk
�↑rk,↓rj

+ h↓rj,↓rk
�↑ri,↓rk

� , �26�

2. Solution that we have found with minimal memory
requirement

In the case when the one-body Hamiltonian h is totally
spin independent, and when the off-diagonal block �↑ri,↓rj

is
initially a symmetric or antisymmetric matrix �under the ex-
change of ri and rj�, we have found a stochastic scheme
which preserves this symmetry property at all times, which
allows us to save a factor of 2 on the memory requirement:

��↑ri,↓rj

stoch = i�iV0�1/2��
ri
+ �
rj

��↑ri,↓rj
, �27�

where the �
r are ms independent real Gaussian noises of
variance �t. In this case, the growth rate of the statistical
error is

�M

M
= �t�V0��

r

�ĉ↑r
† ĉ↑r�ĉ↑rĉ↑r

† � + ĉ↓r
† ĉ↓r�ĉ↓rĉ↓r

† � + 2ĉ↑r
† ĉ↓r

† �

�ĉ↓rĉ↑r�� � �t�V0�ms, �28�

which is larger than for the two previous schemes. In this
scheme the deterministic part of the evolution of � is given
by

��↑ri,↓rj
/�t = − iV0�↑ri,↓rj

�ĉ↓ri

† ĉ↓ri
� + ĉ↑ri

† ĉ↑ri
� + �i ↔ j��

− iV0	ri,rj
�↑ri,↓rj

− i�
rk

�h↑ri,↑rk
�↑rk,↓rj

+ h↓rj,↓rk
�↑ri,↓rk

� . �29�

C. Link with the mean-field approximation

In the three explicit stochastic schemes given in this sec-
tion, the deterministic part of the evolution for �ij did not
coincide with the mean-field evolution. This in contrast with
the optimized stochastic Hartree-Fock schemes obtained for
bosons �14� and for fermions �15�. For a general stochastic
BCS ansatz with the optimizing choice, Eq. �16�, we found
the following relation between the deterministic evolution of
�ij and its mean-field evolution �given in Appendix B�:

��ij − ��ij
mean field = �

kl

��ik�� jlĉk
†ĉl

†� �30�

by inserting the expression Eq. �16� of �� into Eq. �8� and
by using Eq. �10� to eliminate ��ij��kl. This shows that
finding a stochastic scheme where the deterministic and
mean-field evolutions coincide is not straightforward.

IV. STOCHASTIC APPROACH FOR A TWO-SITE SYSTEM

In order to illustrate the method, we apply it to a simple
system with two sites, corresponding to the Hamiltonian

Ĥ =
1

2�
�

�ĉ�1
† ĉ�2 + ĉ�2

† ĉ�1� + V0�ĉ↑1
† ĉ↓1

† ĉ↓1ĉ↑1 + ĉ↑2
† ĉ↓2

† ĉ↓2ĉ↑2� ,

�31�

where the spin index � takes the values ↑ and ↓. There is no
interparticle interaction when the two particles are in differ-
ent wells. A physical system that may be described by this
model is a set of two Fermi particles in a double-well poten-
tial.

At the initial time, we choose a BCS state with the ele-
ments of � equal to zero, apart from �1↑,1↓=−�1↓,1↑��0=2.
The state is a superposition of the vacuum and the state with
two atoms in site 1. The direct numerical solution of the
dynamics is obtained writing the Hamiltonian in the basis of
the Fock states of the operators ĉi,s and ĉi,s

† . The integration is
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simplified by the fact that the interaction cannot flip the spin
and the amplitude of some states remains zero. In Fig. 1 we
report the mean value of the population in the state ↑ 1 as a
function of time. We have set V0=0.2. The dash-dotted line
is evaluated with the mean-field equations �as given in Ap-
pendix B�, the dashed line is the direct numerical solution,
and the solid line is the stochastic solution. The widths of the
error bars are the standard deviations. We have used 105

realizations with the scheme of Sec. III B 1. In the mean-
field approximation, the evolution has a damped oscillation
with a revival for t30. The collapse and revival of the
oscillations of the exact solution occur with a shorter time
scale. The stochastic approach is able to display very well
this behavior. In Fig. 2 we report � ,� �� ,�� as a function of
time. The solid, dashed and dotted lines are evaluated using
the schemes of Secs. III B 1, III A, and III B 2, respectively.
The dash-dotted line is the upper bound of Eq. �22� valid for
the first two schemes. As expected, the optimized scheme has
a smaller spreading.

Note that the growth rate of M̄ is zero at the initial time
for the scheme of Sec. III B 1 �see inset of Fig. 2�, because of
the presence of the last term in Eq. �25�, which cancels the
other contributions in the initial state considered here of par-
ticles localized on a site. The spreading of the trajectories

grows exponentially and it increases for larger interparticle
interactions. We have done similar calculations for a stronger
interaction—e.g., for V0=2; the stochastic method agrees
with the direct numerical solution, with a higher growth rate
of the statistical error for increasing V0, as expected.

V. CONCLUSIONS

In this article we have shown that the state evolution of a
fermionic gas with binary interactions can be obtained in an
exact way as the average of stochastic trajectories of BCS
states. We have derived the general Ito stochastic equations
which give the exact evolution of the system, and we have
found a condition on some parameters of these equations to
reduce the statistical spreading of the trajectories in the Hil-
bert space. The upper bound that we have found on the
spreading for a particular scheme is similar to the one ob-
tained for the Hartree-Fock ansatz in �15�, with a smaller
value. We have illustrated the method on a two-site model,
and we have shown that the quantum effects, which cannot
be obtained with a mean-field approximation, are displayed
by the results of the stochastic approach.
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APPENDIX A: SOME PROPERTIES OF BCS STATES

First we prove that the BCS states form a complete family
for the states with an even number of atoms. The set of states
with a definite number of atoms in each mode constitutes an
orthonormal basis of the Hilbert space. It is sufficient to
show that each element of this set is equal to a superposition
of BCS states. An element has the form

��kn,ln�� � 	�
n=1

Np

ĉkn

† ĉln
†
�0� , �A1�

where we have grouped the atoms in pairs. The nth pair has
the atoms in the kn and ln modes. Np is the number of pairs.
kn�km� ln� lm when n�m, whereas kn� lm for every n and
m. It is easy to prove that

��kn,ln�� = K�
0

2�

d�1�
0

2�

d�2 ¯ �
0

2�

d�Np

�exp	− i�
n=1

Np

��n + exp�i�n�ĉkn

† ĉln
† �
�0� ,

�A2�

where K is a normalization constant. Thus, the BCS states
form a complete family. Actually, it is overcomplete.

FIG. 1. Mean value of the population in state 1 ↑ as a function
of time. The solid and dashed lines are evaluated using the schemes
of Secs. III B 1 and III B 2, respectively. The number of realizations
is 105 and V0=0.2. The dash-dotted line is the BCS mean-field
prediction. The widths of the error bars are the standard deviations.

FIG. 2. Average of M = � ,� �� ,�� over the stochastic realiza-
tions, as a function of time, evaluated using the scheme of Secs.
III B 1 �solid line�, of III A �dashed line�, and of III B 2 �dotted
line�. The dash-dotted line is the upper bound of Eq. �25� for the

first two schemes. At the initial time the growth of M̄ is zero for the
first scheme �see inset�.
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It is possible to demonstrate that5 �see Sec. 2.2 of Ref.
�18��

M̃ � �̄,�̄��,�� = �̄*� det�1 + �̄†��1/2 �A3�

and

�

��kl
��,�� = ĉk

†ĉl
†��,�� , �A4�

ĉk��,�� = �
l

�klĉl
†��,�� . �A5�

From Eq. �A3� we have

�

��ij
M̃ = − ��̄†�1 + ��̄†�−1�ijM̃ . �A6�

Using Eqs. �A4�–�A6� we find that

�̄,�̄�ĉlĉk
†��,��

�̄,�̄��,��
= ��1 + �̄†��−1�kl, �A7�

�̄,�̄�ĉk
†ĉl��,��

�̄,�̄��,��
= ��̄�1 + �̄†��−1�†�lk, �A8�

�̄,�̄�ĉkĉl��,��

�̄,�̄��,��
= − ���1 + �̄†��−1�kl, �A9�

�̄,�̄�ĉl
†ĉk

†��,��

�̄,�̄��,��
= ��̄†�1 + ��̄†�−1�kl. �A10�

We note that Eq. �A8� can be written in various forms using
the matrix identities

�̄†��1 + �̄†��−1 = �̄†�1 + ��̄†�−1� = ���1 + �̄†��−1�̄†�T,

�A11�

where AT is the transpose of matrix A.

APPENDIX B: MEAN-FIELD EQUATIONS

Using the results of Sec. 9.9b of �18�, we obtain the fol-
lowing equations of motion for � in the mean-field approxi-
mation:

�̇ij = − i�
k

�hik�kj + hjk�ik� + �− i�
k

Vikĉk
†ĉk��ij

+ i�
k

Vikĉk
†ĉi��kj − �i ↔ j�� + i�

kl

Vklĉkĉl�*�ki� jl

+ iVijĉiĉ j� . �B1�
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