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We consider a rapidly rotating Bose-condensed gas in a harmonic-plus-quartic trap. At sufficiently high
rotation rates, the condensate acquires an annular geometry with the superposition of a vortex lattice. With
increasing rotation rate, the lattice evolves into a single ring of vortices. Of interest is the transition from this
state to the giant vortex state in which the circulation is carried by only a central vortex. By analyzing the
Gross-Pitaevskii energy functional variationally, we have been able to map out the phase boundary between
these two states as a function of the rotation rate and the various trapped gas parameters. For strong interac-
tions, the transition is first order. Our variational results are in good qualitative agreement with those obtained
by means of a direct numerical solution of the Gross-Pitaevskii equation.
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I. INTRODUCTION

In a recent paper, Fetter et al. �1� investigated the vortex
structure in a rapidly rotating Bose-Einstein condensate con-
fined by a harmonic-plus-quartic trapping potential. The in-
terest in quartic confinement stems from the fact that the
rotation rate � is limited in harmonic traps by the trap fre-
quency ��, at which point, the centrifugal potential destabi-
lizes the system and the radius and angular momentum of the
condensate diverge. The addition of the quartic potential �2�
avoids this instability and allows one to investigate rotation
rates higher than ��. In this regime, the condensate exhibits
a more complex structure, both with regard to its density
distribution and the arrangement of vortices within it �1,3,4�.

The combined harmonic, centrifugal, and quartic poten-
tials give rise to a Mexican hat potential and the mean den-
sity acquires a local minimum on the axis of symmetry of the
trap. Within a Thomas-Fermi analysis, the central density
goes to zero at some limiting angular velocity �h �1,5,6�,
beyond which the condensate takes on an annular structure.
This behavior is also found in numerical solutions of the
Gross-Pitaevskii equation �1,3,4�. Within some range of in-
teraction strengths and angular velocities, these calculations
reveal a structure in which a ring of vortices surrounds a
central hole containing a multiply quantized vortex. With
increasing rotation rate, a new state is favored in which the
annular condensate is vortex free and all the circulation is
carried by a central vortex. This state with a multiply quan-
tized central vortex is referred to as the giant vortex state
�4–6�.

In this paper, we are concerned with the transition from
the state with a single ring of vortices, which we also refer to
as an annular array, to the giant vortex state. For low inter-
action strengths, the numerical �1,3,4� and analytical �7� evi-
dence indicates that the transition is continuous, with the
radius of the ring shrinking in size until the ring is absorbed
by the central hole. The situation at higher interaction
strengths seems to be different, with the annular array per-
sisting as a metastable state. In any case, one expects the
giant vortex state to be preferred energetically above some
critical angular velocity �c. We determine the phase bound-
ary between these two states by variationally minimizing the

Gross-Pitaevskii �GP� energy of the annular array and com-
paring this with the corresponding energy of the giant vortex
state. Our results are in essential agreement with those of
Kim and Fetter �8�, which are based on the same physical
model but are obtained using a different calculational ap-
proach.

In Sec. II, we present the physical model of the annular
array within the context of the Gross-Pitaevskii energy func-
tional. The nature of the problem suggests that a good start-
ing point for the calculation of the GP energy can be
achieved by replacing the annular array by a vortex sheet.
Nevertheless, the discrete nature of the vortex cores leads to
important corrections to the energy which determine the rela-
tive stability of the annular array and giant vortex states. We
thus begin with a detailed analysis of the vortex sheet prob-
lem in Sec. III and then examine in Sec. IV the various
corrections to the vortex sheet energy due to the vortex
cores. Our numerical results are presented in Sec. V and we
conclude with a discussion in Sec. VI.

II. ENERGY

The GP energy functional in a frame of reference rotating
with angular velocity � is given by �1�

E��� =� d3r� �2

2M
����2 + V���2 +

2�a�2

M
���4� − �Lz,

�1�

where � is the condensate wave function, a�0 is the
s-wave scattering length and Lz=	d3r�*ẑ · �r�p�� is the z
component of the angular momentum. The normalization of
the wave function is N=	d3r���2, where N is the total num-
ber of particles. As in previous discussions �1,4,6,8�, we con-
sider the two-dimensional limit in which the confining po-
tential is taken to be a harmonic-plus-quartic potential in the
radial direction with no confinement in the z direction
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V�r� =
1

2
M��

2 
r2 + �
r4

d�
2 � =

1

2
���
 r2

d�
2 + �

r4

d�
4 � . �2�

Here d�=�� /M�� is the harmonic oscillator length. For this
two-dimensional situation, the wave function � depends
only on the radial and angular variables r and 	, respec-
tively.

Our purpose is to determine the equilibrium state of the
system by minimizing the GP energy functional for a given
angular velocity �. Variations with respect to � yield the GP
equation which can be solved numerically to determine the
exact equilibrium state. Solutions of this kind have been ob-
tained �1,3,4� but the calculations are numerically demanding
and cannot be performed in all parameter regimes. It is then
useful to adopt a variational approach which has the added
advantage of providing more physical insight into the nature
of the solutions. To this end, we introduce the amplitude-
phase representation of the wave function, �=�
nei�, where

 is the density per unit length in the z direction. The two-
dimensional density n�r ,	� then has the normalization

� d2rn�r� = 1. �3�

Using d� as the unit of length and ��� as the unit of energy,
the �dimensionless� energy per particle takes the form

E�n,v� =� d2r�1

2
���n�2 +

1

2
nv2 + Vn +

1

2
gn2

− � · r � vn� , �4�

where the condensate velocity is given by v=�� and the
interaction strength is g=4�
a. In this context, the equilib-
rium state is determined by the pair of functions n and v
which minimize this energy functional. Such an approach is
feasible when, as in the present case, the physical states of
interest are known. For ���h, the condensate forms an
annulus with some distribution of vortices �1,6�. Initially, the
vortices are arranged on a regular lattice, but as the central
hole becomes well established, the lattice evolves into con-
centric rings of vortices around the central hole. Eventually,
a single ring is formed and the transition from this state to
the giant vortex state is the transition of particular interest
here. The geometry and variables used to describe the annu-
lar array are illustrated in Fig. 1.

The velocity field for Nr vortices on a ring of radius R is
assumed to be given by a superposition of the velocity fields
of individual vortices,

v�r� = 
j=1

Nr ẑ � �r − R j�
�r − R j�2

+
N0

r
�̂ , �5�

where R j are the positions of the singly quantized vortices.
The second term accounts for the vorticity of a central vortex
of strength N0. In this approach, the form of the velocity field
is effectively fixed, but R, Nr, and N0 remain as variational
parameters. For the ring configuration of Fig. 1, the velocity
and density have an angular periodicity of 2� /Nr, for ex-
ample,

v�r,	 + 2�/Nr� = v�r,	� , �6�

and all such quantities can be expanded in a Fourier series.
We write

v�r� = v0�r� + v1�r� , �7�

where v0 is the azimuthally averaged part of the velocity
field which is given by �9�

v0�r� = �N0

r
��R − r� +

N0 + Nr

r
��r − R���̂ . �8�

This can be interpreted as the velocity field of a central vor-
tex and a vortex sheet of radius R across which the velocity
is discontinuous. It should be emphasized that this part of the
velocity field is perfectly general and is independent of the
assumed vortex superposition in Eq. �5�. It is valid even for
the exact GP solution having a net circulation of N0 in the
low-density hole region and Nr vortex singularities arranged
on a ring of radius R.

The remaining part v1=v1rr̂+v1	�̂ has the Fourier expan-
sion �9�

v1r�r� = −
Nr

r

k=1

Nr

sin kNr	
 r�

r�
�kNr

, �9�

v1	�r� = sgn�r − R�
Nr

r

k=1

Nr

cos kNr	
 r�

r�
�kNr

, �10�

where r� �r�� is the lesser �greater� of r and R. It is this part
which contains the singular behavior of the velocity field at
the positions of the vortices. For example, by performing the
sum in Eq. �10�, we have

v1	 = sgn�r − R�
Nr

r

�cos Nr	 − �
1 + 2 − 2 cos Nr	

, �11�

where = �r� /r��Nr. One can easily see from this expression
that v1	��−1 near each vortex, where � is the distance from
the vortex. We also note that the v1 velocity field is strongly
localized near r=R, since the factor  decreases rapidly with
increasing �r−R� when Nr is large. That is, the velocity field
rapidly approaches the long-range part described by v0 as
one moves away from the ring of vortices and is, therefore,
essentially azimuthal at the edges of the annulus. In a sense,
this provides an a posteriori justification for the validity of

FIG. 1. Schematic of the annular array configuration.
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the superposition of individual vortex velocity fields in Eq.
�5� since no geometric constraint is being imposed on the
flow by the boundaries of the annulus. This is unlike the
situation of a single vortex near the surface of a planar
boundary where the velocity field is strongly modified from
that of an isolated vortex by the presence of the boundary
�10�.

Using Eq. �7�, the classical kinetic energy consists of the
following terms:

EK =
1

2
� d2rn0�r�v0

2�r� +� d2rn�r�v0�r�v1	�r�

+
1

2
� d2rn�r�v1

2�r� , �12�

where

n0�r� �
1

2�
�

0

2�

n�r,	�d	 . �13�

We see that the separation of the velocity field into v0 and v1
leads to a kinetic energy contribution which only involves v0
and the angular average of the density n0�r�. It is thus natural
to decompose the density as n�r�=n0�r�+n1�r�, where n1 is
the part containing all higher Fourier components.

With these definitions, the energy functional can be writ-
ten as

E�n,v� = EVS�n0,v0� + EVC�n,v� , �14�

with

EVS�n0,v0� =� d2r�1

2
n0v0

2 + Vn0 +
1

2
gn0

2 − �rn0v0�
�15�

and

EVC�n,v� =� d2r�1

2
���n�2 +

1

2
nv1

2 + nv0v1	

− �rnv1	 +
1

2
gn1

2� . �16�

The term EVS signifies the contribution to the energy that
arises when the discrete array of vortices is replaced by a
vortex sheet �VS� of radius R and circulation Nr. We note
that the variables entering this part of the energy functional
are independent of the angular variable 	. We identify the
second term EVC as the vortex core �VC� energy. If this con-
tribution to the energy is neglected, the EVS functional by
itself is sufficient to define both n0 and v0. At this level of
approximation, the functional provides a Thomas-Fermi �TF�
description of the vortex sheet configuration. We emphasize,
however, that no approximations have been made in writing
the energy functional as the sum of the two separate contri-
butions in Eqs. �15� and �16�.

The second contribution EVC accounts for the actual vor-
tex core structure and depends on the full inhomogeneous
nature of the density and velocity field near each vortex. We
note that the singular part of the velocity field arises in the

terms containing v1. This singularity is of course compen-
sated by the density which must behave as n��2 near the
core of each vortex. To represent this behavior, we write the
density as �11�

n�r� = F�r�ñ�r� , �17�

where F�r� is an envelope function which accounts for the
depletion of the density near each vortex with respect to
some overall smooth background density ñ�r�. Since n�r� is
normalized to unity, ñ�r� in general will not be.

The factorization of the density in Eq. �17� is not unique
but it allows for a convenient variational representation of
the density depletion around each vortex that occurs on a
length scale �, which is small in comparison to all other
characteristic lengths in the problem. To be specific, we
choose an envelope function having the form

F�r� = 
i=1

Nr

e−�Ri − R1�2/�2
− 

i=1

Nr

e−�r − Ri�
2/�2

, �18�

which gives the density depletion a Gaussian profile. The
parameter � represents the vortex core radius and is treated
as a variational parameter. It will be of the order of the local
healing length and we anticipate that ��b, where b
=2�R /Nr is the intervortex spacing. In this situation, the
density close to each vortex is given to a good approximation
by n�r���1−exp�−�2 /�2��ñ�r�, which has the required n
��2 behavior. An alternative to Eq. �18� is to represent each
vortex core by the piecewise continuous function f���
= �� /��2 for ��� and f���=1 for ��� �5,8�. The advantage
of the Gaussian core is that it allows an essentially analytic
calculation of the core energy. However, in view of the varia-
tional nature of the calculation, one would expect the two
forms to yield quantitatively similar results.

Once the core structure is accounted for via the envelope
function F�r�, the background density ñ�r� is expected to
have a weak angular variation. It can itself be treated as a
variational function in the minimization of the total energy.
However, we expect and confirm that the VC contribution to
the energy is relatively small in comparison to EVS and as
such can be treated as a perturbation. Our strategy is, there-
fore, to minimize EVS with respect to n0 and v0 and to use the
information provided by this minimization in the evaluation
of EVC. Since the v1 velocity field is highly localized near
r=R, the terms containing v1 in Eq. �16� are only sensitive to
the background density in this region. Given its smooth an-
gular variation, we will for simplicity choose ñ�r� to be a
function of only the radial variable r. According to its defi-
nition in Eq. �17�, this implies that the background density is
related to the vortex sheet density by

ñ�r� =
n0�r�
F0�r�

, �19�

where F0�r� is the angular average of F�r�. We use this equa-
tion to estimate ñ near r=R. In this way, all contributions to
EVC become functions of � and to complete the calculation,
the VC energy is minimized with respect to this parameter.
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III. THE VORTEX SHEET APPROXIMATION

In this section, we calculate the energy within the vortex
sheet approximation �VSA� obtained by minimizing Eq. �15�
with respect to the density n0 and the circulation parameters
of the azimuthally averaged velocity given by Eq. �8�. Here
we denote the circulation parameters by �1=N0 and �2=N0
+Nr. It is reasonable to treat these parameters as continuous
if the circulation is large. To impose the normalization con-
straint on the density, we minimize the free energy FVS
=EVS−�	d2rn0, where � is the chemical potential. Variation
of FVS with respect to n0 gives

gn0�r� = ��1 − U1�x� , r � R

�2 − U2�x� , r � R ,
� �20�

where

�i = � + ��i, �21�

and

Ui�x� =
1

2

�i

2

x
+ x + �x2� �22�

with x=r2. The inner and outer radii, Ri=�xi, of the annulus
are defined by

�i = Ui�xi�, i = 1,2. �23�

By its definition, n0 is the azimuthally averaged density and
is, therefore, a continuous function of the radial variable r.
The requirement that n0 be continuous across the vortex
sheet leads to the relation

R� =
1

2

�1

R
+

�2

R
� , �24�

which indicates that the average of the velocity on either side
of the vortex sheet is equal to the velocity for rigid body
rotation at the radius r=R. Equation �24� can also be inter-
preted in terms of the circulation provided by a uniform vor-
tex lattice. The number of vortices contained within a circle
of radius R that is needed to give the velocity R� at r=R is
�L=R2�. Thus, Eq. �24� is equivalent to the relation �L
= ��1+�2� /2.

The density given by Eq. �20� also depends on the chemi-
cal potential �. For a given �1 and �2, this parameter is fixed
by the normalization of the density in Eq. �3�. This gives the
additional relation

g = ��
x1

x0

dx��1 − U1�x�� + ��
x0

x2

dx��2 − U2�x�� , �25�

where x0=R2.
Using Eq. �20�, the free energy can be expressed as

FVS = −
�

2g
�

x1

x0

dx��1 − U1�x��2 −
�

2g
�

x0

x2

dx��2 − U2�x��2.

�26�

The equilibrium state corresponds to the minimization of FVS
with respect to the two parameters �1 and �2. Noting that x0,

x1, and x2 are implicitly functions of �1 and �2, this variation
yields the equations

��
x1

x0

dx��1 − U1�x�� = �1�
x1

x0 dx

x
��1 − U1�x�� , �27�

��
x0

x2

dx��2 − U2�x�� = �2�
x0

x2 dx

x
��2 − U2�x�� . �28�

The six nonlinear equations, Eqs. �23�–�25�, �27�, and �28�,
are sufficient to determine the six unknown parameters �1,
�2, R, R1, R2, and �.

The procedure described corresponds to a free variation of
the circulation parameters �1 and �2. Alternatively, the mini-
mization can be carried out with imposed constraints, such as
fixing the radius R of the sheet or the number of vortices Nr
in the ring. In the first case, the pair of equations �27� and
�28� is replaced by the single equation �R fixed�

��
x1

x0

dx��1 − U1�x�� − ��
x0

x2

dx��2 − U2�x��

+ 2x0��
x0

x2 dx

x
��2 − U2�x�� = �1��

x1

x0 dx

x
��1 − U1�x��

+ �
x0

x2 dx

x
��2 − U2�x��� , �29�

while in the second �Nr fixed�, we have

��
x1

x0

dx��1 − U1�x�� + ��
x0

x2

dx��2 − U2�x��

− Nr�
x0

x2 dx

x
��2 − U2�x��

= �1��
x1

x0 dx

x
��1 − U1�x�� + �

x0

x2 dx

x
��2 − U2�x��� .

�30�

In the limit Nr→0, ��1=�2� the latter equation reduces to the
minimization equation for the giant vortex state

��
x1

x2

dx��1 − U1�x�� = �1�
x1

x2 dx

x
��1 − U1�x�� . �31�

The parameter x0 of course has no significance in this limit.
We later make use of some of these constrained minimiza-
tions.

Although the above equations can be solved numerically
�to be described later�, it is useful to perform a perturbative
analysis in order to gain some insight into the form of the
solutions. For ���h, the condensate is confined to an an-
nulus whose radius increases with �. At the same time, the
width of the annulus decreases. We, therefore, expect the
parameter w=x2−x1 to be small in comparison to x0. In this
situation, we can find useful relations between the various
parameters by expanding the integrals in Eq. �27� in a Taylor
series,

H. FU AND E. ZAREMBA PHYSICAL REVIEW A 73, 013614 �2006�

013614-4



�
x1

x0

dxf�x� = f�x1��1 +
1

2
f��x1��1

2 +
1

6
f��x1��1

3 + ¯ ,

�32�

where �1�x0−x1. In our case, f�x1�=0 and the expansion
starts with terms of order �1

2. The expansion of the integrals
in Eq. �27� can thus be viewed as providing a power series
expansion for �1

�1 = �1
�0� + �1

�1��1 + ¯ . �33�

We insert this expansion for �1 wherever it appears in Eq.
�27�, including the �1 and U1�x� terms, and generate a power
series in �1 for each side of the equation. Equating the co-
efficients of like powers of �1 and retaining terms to order
�1

4, we find

�1 = �x1�1 +
2

3

�1

x1
−

�1

18

�1

x1
�2

+ ¯ � , �34�

where

�1 =
1 − 2�2 + �x1

1 − �2 + 2�x1
. �35�

Analyzing Eq. �28� in a similar way, we obtain

�2 = �x2�1 −
2

3

�2

x2
−

�2

18

�2

x2
�2

+ ¯ � , �36�

where �2�x2−x0 and �2 is obtained from the expression for
�1 by replacing x1 by x2. These relations show that

x0 =
1

2�
��1 + �2� =

1

2
�x1 + x2� −

1

12

�1

x1
�1

2 +
�2

x2
�2

2� + ¯ ,

�37�

that is, R2= �R1
2+R2

2� /2 with corrections of order �i
2. These

equations also imply that �i�w /2 to the lowest order.
To obtain an explicit expression for x1+x2, we take the

difference of the two equations in Eq. �23�, thereby eliminat-
ing �. Using the above expansions in powers of w, we then
find x1+x2���2−1� /�, which implies

x0 =
�2 − 1

2�
, �38�

with corrections of order �w /x0�2. This leading order result
for x0 is the same as the expression for �x1+x2� /2 obtained
for a vortex lattice with a hole �1�. The reason for this can be
seen by inserting the lowest order result �i=�xi into Eq.
�23�. This gives �= 1

2 �xi�1−�2�+�xi
2�, which is recognized

as the equation giving the boundaries of the annulus in the
vortex lattice state. This correspondence indicates that the
annular array in the large-� limit is effectively undergoing
rigid body rotation.

The result for x0 in Eq. �38� shows that the denominator
of �1 is 1−�2+2�x1�−�w. Thus, the terms formally of

order �i
2 in Eqs. �34� and �36�, in fact, give rise to correc-

tions to �i that are of order w. From Eqs. �34� and �36�, we
thus find

Nr = �2 − �1 �
1

3
�w�1 +

1

4

�2 − 1/3

�2 − 1
+ ¯ � . �39�

Another useful relation follows from the expansion of the
normalization condition, Eq. �25�. To order w3, we have

g =
�

8 �� �U2

�x
�

x2

− � �U1

�x
�

x1

�w2 −
�

48�� �2U2

�x2 �
x2

+ � �2U1

�x2 �
x1

�w3. �40�

The first term on the right hand side appears to be of order
w2, but if the potential derivatives in this term are evaluated
to lowest order in w, we obtain ��x2−x1�, which in fact is of
order w. Thus, to include all contributions of order w3, the
potential derivatives in the first term must be expanded to
first order in w and the second term must also be retained.
Doing so one finds

w = 
 12g

��� + �2/2x0��
1/3

= 
 12g

���1 + �2/��2 − 1���
1/3

.

�41�

For large �, we have w��6g /���1/3�w�. Since w=R2
2

−R1
2, the physical width of the annulus is given by

d � R2 − R1 =��

2

w�

�

1 +

1

3�2 + ¯ � , �42�

that is, d��−1 for large �, whereas the radius R of the
vortex sheet is proportional to �. We also note that the
strength of the central vortex is N0=�x0−Nr /2��3 /2� for
large �, while that of the vortex sheet is Nr�5�w� /12.

To obtain accurate results for all �, we solve Eqs.
�23�–�25�, �27�, and �28� numerically. We have found that
this can be done in a straightforward iterative manner.
We start by using the large-� expressions �1=�3 /2�, �2
=�1+5�w� /12, x0= ��2−1� /2�, and x2=x0+w� /2. We
then estimate an approximate chemical potential as ��
=U2�x2�−��2, define �1=��+��1 and determine x1 from
U1�x1�=�1. We now calculate the integrals Fi�a ,b�
=	a

bdx��i−Ui�x�� and Gi�a ,b�=	a
bdx��i−Ui�x�� /x in

order to determine new values of the circulations from Eqs.
�27� and �28�: �1=�F1�x1 ,x0� /G1�x1 ,x0� and �2

=�F2�x0 ,x2� /G2�x0 ,x2�. At the same time, we use Eq. �25�
to determine the effective coupling strength g�
=��F1�x1 ,x0�+F2�x0 ,x2��. The chemical potential which
gives the desired value of g is �=��+�� and the change in
chemical potential is estimated as ��= �g−g�� /��x2−x1�.
With these updated values of �1, �2, and �, we recalculate
x0= ��1+�2� /2� and xi from U�xi�=�i, and repeat the re-
maining steps described. Convergence to an accuracy of one
part in 106 typically required 10–20 iterations.
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In Fig. 2, we show the equilibrium density n0�r� within
the VSA for g=1000 for a few values of �. The density
exhibits a downward cusp at r=R, which corresponds to the
average depletion with respect to a smooth background that
the vortex cores give rise to. To make this more apparent, we
have also plotted the density for the giant vortex state which
only contains the central vortex. This shows the effect of
transferring circulation from the core of the giant vortex to
the vortex sheet near the middle of the annulus. The signifi-
cant depletion of the density that occurs at the vortex sheet
radius is compensated by an increase in the width of the
annulus. The fact that the depletion exhibits a cusp is of
course an artifact of treating the vortex sheet within a
Thomas-Fermi-like approximation. In reality, the cusp will
be smoothed out on a length scale � characterizing the size of
the vortex cores. Nevertheless, the overall qualitative behav-
ior is expected to be a good representation of the azimuthally
averaged density in an annulus containing a ring of vortices.
We note further that there is a relatively slow recovery of the
density from the region of the sheet to the outer regions of
the annulus. This is associated with the long-range behavior
of the vortex sheet velocity field. For a single vortex in a
uniform gas of density n3D, the size of the core is set by the
healing length �0=1/�8�an3D, but the density actually ap-
proaches its asymptotic value quite slowly: n�r�=n3D�1
−�0

2 /r2+ ¯ �. A similar behavior is occurring in the present
context, but it is partially masked by the finite width of the

annulus. Another feature of interest is the nearly constant
maximum value of the density as a function of �. We can
define an average density n̄ in the annulus by 2�Rdn̄=1,
where d is the width of the annulus. Since R is approximately
proportional to � while d is inversely proportional to �, the
near constancy of n̄, and hence the maximum, follows. The
same argument also applies to the giant vortex state.

The various parameters that emerge for the VS state are
collected in Table I. The asymptotic dependences R
����2−1� /2�, N0��3 /2�, and Nr�5�w� /12 are found
to work quite well down to �=4. Also given in parentheses
in the table are the values of the parameters as determined by
a numerical solution of the Gross-Pitaevskii �GP� equation
�1�. We see that the VSA underestimates the circulation of
the GP solution by about 10%, while the discrepancy in the
radius is only a few percent. The discrepancy in the width d
of the annulus is much larger, with the VS width approxi-
mately 30% smaller than the GP result. It should be noted,
however, that there is some arbitrariness in the way that the
GP widths are extracted from the numerical data since the
GP densities fall off smoothly to zero �12�. In fact, despite its
inherent uncertainty, visual inspection of the published fig-
ures �1� yields widths which are in much closer agreement
with our VS results. We thus believe that the difference in the
widths is actually much smaller than indicated in Table I.
Finally, the difference between our intervortex spacings b
and the GP results simply reflects the different values of the
circulations Nr in the two calculations. Interestingly, we see
the same slight increase of b with increasing � as seen pre-
viously �1�. We conclude that the VS approximation provides
a reasonably faithful average representation of the state con-
taining a ring of vortices.

In Fig. 3, we show EVS and EGV as a function of � for
g=1000 and �= 1

2 . To leading order in �, both of these en-
ergies behave as −�4 /8�. The difference between them can
be seen to be small and is displayed in more detail in Fig. 4.
We see that EGV−EVS�4��� over the range of � shown,
that is, the vortex sheet always has a lower energy than the
giant vortex. This is to be expected since the insertion of a
ring of vortices brings the velocity field closer to that of rigid
body rotation. Likewise, the insertion of another vortex sheet
would be expected to lower the energy further. As we shall
see, this is indeed the case. However, the relative stability of
these vortex sheet states is overstated since the energy asso-
ciated with the vortex cores has not been included. The vor-
tex core energy will at some point make states with a large
number of vortices less stable. In Sec. IV, we calculate the
vortex core energy to correct the energy as determined in the
VSA.

FIG. 2. The solid curves show the density as a function of r
within the vortex sheet approximation for three values of �; �= 1

2
and g=1000. The dashed curves are the densities for the giant vor-
tex state. All quantities are in units of d�.

TABLE I. Physical parameters within the vortex sheet approximation for �= 1
2 and g=1000. The values in parentheses are obtained from

the solution of the GP equation �1�. The last column gives the vortex core radii as determined in Sec. IV. All lengths are in units of d�.

� N0 Nr R1 R2 R d b �min

4 46.1 25.9 2.77 4.85 3.84 2.08 0.932 0.183

5 103 32.5 �37� 4.04 5.69 4.88 �4.83� 1.65 �2.32� 0.943 �0.821� 0.181

6 190 39.1 �44� 5.21 6.58 5.91 �5.80� 1.37 �1.98� 0.949 �0.828� 0.179

7 313 45.7 �51� 6.33 7.50 6.92 �6.85� 1.17 �1.76� 0.952 �0.844� 0.177

8 477 52.2 7.42 8.44 7.93 1.02 0.954 0.174
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IV. CORE ENERGY

We begin by considering the first term in Eq. �16�, which
represents the quantum mechanical kinetic energy of the con-
densate. The main contribution to this integral comes from
the region of the vortex cores which are defined by the en-
velope function F�r�. Using Eq. �17� and treating ñ as a
smooth function, the first term in Eq. �16� gives

EVC
�1� � � d2r

ñ��F�2

8F
= Nr�

A

d2r
ñ��F�2

8F
, �43�

where we have used the periodicity of F to reduce the inte-
gral to the area A defined by 0�r�� and −� /Nr�	
�� /Nr. We assume that a vortex is positioned at r=R, 	

=0 within this cell. If the core size � is small on the scale of
the intervortex spacing, as turns out to be the case, the enve-
lope function can be approximated within the cell as

F�r� � 1 − e−�2/�2
, �44�

where � is the distance from the vortex center. Assuming also
that � is small on the scale of the variations of ñ, we find

EVC
�1� � C1Nrñ�R� , �45�

where C1=���2 /6−1� /2=1.013 06. . .. It should be noted
that the dependence of this contribution on � arises solely
through ñ�R�.

The next contribution to EVC is

EVC
�2� =

1

2
� d2rnv1

2

�
1

2
Nrñ�R��

A

d2r�1 − e−�2/�2
�v1

2.

�46�

Using Eqs. �9� and �10�, we have

v1
2�r� = 
Nr

r
�2 2

1 − 2�1 + 2
k=1

�

k cos kNr	�
= 
Nr

r
�2 2

1 + 2 − 2 cos Nr	
. �47�

The latter form is useful in order to see that v1
2��−2 near

each vortex. This singularity is canceled by the envelope
factor in Eq. �46�. However, in order to evaluate EVC

�2�, the first
line in Eq. �47� proves to be more useful despite the appear-
ance of the factor �1−2�−1, which is singular at r=R. As we
shall see, this singularity is removable.

To proceed we simplify the envelope factor using �
= �r−R�=�r2+R2−2rR cos 	 �see Fig. 1�

1 − e−�2/�2
= 1 − e−�r2+R2�/�2

e2rR cos 	/�2

� 1 − e−�r − R�2/�2
e−rR	2/�2

= �1 − e−�r − R�2/�2
�

+ e−�r − R�2/�2
�1 − e−rR	2/�2

� .

In going to the second line, we have made use of the fact that
the angular range in 	 is small when Nr is large, while the
grouping of terms in the last line is introduced to facilitate
the cancellation of singularities that arise. Accordingly, we
consider the integral

I1 = �
A

d2r�1 − e−�r − R�2/�2
�v1

2

= 2�Nr�
0

� dr

r
�1 − e−�r − R�2/�2

�
2

1 − 2 . �48�

It is apparent that the singularity at r=R is canceled by the
zero in the envelope factor. We show in Appendix A that this
integral can be evaluated analytically to a good approxima-
tion, with the result

FIG. 3. The solid curve gives the vortex sheet energy EVS and
the dashed curve the giant vortex energy EGV �in units of ����, as
a function of the angular velocity � �in units of ���, for g=1000
and �= 1

2 .

FIG. 4. The solid curve is the difference, EGV−EVS, between the
giant vortex and vortex sheet energies, as a function of the angular
velocity �, for g=1000 and �= 1

2 . The dashed curve is the vortex
core energy EVC. The point of intersection of these two curves de-
fines the critical angular velocity �c beyond which the giant vortex
state is more stable.
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I1 = 2��ln
 aR

Nr�
� +

��

2
Nr
 �

R
� − 
M2 +

1

2
Nr�
 �

R
�2

+ O
 �

R
�3� , �49�

where M2= 1
6

�Nr− 1
2

��Nr− 5
2

� and a= 1
2e�/2=0.6673. . ., with �

being Euler’s constant �13�. The logarithm is associated with
the �r−R�−1 singularity of the integrand in Eq. �48� which is
cut off at the distance �. The appearance of Nr in the loga-
rithm indicates that � /b is the physically relevant parameter,
with b as the intervortex spacing. This is also true of the
dominant power law terms in the expansion which is given
to higher order in Appendix A.

The second contribution to EVC
�2� involves the integral

I2 = �
A

d2re−�r − R�2/�2
�1 − e−rR	2/�2

�v1
2

= Nr
2�

0

� dr

r
e−�r − R�2/�2 2

1 − 2�
−�/Nr

�/Nr

d	�1 − e−rR	2/�2
�

��1 + 2
k=1

�

k cos kNr	� . �50�

In this case all Fourier components of v1
2 contribute. We re-

quire the discrete Fourier transform of a Gaussian, which is
given by

2�gm � Nr�
−�/Nr

�/Nr

e−rR	2/�2
cos mNr	d	

=��

�
e−m2/4� Re�erf�zm�� , �51�

where �=rR /�2Nr
2, zm=���+ im /2��, and erf�z� is the error

function �13�. The inverse Fourier transform is

e−�	2
= 

m=−�

�

gmeIm 	 �52�

from which follows the useful identity


m=−�

�

gm = 1. �53�

With these results, the angular integral in Eq. �50� can be
expressed as

Nr�
−�/Nr

�/Nr

�1 − e−rR	2/�2
��1 + 2

m=1

�

m cos mNr	�d	

= 2� −��

�
erf�����

− 2��

�

m=1

�

me−m2/4� Re�erf�zm��

= 2��

�

m=1

�

�1 − m�e−m2/4� Re�erf�zm�� .

Thus, we find

I2 = 2Nr�
0

� dr

r
e−�r − R�2/�2

2��

�

�
m=1

�
1 − m

1 − 2 e−m2/4� Re�erf�zm�� . �54�

We now see that the �1−�−1 singularity is canceled by the
numerator, leaving the factor k=0

m−1k / �1+�. Both the
Gaussian and 2 factors are highly localized around r=R,
which allows the sum to be evaluated at r=R to a good
approximation. We, thus, find

I2 = C2Nr�
0

� dr

r
e−�r − R�2/�2

2, �55�

where

C2 =��

�

m=1

�

me−m2/4� Re�erf�zm�� . �56�

The integrals in Eq. �55� on the ranges �0�r�R� and
�R�r��� are examples of the Jk

�/� integrals defined in Ap-
pendix B. The constant C2 can be expressed conveniently as
the integral

C2 = 2��
0

�

	 cot
	

2
e−�	2

d	 , �57�

which shows that C2 behaves asymptotically for large � as
C2�2����1−1/24�+ ¯ �=2��R /�Nr+¯. Since the inte-
gral in Eq. �55� is proportional to � as �→0, I2 itself has a
finite limiting value in this limit, unlike the logarithmically
divergent behavior of I1. Our final result for EVC

�2� is

EVC
�2� =

1

2
Nrñ�R��I1 + I2� . �58�

This quantity is plotted as a function of � in Fig. 5.
The next contribution to the core energy is

EVC
�3� =� d2rnv0v1	

� − Nrñ�R��
A

d2re−�r − R�2/�2
e−rR	2/�2

v0v1	. �59�

This is the cross term that arises from squaring v0+v1. For
r�R, v0 and v1	 have the same sign, indicating that the
velocity is actually larger than v0 close to the sheet. On the
other hand, v1	 has the opposite sign for r�R, implying that
there is a cancellation between v0 and v1	 on this side of the
sheet. The overall negative sign in Eq. �59� is due to the fact
that only the regions within the vortex cores contribute to the
integral. In these regions, the density is depleted with respect
to the average n0 and EVC

�3� compensates for the contribution
these regions make to the VSA kinetic energy.
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The angular integral in Eq. �59� is the same as encoun-
tered previously in the calculation of EVC

�2�. We have

EVC
�3� = − Nrñ�R��

0

�

dre−�r − R�2/�2
v0�r�sgn�r − R�

���

�

m=1

�

me−m2/4� Re�erf�zm�� . �60�

We retain only the rapidly varying m factor from the sum in
doing the radial integral and set r=R in the remaining slowly
varying factors. We then obtain

EVC
�3� = − Nrñ�R���

�

m=1

�

��N0 + Nr�JmNr+1
� �R/��

− N0JmNr−1
� �R/���e−m2/4� Re�erf�zm�� , �61�

where the Jk
�/� integrals are defined in Appendix B. Within

the sum there is a strong cancellation between the two N0
terms, leaving mainly the term proportional to Nr. This
is most evident in the �→0 limit for which the Jk

�/� integrals
take a limiting value of ��� /2R. The remaining
sum is evaluated using Eq. �53�, giving EVC

�3�

�−Nrñ�R��3/2�Nr� /2R� to the lowest order in �. This shows
that EVC

�3� depends linearly on � for �→0.
The contribution EVC

�4� =−	d2r�rnv1	 is essentially of the
same form as EVC

�3� and can be handled in a similar way. We
find

EVC
�4� = Nr�R2ñ�R���

�

m=1

�

�JmNr−1
� �R/��

− JmNr+1
� �R/���e−m2/4� Re�erf�zm�� . �62�

We recall that �R2=N0+Nr /2, with N0 typically being much
larger than Nr. However, the cancellation between JmNr−1

� and
JmNr+1

� within the sum diminishes the size of this contribution

in comparison to EVC
�3�, as can be seen in Fig. 5.

Finally, we have the interaction term

EI =
1

2
g� d2rn2 =

1

2
Nrg�

A

d2r�1 − h�r��2ñ2�r�

=
1

2
g� d2rn0

2 +
1

2
g� d2r��h2�0 − �h0�2�ñ2�r� , �63�

where h�r�=exp�−�r−R�2 /�2�exp�−rR	2 /�2� and the sub-
script 0 in the second term indicates the zeroth Fourier com-
ponent as defined in Eq. �51�. The first term in Eq. �63�
contributes to EVS, while the second term represents the in-
teraction contribution to EVC. We thus find

EVC
�5� =

1

2
g� d2r��h2�0 − �h0�2�ñ2�r�

=
1

2
g�

0

�

drre−2�r − R�2/�2�� �

2�
erf���2��

−
1

2�
erf2������ñ2�r�

�
�

4
gNr�

2ñ2�R��erf���2�� −
1

�2��
erf2������ ,

with �= �R /Nr��2.
In Fig. 5, we show the various contributions to the core

energy as a function of �, together with the total EVC

=i=1
5 EVC

�i� , for the case g=1000 and �=6. The behavior for
other values of these parameters is very similar. All the con-
tributions except for EVC

�3� are seen to be positive. As ex-
plained previously, the latter is the correction to the kinetic
energy that arises from the interference between v0 and v1	.
Since EVC

�2� and EVC
�3� both represent corrections to the VS ki-

netic energy, we have also plotted the sum of these two
terms. The combination is seen to decrease monotonically
with increasing �. The other contributions EVC

�1�, EVC
�4�, and EVC

�5�

are positive and increase with �. The total core energy EVC
exhibits a minimum at �min�0.179, which is the equilibrium
core radius for the case being considered. Values of �min for
other � are given in Table I. The core radius is seen to be
rather insensitive to the rotation rate. These values are of the
order of, but somewhat larger than, the local bulk healing
length �0�1/�8�a
ñ�R��0.12.

The dependence on � of the quantum kinetic energy term
EVC

�1� is entirely due to the ñ�R�=n0�R� /F0�R� factor, which
also appears in all the other core energy contributions. The
angular average of the envelope function is given by F0�R�
=1−erf����� /2��� and its dependence on � appears

FIG. 5. The total vortex core energy in units of ��� as a func-
tion of the core radius � in units of d�, for �=6, g=1000, and �

= 1
2 . The numerically labeled curves indicate the various compo-

nents EVC
�i� , i=1, . . . ,5. The dashed curve gives the combined result

EVC
�2� +EVC

�3�, as this represents the total change in classical kinetic
energy with respect to the VS state. The minimum in the total core
energy gives the optimal core radius.
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through �= �R /Nr��2. For ��1, the error function is ap-
proximately unity and F0�R�−1�1+���� /b�+��� /b�2+¯,
where b=2�R /Nr is the intervortex spacing. At the mini-
mum, �min/b�0.2 and the F0�R�−1 factor makes ñ�R� about
50% larger than n0�R�. This is perhaps a slight overestimate
of the background density since the Gaussian envelope func-
tion gives a core density profile that is more compact than
what one would expect it to actually be. As explained earlier,
the core density recovers its asymptotic value rather slowly
due to the slow decay of the azimuthally averaged velocity.
This latter effect is accounted for in an average way within
the VSA but is not accounted for using the Gaussian core
profile. In Fig. 6, we compare n0�r� and ñ�r�; the enhance-
ment of ñ�r� above n0�r� is evident. However, the detailed
structure in ñ�r� should not be taken seriously. The cusp at
r=R is, of course, a residual artifact of the cusp in n0�r�; it
would be eliminated if the smooth core profile were ac-
counted for in n0�r�. Apart from this, the figure suggests that
ñ�r� would appear smoother if the Gaussian were augmented
by wings which decayed more slowly so as to be more con-
sistent with the long-range part of the core density profile
contained in n0�r�. To give an impression of what an im-
proved ñ�r� might look like, we have plotted the function
ñfit�r�=A�r−R1��R2−r� with A chosen to reproduce ñ�R�.
With this choice of A, one can see that ñfit�r� goes smoothly
to n0�r� at the edges of the annulus and appears to be a
reasonable candidate for the true smooth background. The
ratio n0�r� / ñfit�r� can be thought of as a refined F0�r�, which
in turn implies a refined core density profile. It should be
emphasized, however, that the detailed shape of ñ�r� is not
particularly relevant, since only ñ�R� is used in estimating
the vortex core energy. In view of the variational nature of
the calculation, refinements in the core density profile would
not be expected to lead to significant changes in the value of
the core energy.

V. RESULTS

We now combine the core energy with the VS energy
calculated in the Sec. III. To begin, we do this perturbatively,
that is, we assume that the core energy is a small correction
to the VS energy. This is certainly correct for large �, but
will become less accurate as � is reduced. Nevertheless, for
the time being, we use the parameters R, Nr, and n0�R�,
which arise from the minimization of EVS to evaluate EVC
over the whole range of �. The procedure provides an upper
bound to the total energy EVS+EVC of the annular array and,
therefore, underestimates its stability relative to the giant
vortex state. To determine the transition point, we plot EGV
−EVS and EVC versus �. This is done in Fig. 4 for the case of
g=1000. As stated earlier, EGV−EVS is almost constant as a
function of �, while EVC increases approximately linearly.
This latter behavior is due to the fact that all the vortex core
energies are proportional to Nr, which itself is approximately
a linear function of �. It should be noted that the vortex core
contributions also depend on the parameter Nr� /R, but this
parameter is approximately constant since R is also propor-
tional to �.

The intersection in Fig. 4 occurs at the angular velocity
�c�7.1. Repeating the calculations as a function of g yields
the phase boundary between the vortex array and giant vor-
tex states. These results are presented as the dashed-dotted
curve in Fig. 7 and are very similar to those obtained by Kim
and Fetter �8� as indicated by the open squares. These
authors do not invoke the VSA but rather represent the den-
sity as in Eq. �17�, choosing the envelope function to be
composed of linear cores and the background density ñ�r� to

FIG. 6. The solid curve shows the background density, ñ�r�
=n0�r� /F0�r�, as a function of r for �=6, g=1000, and �= 1

2 . The
dashed curve is the density in the vortex sheet approximation, n0�r�.
The chain curve is a possible refined smooth background as dis-
cussed in the text.

FIG. 7. The dashed-dotted curve shows the phase boundary be-
tween the annular array �AA� and the giant vortex �GV� state as
determined by treating the core energy perturbatively. The solid
points joined by solid lines denote the position of the phase bound-
ary as determined by a global minimization of the total energy. The
open triangles are the values determined by the GP solution �1� �the
g=1000 point is a lower bound for �c� and the open squares are the
results of Kim and Fetter �8�. The filled square with error bars gives
the approximate bounds on �c as determined in Ref. �4� for g
=125. The dashed curve denotes the onset of a hole �VLH� in the
vortex lattice �VL�.
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have an analytic form that was found to work well for the
giant vortex. They then fix the number of vortices in the ring,
Nr, and minimized the GP energy with respect to the remain-
ing parameters. They find a local minimum in this energy as
a function of Nr which corresponds to the annular array and
then compare this energy with that of the giant vortex �Nr
=0�. Remarkably, the minimum values of Nr determined by
this approach agree very well with our VS results in Table I,
even though the latter excludes our core correction. How-
ever, it should be emphasized that the VSA already includes
the vortex cores in an average sense, which is why our VC
energy is typically a relatively small correction. For g
=1000 and �= 1

2 they find �c�6.7, slightly smaller than our
perturbative result of 7.1. The fact that our critical angular
velocity is slightly higher would suggest that our variational
treatment of the annular array is somewhat better, but given
the differences in the approaches, the two results should be
considered as being essentially in agreement. Their results in
fact approach ours for smaller values of g.

A more accurate calculation would involve minimizing
the total vortex array energy �EVS+EVC� with respect to the
two parameters �1 and �2, or alternatively, Nr=�2−�1 and
R=���1+�2� /2�. In Fig. 8, we present a contour plot show-
ing the behavior of the total energy in the vicinity of the
global minimum. It can be seen that Nr and R are almost
orthogonal variables. The point labeled VS is the position of
the minimum of the vortex sheet energy EVS itself; constant
energy contours of EVS would appear similar to those shown
but would be centered on VS. As one moves away from VS
along a line at constant R, EVS of course increases, but the
total energy actually decreases as a result of the decrease in
EVC. The fact that EVC decreases with Nr is somewhat sur-
prising since EVC is explicitly proportional to Nr. However,
EVC also depends on the parameter � /b, and the intervortex
spacing is decreasing with increasing Nr. This dependence is
evidently dominating the variation of EVC with Nr.

To locate the global minimum, we have found it conve-
nient to begin by using the fixed-Nr minimization scheme in
Eq. �30�, which determines the minimum value of EVS for a
given value of Nr. R is found to vary only slightly as Nr is

varied and the minimum of the total energy along this line in
the Nr-R plane can readily be determined. With Nr fixed at
the value where this minimum occurs, we subsequently
evaluate the total energy as a function of R, adjusting the
chemical potential to ensure that Eq. �25� is satisfied. The
global minimum can then be approached quickly with suc-
cessive variations of Nr and R. In this way, we find a global
minimum at Nr=37.5 and R=4.83 for �=5. These values are
perhaps coincidentally close to the GP results of 37 and 4.83,
respectively; the agreement with the GP values �in brackets�
is slightly poorer for �=6, where we find Nr=47.0 �44� and
R=5.87 �5.80� and for �=7, Nr=57.5 �51� and R=6.88
�6.85�. Nevertheless, the global minimization in all cases
moves Nr in the right direction from the VS values in Table
I and yields values of R that are in excellent agreement with
the GP results. It is, therefore, clear that our variational ap-
proach is providing a good description of the annular array
properties at this value of g.

By repeating these calculations as a function of � and
comparing the energy at the global minimum with EGV, we
obtain an improved value of �c. These points are plotted in
Fig. 7 and show that the phase boundary shifts to slightly
larger angular velocities; the fractional change in �c is 3–6%
and increases with decreasing g. The phase boundary for the
global minimum ends at g=200; below this interaction
strength the total energy did not exhibit a local minimum
corresponding to the annular array.

We believe this apparent failure of the calculations at low
values of g is associated with the breakdown of the Thomas-
Fermi approximation used for the vortex sheet. To confirm
this, we have analyzed in more detail the case of g=125 at
�=2.5, which was studied previously by Kasamatsu et al.
�4�. Here, we calculated the total energy as a function of
integral values of N0 and Nr. With Nr fixed at 10, we find a
minimum energy at N0=4, which matches the �Nr=10, N0
=4� equilibrium state found in Ref. �4�. The VS density for
this state shown in Fig. 9 corresponds quite well to the den-
sity given in Fig. 1 of Ref. �4� with regard to the boundaries
of the annulus, the radius of the vortex array, and the relative
density of the inner and outer portions of the annulus. How-

FIG. 8. Total energy contours �EVS+EVC� in the vicinity of the
global minimum �GM�. The point labeled VS is the location of the
minimum in the vortex sheet approximation �EVS�. The parameters
in the calculation are �=5, g=1000, and �= 1

2 .

FIG. 9. The density in the vortex sheet approximation for �Nr

=10, N0=4�, solid curve, and �Nr=12, N0=1�, dashed curve. The
results are obtained for �=2.5, �= 1

2 , and g=125.
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ever, the total energy we find is higher than that of the giant
vortex state �−1.35��� vs −1.41����; according to our cal-
culations, �=2.5 lies to the right of the phase boundary,
consistent with the extrapolation of the dotted-dashed curve
in Fig. 7, but not consistent with the stability of the �10, 4�
state as determined by the GP equation. As stated earlier, we
attribute this discrepancy in �c to the breakdown of the TF
approximation for the VS. In fact, we find states with even
lower total energy when the central circulation is minimized.
For Nr=12, we find a minimum of E=−1.5��� at N0=1 and
the corresponding density is shown by the dashed curve in
Fig. 9. It is clear from this figure why the energy of this state
is lower in our approach. Although the VS energy is higher
than for the �10, 4� state, the vortex core energy EVC of the
�12, 1� state is reduced to an even greater extent because of
the low density n0�R� at the radius of the vortex sheet. �Re-
call that the VC energy is proportional to this quantity.�
However, we expect that there will be significant beyond-TF
corrections to the VS energy for this state due to the highly
inhomogeneous nature of the density. We believe this is the
reason why the �10, 4� state, as opposed to the �12, 1� state,
is the lowest energy state as found in the GP calculations �4�.
We conclude that beyond-TF corrections must be playing a
role in our determination of the phase boundary for small
values of g.

We finally present some results for configurations involv-
ing multiple rings of vortices. These results are obtained us-
ing a straightforward generalization of the vortex sheet ap-
proximation discussed in Sec. III for a single ring. In Fig. 10,
we show the density n0�r� obtained by minimizing the VS
energy functional for one, two, and three vortex sheets for
the case of �=5. The energies for these cases are −127.0,
−128.2, and −128.7���, respectively, indicating that the
vortex sheet approximation prefers multiple ring configura-
tions. In fact, one can consider the limit of a continuous
distribution of vortex sheets with a circulation density ��r�,
which is a continuous function of r. The distribution which
minimizes the free energy is ��r�=� /�, that is, a constant
density throughout the annular region of the condensate. This
gives rise to the rigid body velocity field vRB�r�=r� as used

in the uniform vortex lattice calculations �1�. Of course, the
vortex core energies must be taken into account in order to
determine the relative stability of the multiple vortex sheet
states. When this energy is included, we expect to find a
sequence of phase boundaries between the n and �n+1� sheet
states, and in particular, a phase boundary between the single
and double ring configurations which lies to the left of the
phase boundary shown in Fig. 7. Our calculation of the vor-
tex core energy can be extended to treat these multiple ring
configurations, but we will not pursue this extension here.

VI. CONCLUSIONS

In summary, we have investigated the properties of an
annular Bose-Einstein condensate in a harmonic-plus-quartic
trap in the regime of high angular velocities ����. Of
particular interest is the transition from the state containing
an annular array of vortices to the giant vortex state in which
the circulation is carried by a single central vortex. The
phase boundary defining the transition between these two
states was determined by a variational analysis of the Gross-
Pitaevskii energy functional. Our approach identified two
contributions to the total energy. One, based on an azimuthal
average of the density and velocity, defined what we refer to
as the vortex sheet approximation. This part accounted for
most of the energy but important corrections to the energy
coming from the vortex cores had to be included in order to
properly describe the transition to the giant vortex state. The
vortex core energy was also treated variationally by assum-
ing the core to have a Gaussian density profile. With this
choice of the core profile, we were able to provide analytic
expressions for the various contributions to this part of the
energy. The phase boundary determined by treating the core
energy perturbatively differed only slightly from the phase
boundary determined by a global minimization of the total
energy. However, the global minimization did provide equi-
librium parameters which were in better agreement with
those obtained from the solution of the GP equation �1�. Our
approach can also be used to deal with multiple ring configu-
rations and possibly with other arrangements of vortices in
rotating trapped gases.

Our results for the phase boundary are expected to be less
reliable in the limit of weak interactions �g�250�, where
corrections to our Thomas-Fermi-like approximation to the
vortex sheet appear to be important. This may account for
the different qualitative behavior seen in our results as com-
pared to the case of weak interactions. In the latter, the radius
of the vortex array decreases continuously and eventually
passes through the inner radius of the annulus �1,3,4,7�. In
contrast, for strong interactions, the radius of the array is
given accurately by Eq. �37� which places the array near the
middle of the annulus. With increasing angular velocity the
annular array eventually becomes metastable and the transi-
tion to the giant vortex state is necessarily first order. This
behavior is consistent with the recent results of Kim and
Fetter �8�. The explanation for this qualitatively different be-
havior is not known at present and would be an interesting
topic for future study.

As a final comment, we emphasize that we have only
addressed the static equilibrium properties of the vortex

FIG. 10. The density in the vortex sheet approximation for one
�solid�, two �dashed�, and three �dashed-dotted� vortex sheets. The
results are obtained for �=5, �= 1

2 , and g=1000.
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structures considered. The dynamic stability of these states is
also of interest and was addressed in the paper by Kim and
Fetter �8�. Their analysis leads to the conclusion that the
vortices in the annular array are indeed dynamically stable.
Thus the annular array is a well-defined equilibrium state
that is separated by a meaningful phase boundary from the
giant vortex state.
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APPENDIX A

We present here details of the calculation leading to the
result given in Eq. �49�. The contribution to the integral in
Eq. �48� from the range R�r�� can be written as

I1
� = 2�Nr�

1

� dx

x
�1 − e−�R/��2�x − 1�2

�
1

x2Nr − 1
. �A1�

Integrating by parts, we have

I1
� =

2�R2

�2 �
1

�

dx�x − 1�e−�R/��2�x − 1�2
ln
 x2Nr

x2Nr − 1
� .

�A2�

The x2Nr factor in the logarithm gives the integral �with x
=1+y�

A =
4�NrR

2

�2 �
0

�

dye−R2y2/�2
y ln�1 + y�

�
2�Nr�

R
���

2
−

1

2

�

R
+

��

4

 �

R
�2

−
1

2

 �

R
�3

+ ¯ � .

The other logarithmic term is expanded as

ln�x2Nr − 1� � ln�2Nry� + M1y + M2y2 + ¯ �A3�

and gives the contribution

B = −
2�R2

�2 �
0

�

dye−R2y2/�2
y�ln�2Nry� + M1y + M2y2 + ¯ � .

�A4�

Similarly, the range 0�r�R gives the integral

I1
� = 2�Nr�

0

1 dx

x
�1 − e−�R/��2�1 − x�2

�
x2Nr

1 − x2Nr

= −
2�R2

�2 �
0

1

dx�1 − x�e−�R/��2�1 − x�2
ln�1 − x2Nr�

� −
2�R2

�2 �
0

�

dye−R2y2/�2
y�ln�2Nry� − M1y + M2y2 + ¯ � ,

where the assumption that R /� is large allows the upper limit
to be extended to infinity. Adding I1

� to I1
�=A+B, we finally

obtain

I1 = 2��ln
 aR

Nr�
� + Nr

��

2

�

R
− 
M2 +

Nr

2
�
 �

R
�2

+ Nr

��

4
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R
�3

− 
2M4 +
Nr

2
�
 �

R
�4

+ ¯ � , �A5�

where a= 1
2e�/2 with � equal to Euler’s constant, M2= 1

6
�Nr

− 1
2

��Nr− 5
2

� and M4=− 1
1440

�Nr− 1
2

��8Nr
3+4Nr

2−218Nr+251�.
This expansion provides an accurate representation of I1 over
the range of � /R of interest.

APPENDIX B

In Sec. IV, we had integrals of the form

�
R

� dr

r
e−�r − R�2/�2

�R/r��k−1� = �
0

�

e−R2y2/�2
�1 + y�−kdy

� Jk
��R/�� . �B1�

For large R /�, we have to a good approximation

Jk
��R/�� = �

0

�

e−R2y2/�2
e−k ln�1+y�dy � �

0

�

e−R2y2/�2
e−k�y−y2/2�dy

=
1

2
� �

�−
e�−y−

2
erfc���−y−� ,

where �−= �R /��2−k /2 and y−=k /2�−.
The other integral that appears is

�
0

R dr

r
e−�r − R�2/�2

�r/R��k+1� = �
0

1

e−R2y2/�2
�1 − y�kdy

� Jk
��R/�� . �B2�

For large R /�, this becomes

Jk
��R/�� = �

0

1

e−R2y2/�2
e−k ln�1−y�dy � �

0

�

e−R2y2/�2
e−k�y+y2/2�dy

=
1

2
� �

�+
e�+y+

2
erfc���+y+� ,

where �+= �R /��2+k /2 and y+=k /2�+.
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