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We present a generalized two-level scheme for an “atom diode,” namely, a laser device that lets a two-level
ground-state atom pass in one direction, say from left to right, but not in the opposite direction. The laser field
is composed of two lateral state-selective mirror regions and a central pumping region. We demonstrate the
robustness of the scheme and propose a physical realization. It is shown that the inclusion of a counterintuitive
laser field blocking the excited atoms on the left side of the device is essential for a perfect diode effect. The
reason for this, the diodic behavior, and the robustness may be understood with an adiabatic approximation.
The conditions to break down the approximation, which imply also the diode failure, are analyzed.
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I. INTRODUCTION

In a previous paper �1� we proposed simple models for an
“atom diode,” a laser device that lets a neutral atom in its
ground state pass in one direction �conventionally from left
to right� but not in the opposite direction for a range of
incident velocities. A diode is a very basic control element in
a circuit, so many applications may be envisioned to trap or
cool atoms, or to build logic gates for quantum information
processing in atom chips or other setups. Similar ideas have
been developed independently by Raizen and co-workers
�2,3�. While their work has emphasized cooling and phase-
space compression, we looked for the laser interactions lead-
ing to the most effective diode. This led us to consider first
stimulated Raman adiabatic passage �STIRAP� �4� transi-
tions and three-level atoms, although we also proposed a
scheme for two-level atoms. In this paper we continue the
investigation of the atom diode by generalizing its two-level
version and providing possible physical implementations, a
stability analysis, and an interpretation of the results in terms
of an adiabatic basis.

We restrict the atomic motion, similarly to �1�, to one
dimension. This occurs when the atom travels in waveguides
formed by optical fields �5�, or by electric or magnetic inter-
actions due to charged or current-carrying structures �6�. It
can be also a good approximation in free space for atomic
packets which are broad in the laser direction, perpendicular
to the incident atomic direction �7�, and quite generally for
microwave or radiofrequency transitions with negligible re-
coil velocities. Three-dimensional effects should not imply a
dramatic disturbance, in any case, as we shall analyze else-
where.

In Sec. II we present the generalized model for a two-
level atom diode. In Sec. III we show its “diodic behavior”

and we examine the stability with respect to parameter
changes. In the main Sec. IV we will see that the behavior of
the diode and of several variants, including in particular the
ones discussed in �1,2�, can be understood and quantified
with the aid of an adiabatic basis �equivalently, partially
dressed states� obtained by diagonalizing the effective inter-
action potential. The paper ends with a summary and an
appendix on the adiabaticity criterion.

II. THE MODEL

The basic setting can be seen in Fig. 1�a� and 1�b�, and
consists in principle of three, partially overlapping laser
fields �A simplified two-laser device is also possible as dis-
cussed below.�: two of them are state-selective mirror lasers
blocking the excited ��2�� and ground ��1�� states on the left
and right, respectively, of a central pumping laser on reso-
nance with the atomic transition. They are all assumed to be
traveling waves perpendicular to the atomic motion direc-
tion. The corresponding effective, time independent,
interaction-picture Hamiltonian for the two-level atom may
be written, using �1��� 1

0
� and �2��� 0

1
�, as

�1�

where ��x� is the Rabi frequency for the resonant transition
and the effective reflecting state-selective potentials are
W1�x�� /2 and W2�x�� /2 for states �1� and �2�, respectively.
As the central laser is on resonance with the transition 1↔2,
the detuning �the difference between laser frequency and the
transition frequency� is zero and does not enter in Eq. �1�.
p̂x=−i�� /�x is the momentum operator and m is the mass
�corresponding to Neon in all numerical examples�.

A particular realization of Eq. �1� may actually involve
only two detuned lasers, a pumping and a Stokes laser �see
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Fig. 1�c��. The corresponding stationary Schrödinger equa-
tion is given in components by

E�1�x� =
p̂x

2

2m
�1�x� +

�

2
�P�x��3�x� , �2�

E�2�x� =
p̂x

2

2m
�2�x� +

�

2
�S�x��3�x� , �3�

E�3�x� =
p̂x

2

2m
�3�x� − ���3�x� +

�

2
��P�x��1�x�

+ �S�x��2�x�� . �4�

In the limit of large detuning ��E /�, we get from Eq. �4�,
by following �8�,

�3�x� �
1

2�
��P�x��1�x� + �S�x��2�x�� , �5�

and, by using Eq. �5� in Eqs. �2� and �3�, we can write down
an effective, approximate Hamiltonian for the levels 1 and 2.
It takes the form of Eq. �1� with W1�x�= �1/2���P

2 �x�, W2

= �1/2���S
2�x�, and ��x�= �1/2���P�x��S�x�. Note that we

get the same result by using “adiabatic elimination” �9�.
Spontaneous decay is neglected in Eq. �1� for simplicity,

but it could be incorporated following �1�. It implies both
perturbing and beneficial effects for unidirectional transmis-
sion. Notice that in the ideal diode operation the ground-state
atom must be excited during its left-to-right crossing of the
device. In principle, excited atoms could cross the diode

“backwards,” i.e., from right to left, but an irreversible decay
from the excited state to the ground state would block any
backward motion �1�.

The behavior of this device is quantified by the scattering
transmission and reflection amplitudes for left �l� and right
�r� incidence. Using � and � to denote the channels, �
=1,2, �=1,2, let us denote by R��

l �v� �R��
r �v�� the scatter-

ing amplitudes for incidence with modulus of velocity v
�0 from the left �right� in channel �, and reflection in chan-
nel �. Similarly we denote by T��

l �v� �T��
r �v�� the scattering

amplitude for incidence in channel � from the left �right� and
transmission in channel �.

For some figures, it will be preferable to use an alternative
notation in which the information of the superscript �l /r� is
contained instead in the sign of the velocity argument w,
positive for left incidence and negative otherwise,

R���w� ª 	R��
l ��w�� if w � 0,

R��
r ��w�� if w 	 0,



T���w� ª 	T��

l ��w�� if w � 0,

T��
r ��w�� if w 	 0.



The ideal diode configuration must be such that

�T21
l �v��2 � �R11

r �v��2 � 1, �6�

�R�1
l �v��2 � �T�1

r �v��2 � �R21
r �v��2 � �T11

l �v��2 � 0, �7�

with �=1,2. In words, there must be full transmission for
left incidence and full reflection for right incidence in the
ground state within an interval vmin	v	vmax of the modulus
of the velocity. More precisely, vmax ,vmin are chosen as the
limiting values such that ��=1

2 ��R�1
l �2+ �T�1

r �2�+ ��R21
r �2

+ �T11
l �2�+ �1− �T21

l �2�+ �1− �R11
r �2�	
 for all vmin	v	vmax,

where we choose 
=0.01 in the rest of this paper.

III. DIODIC BEHAVIOR AND ITS LIMITS

The behavior of the two-level atom diode is examined by
solving numerically the stationary Schrödinger equation,

Ev��x� = H��x� , �8�

with the Hamiltonian given by Eq. �1� and Ev= �m /2�v2. We
shall use Gaussian laser profiles

W1�x� = Ŵ1��x,d�, W2�x� = Ŵ2��x,− d� ,

��x� = �̂��x,0� ,

where

��x,x0� = exp�− �x − x0�2/�2�2��

and �=15 m.
The results, obtained by the invariant imbedding method

�10,11�, are shown in Fig. 2 for different parameters. In the
plotted velocity range, the diodic behavior holds, i.e., Eqs.
�6� and �7� are fulfilled. �The transmission and reflection

FIG. 1. �a� Schematic action of the different lasers on the atom
levels, �b� location of the different laser potentials, and �c� a
STIRAP configuration using detuned pumping and Stokes lasers
with Rabi frequencies �P and �S.
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probabilities for incidence in the ground state, �R21
l/r�2 and

�T11
l/r�2, which are not shown in the figure are zero.� The de-

vice may be asymmetric, i.e., even with Ŵ1�Ŵ2 there can
be a diodic behavior �see some examples in Fig. 2�.

Note in passing that the device works as a diode for inci-
dence in the excited state too, but in the opposite direction,
namely, �T12

r �v��2��R22
l �v��2�1, whereas all other probabili-

ties for incidence in the excited state are approximately zero.
Now let us examine the stability of the diode with respect

to changes in the separation between laser field centers d. In
Fig. 3, vmax ,vmin are plotted versus the distance between the

laser centers, d, for different combinations of �̂, Ŵ1, and Ŵ2.
For the intensities considered, vmax is in the ultracold regime
below 1 m/s. In the vmax surface, unfilled boxes indicate
reflection failure for right incidence and filled circles indicate
transmission failure for left incidence. In the vmin surface, the
failure is always due to transmission failure for left inci-
dence. We see that the valid d range for diodic behavior can

be increased by increasing the Rabi frequency �̂; compare,
e.g., �a� and �b�. Moreover, higher mirror intensities increase
vmax at the plateau but also make it narrower; compare, e.g.,
�b� and �c�. This narrowing can be simply compensated by

increasing �̂ too; compare, e.g., �a� and �c�.
Now, we examine the stability with respect to a shift � of

the central position of the pumping laser �see Fig. 4�. It turns
out that there is a range �e.g., �	12 m in Fig. 4� where the
limits vmin and vmax practically do not change.

Finally, we want to examine the stability with respect to a
perturbation in the pulse shape. Therefore we choose

��x,x0� = exp�− �x − x0�2/�2�2���1 + a�x − x0�2/�2�

with 0�a�1/2 such that 0���x ,x0��1. Note that for a
=0 we get the previously examined Gaussian pulses. The

corresponding limits vmin and vmax are shown in Fig. 5. It
turns out that vmax�35 cm/s for ��0.26. This shows that
there is stability concerning changes in the pulse shape. Nev-
ertheless one may optimize the shape to achieve a maximal
upper limit. A way to construct these shapes could be the
penalty algorithm �12� or by using “local” optimization �13�.
Another way to increase the upper limit is by increasing the
laser intensities �compare Fig. 3�c� for d=60 m and Fig. 5��
while keeping the Gaussian profile.

IV. ADIABATIC INTERPRETATION OF THE DIODE

A very remarkable and useful property in all cases de-
picted in Fig. 2 is the constant value of the transmission and
reflection probabilities in a broad velocity range. This is call-

FIG. 2. �a� Reflection probability �R11�w��2 and �b� transmission
probability �T21�w��2; recall that in this notation w	0 corresponds
to incidence from the right, and w�0 to incidence from the left;

d=50 m; �̂=1�106/s, Ŵ1=Ŵ2=100�106/s �solid line, vmax

=56±0.5 cm/s�; �̂=0.2�106/s, Ŵ1=20�106/s, Ŵ2=100

�106/s �dashed line, ±vmax, triangles�; �̂=0.2�106/s, Ŵ1=100

�106/s, Ŵ2=20�106/s �dots, ±vmax, boxes�; in all cases vmin

	1 cm/s. FIG. 3. Limit vmin �thick dashed lines� and vmax �symbols con-
nected with dashed lines� for diodic behavior; the circles �boxes�
correspond to breakdown due to transmission �reflection�; �a� �̂

=0.2�106/s, Ŵ1=Ŵ2=20�106/s; �b� �̂=1�106/s, Ŵ1=Ŵ2=20

�106/s; �c� �̂=1�106/s, Ŵ1=Ŵ2=100�106/s.

FIG. 4. Limit vmin �thick dashed line� and vmax �symbols con-
nected with dashed line� for diodic behavior versus the shift � for
different d; the circles �boxes� correspond to breakdown first for

transmission �reflection�; �̂=1�106/s, Ŵ1=Ŵ2=100�106/s, d
=50 m.
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ing for an explanation because, from a classical perspective,
the ground-state atom incident from the left—not being af-
fected by W2—finds first the pumping laser and then the
state-selective mirror potential for the ground state. Accord-
ing to this sequential model, one would expect an important
effect of the velocity in the pumping efficiency. A different
velocity implies a different traversal time and thus a different
final phase for the Rabi oscillation, which should lead to a
smooth, continuous variation of the final atomic state with
the velocity. In particular, the probability of the excited state
after the pumping would oscillate with the velocity and

therefore the final transmission after the right mirror should
oscillate too, if the sequential model picture were valid. The
failure of the sequential scattering picture must be due to
some sort of quantum interference phenomenon. Interference
effects are well known in scattering off composite potentials,
but in comparison with, e.g., resonance peaks in a double
barrier, the present results are of a different nature.

Moreover there is the question of the role of the mirror
potential W2. If we want ground-state atoms to pass from left
to right but not from right to left, it is not intuitively obvious
why we should add a reflection potential for the excited state
on the left of the pumping potential � �see again Fig. 1�. To
deal with these questions we shall discuss an adiabatic ap-
proximation of Eq. �8�.

A. Adiabatic approximation

In detail, let us examine the following four cases �labeled
depending on the mirror potentials included in the device�:
case 0: Ŵ1=Ŵ2=0; case 1: Ŵ1�0, Ŵ2=0; case 2: Ŵ1=0,

Ŵ2�0; case 12: Ŵ1�0, Ŵ2�0. We diagonalize now the
potential matrix V�x�

U�x�V�x�U+�x� = ��−�x� 0

0 �+
 .

The orthogonal matrix U�x� is given by

U�x� =�
W−�x� − �x�

�4�2�x� + �W−�x� − �x��2

W−�x� + �x�
�4�2�x� + �W−�x� + �x��2

2��x�
�4�2�x� + �W−�x� − �x��2

2��x�
�4�2�x� + �W−�x� + �x��2

�
where

W− = W1 − W2,

 = �4�2�x� + W−
2�x� ,

and the eigenvalues of V�x� are

���x� =
�

4
�W1�x� + W2�x� � �x��

with corresponding �normalized� eigenvectors ����x��. The
asymptotic form of U varies for the different cases distin-
guished with a superscript, U�j�, j=0,1 ,2 ,12. For x→−�,
the same U is found for cases 0 and 1, in which the left edge
corresponds to the pumping potential. Similarly, the cases 2
and 12 share the same left edge potential W2 and thus a
common form of U,

U�0,1��− �� =
1
�2

�− 1 1

1 1
, U�2,12��− �� = �− 1 0

0 1
 .

The corresponding analysis for x→� gives the asymptotic
forms

U�0,2���� =
1
�2

�− 1 1

1 1
, U�1,12���� = �0 1

1 0
 .

The eigenvalues �±�x� for some parameters are plotted in
Fig. 6. We see that �+�x��0 has at least one high barrier
whereas �−�x��0. Note, that if ��x�=�W1�x�W2�x� then
�−�x�=0 is exactly true.

This recalls the coherent dark states that are used in the
three-level STIRAP population transfer �4� where the atom is
always in a coherent superposition of two states and never in
the remaining third one. In our two-level model there is
never a third state. Nevertheless, the advantage of an eigen-
vector with eigenvalue approximately zero is in both situa-

FIG. 5. Limit vmin �thick dashed line� and vmax �symbols con-
nected with dashed lines� for diodic behavior versus change in the
pulse shape a; the filled circles �unfilled boxes� correspond to
breakdown first for transmission �reflection�; limits of condition
�12� v�,min �lower solid line� and v�,max �upper solid line�; limit of
the adiabatic approximation vad,max �unfilled circles�; d=60 m,

Ŵ1=Ŵ2=100�106/s, �̂=0.2�106/s.
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tions, the three-level STIRAP transfer and our two-level
model, that the atom moves �approximately� freely in that
eigenstate avoiding reflection.

If � is a two-component solution of the stationary
Schrödinger equation, Eq. �8�, we now define the vector

��x� = ��−�x�
�+�x�

ª U�x���x�

in a potential-adapted, adiabatic representation. Note that if
no approximation is made, � and � are both exact and
contain the same information expressed in different bases.
Starting from Eq. �8�, using �=U+�, and multiplying from
the left by U, we arrive at the following equation for ��x�:

Ev��x� = −
�2

2m

�2

�x2��x� + ��−�x� 0

0 �+�x�
��x� + Q��x� ,

where

Q = −
�2

2m
�U�x�

�2U+

�x2 �x� + 2U�x�
�U+

�x
�x�

�

�x


= � mB2�x�/2 − A�x� + iB�x�p̂x

A�x� − iB�x�p̂x mB2�x�/2
 �9�

is the coupling term in the adiabatic basis, and A�x�, B�x� are
real functions,

A�x� =
�2

2m4	2
d�

dx

dW−

dx
2 + �W−

d2�

dx2 − �
d2W−

dx2 
��4�2 + W−

2� − 2�W−�4�d�

dx
2

− �dW−

dx
2�
 ,

�10�

B�x� =
�

m2��
dW−

dx
−

d�

dx
W− . �11�

Let us consider incidence from the left and assume first that
the coupling Q can be neglected so that there are two inde-
pendent adiabatic modes ��� in which the internal state of
the atom adapts to the position-dependent eigenstates ��±� of
the laser potential V, whereas the atom center-of-mass mo-
tion is affected in each mode by the effective adiabatic po-
tentials �±�x�.

Because �−�0, an approximate solution for �−�x� is a
full transmitted wave and because �+ consists of at least one
“high” barrier—at any rate the present argument is only ap-
plicable for energies below the barrier top—an approximate
solution for �−�x� is a wave that is fully reflected by a wall.
So we can write for x�0

��x� � �−��x� ª �c−

c+
eikx + � 0

− c+
e−ikx

and for x�0

��x� � ���x� ª �c−

0
eikx.

In order to determine the amplitudes c± we have to compare
with the asymptotic form of the scattering solution for left
incidence,

��x� � �−��x� ª �1

0
eikx + �R11

l

R21
l e−ikx

if x�0 and

��x� � ���x� ª eikx�T11
l

T21
l 

if x�0.
The transmission and reflection coefficients can now be

approximately calculated for each case from the boundary
conditions �−��x�=U�−���−��x� and ���x�=U������x�.

The incidence from the right can be treated in a similar
way. All the amplitudes are given in Table I, from which we
can find, taking the squares, the transmission and reflection
probabilities. We find a perfect diodic behavior only in case

12. The pumping potential and a reflecting potential Ŵ1�0
on its right and W2=0 �case 1� is not enough to make a
perfect diode. While there is still full reflection if the atom
comes from the right, the transmission probability is only
1/2 when the atom comes from the left; accordingly there is
a 1/2 reflection probability from the left, which is equally
distributed between the ground- and excited-state channels.

The adiabatic picture provides in summary a simple ex-
planation of the behavior of the diode and its variants. In
particular, the perfect diode behavior of case 12, occurs be-
cause the �approximately� freely moving mode �− transfers
adiabatically the ground state to the excited state from left to
right. To visualize this, let us represent the probabilities to
find the ground and excited state in the eigenvectors
��−

�j��x�� for the cases j=12,1. They are plotted in Fig. 7�a�
for the case 12: the perfect adiabatic transfer can be seen
clearly. On the other hand, the mode � �not plotted�, which
tends to the ground state on the right edge of the device, is
blocked by a high barrier. The stability of this blocking effect
with respect to incident velocities holds for energies smaller
than the �+ barrier top �more on this below�. In Fig. 7�b� the
ground and excited state probabilities for case 1 are plotted.
If the mirror potential laser W2 is removed on the left edge of
the device, the ground state is not any more an eigenstate of
the potential for x�0. The adiabatic transfer of the mode �
occurs instead from ��2�− �1�� /21/2 on the left to �2� on the

FIG. 6. Eigenvalues �a� �+ and �b� �−; d=50 m, �̂=1

�106/s; Ŵ1=Ŵ2=100�106/s �solid lines�; Ŵ1=100�106/s, Ŵ2

=0 �boxes�; Ŵ1=0, Ŵ2=100�106/s �circles�.
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right, whereas the blocked mode � on the left corresponds to
the linear combination ��2�+ �1�� /21/2. This results in a 1/2
reflection probability for ground-state incidence from the
left. A similar analysis would be applicable in the other
cases.

The probabilities of Table I for the case 12 coincide with
the results shown in Fig. 2. We also have calculated numeri-
cally the transmission and reflection probabilities for cases 1
and 2 shown in Fig. 8. The results also coincide with Table I
and show again that the counterintuitive state-selective mir-
ror W2 is really important to attain a perfect diode.

Note that in the case 2 �Ŵ1=0, Ŵ2�0� there is no full
reflection for incidence from the right in the ground state so

this case is not useful as a diode. But for incidence from the
left there is equal transmission in ground and excited states
so that this device might be useful to build an interferometer.

B. Limits of the approximation

The approximations made so far have a range of validity
that depends on the potential parameters and determines the
working conditions of the diode. Even though these condi-
tions can be easily found numerically from the exact results,
approximate breakdown criteria are helpful to understand the
limits of the device and different reasons for its failure.

For the approximation that �− is a fully transmitted wave
and �+ a fully reflected one a necessary condition is

maxx��−�x�� 	 Ev 	 maxx��+�x�� . �12�

This defines the limits

v�,min ª� 2

m
maxx��−�x�� , �13�

v�,max ª� 2

m
maxx��+�x�� , �14�

such that Eq. �12� is fulfilled for all v with v�,min	v
	v�,max. The plateaus of vmax seen, e.g., in Fig. 3 for a range
of d values are essentially coincident with v�,max.

Figure 9 shows an example of the case 0 �only a pumping

laser, Ŵ1=Ŵ2=0�. We see that the transmission and reflec-

TABLE I. Reflection and transmission probability for the different variations of the atom diode.

Case c−
r/l c+

r/l R11
r/l R21

r/l T11
r/l T21

r/l

�a� Incidence from the right

�0� Ŵ1=Ŵ2=0
−

1
�2

1
�2

−
1

2
−

1

2

1

2
−

1

2

�1� Ŵ1�0,Ŵ2=0 0 1 −1 0 0 0

�2� Ŵ1=0,Ŵ2�0
−

1
�2

1
�2

−
1

2
−

1

2

1
�2 0

�12� Ŵ1�0,Ŵ2�0 0 1 −1 0 0 0

�b� Incidence from the left

�0� Ŵ1=Ŵ2=0
−

1
�2

1
�2

−
1

2
−

1

2

1

2
−

1

2

�1� Ŵ1�0,Ŵ2=0
−

1
�2

1
�2

−
1

2
−

1

2 0
−

1
�2

�2� Ŵ1=0,Ŵ2�0 −1 0 0 0
1
�2

−
1
�2

�12� Ŵ1�0,Ŵ2�0 −1 0 0 0 0 −1

FIG. 7. ��1 ��−
�j���2 �solid lines� and ��2 ��−

�j���2 �dashed lines� for

d=50 m, �̂=1�106/s, Ŵ1=100�106/s; �a� Ŵ2=100�106/s

�case j=12�, �b� Ŵ2=0 �case j=1�.
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tion probabilities are approximately velocity independent
and all channels are equally populated until v�,max �in coin-
cidence with Table I�. From this point on, Rabi oscillations
start �for a related effect see �14��. Note that, if mirror po-
tentials are added to the pumping laser �as in Fig. 8�, this
implies a noteworthy stabilization of the probabilities and
velocity independence in comparison to Fig. 9.

Figure 10 shows the exact limits vmin and vmax for the
diodic behavior for different d �see also Fig. 3� for the per-
fect diode case 12. The limits v�,min, v�,max resulting from the
condition of Eq. �12� are also shown. We see that the exact
limit vmin coincides essentially with v�,min so that the lower
diodic velocity boundary can be understood by the break-
down of the condition that �− is fully transmitted due to a �−

barrier. This effect is only relevant for small distances d be-
tween the lasers.

Another reason for the breaking down of the diode may
be that the adiabatic modes are no longer independent, i.e.,
that Q �see Eq. �9�� cannot be neglected. An approximate
criterion for adiabaticity, more precisely for neglecting the
nondiagonal elements of Q �see the Appendix� is

q�v� ª maxx�I

�A�x��2 + 2m�B�x��2�Ev − �−�x��
��+�x� − �−�x��2

� 1

�15�

with I= �−d ,d�. A velocity boundary vad,max defined by q�v�
	
 for all v�,min	v	vad,max is shown in Fig. 10 with 

=0.01. �Note that the condition of Eq. �15� only makes sense
if Ev��−�x�, i.e., v�,min	v.� We see in Fig. 10 that we have
the same qualitative dependence of vmax on d and of vad,max
on d. Therefore the breakdown of the diode at vmax for large
d is due to a failure of the adiabatic approximation.

The same ideas are applicable to the dependence on the
pulse shape �see Fig. 5�. The decrease of the upper limit for
larger a is also due to a failure of the adiabatic approxima-
tion.

V. SUMMARY

Summarizing, we have examined a two-level model for
an atom diode, a laser device in which ground-state atoms
can pass in one direction but not in the opposite direction.
The proposed scheme includes two state-selective mirrors,
one for the excited state on the left, the other one for the

FIG. 8. �a� Reflection probability �R11�w��2, �b� reflection prob-
ability �R21�w��2, �c� transmission probability �T11�w��2; �d� trans-

mission probability �T21�w��2; d=50 m, �̂=1�106/s; Ŵ1=100

�106/s, Ŵ2=0 �dashed lines�; Ŵ1=0, Ŵ2=100�106/s �solid
lines�.

FIG. 9. Reflection and transmission probability for incidence

from the left, d=50 m, �̂=1�106/s, Ŵ1=Ŵ2=0; the circles in-
dicate v�,max while in this case v�,min=0 �see Eqs. �13� and �14��; �a�
�R11

l �v��2 �thick dotted line�, �R21
l �v��2 �solid line�; �b� �T11

l �v��2
�dashed line�, �T21

l �v��2 �solid line�.

FIG. 10. Limits of the diodic behavior vmin �thick dashed line�
and vmax �filled circles connected with a dashed line�; limits of
condition �12� v�,min �lower solid line� and v�,max �upper solid line�;
limit of the adiabatic approximation vad,max �unfilled circles�; Ŵ1

=Ŵ2=100�106/s, �̂=0.2�106/s.

ADIABATIC INTERPRETATION OF A TWO-LEVEL… PHYSICAL REVIEW A 73, 013608 �2006�

013608-7



ground state on the right, and a pumping region—located
between the two mirrors—on resonance with the atomic
transition. Note that this scheme can be realized by a highly
detuned three-level STIRAP transfer.

We have shown that the diodic behavior is very stable
with respect to atom velocity in a given range, and with
respect to changes in the distances between the centers of the
lasers and the pulse shapes. The inclusion of the laser on the
left, reflecting the excited state, is somewhat counterintui-
tive, but it is essential for a perfect diode effect; the absence
of this laser leads to a 50% drop in efficiency.

The stability properties as well as the actual mechanism
of the diode are explained with an adiabatic basis and an
adiabatic approximation. The diodic transmission is due to
the adiabatic transfer of population from left to right, from
the ground state to the excited state in a free-motion adia-
batic mode, while the other mode is blocked by a barrier.
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APPENDIX

To motivate Eq. �15� �see also �15�� let us assume

E��x� = −
�2

2m

�2

�x2��x� + ��− 0

0 �+
��x�

+ 
� 0 − Ã + iB̃p̂x

Ã − iB̃p̂x 0
��x� �A1�

where �±, Ã, and B̃ are real and independent of x. We assume

that E��− and that 
 is small such that we can treat �
perturbatively,

��x� � ��0,−�x�
�0,+�x�

 + 
��1,−�x�
�1,+�x�


with

�0,−�x� = exp� i

�
�2m�E − �−�x ,

�0,+�x� = 0.

Then it follows from Eq. �A1� for the first-order correction

�1,− = 0,

�1,+ = �E − �+ − p̂x
2/�2m��−1�Ã − iB̃p̂x��0,−

=
Ã − iB̃�2m�E − �−�

�− − �+
�0,−

because p̂x�0,−=�2m�E−�−��0,−. If we want to neglect �+

=0+
�1,+ we get the condition


2 �Ã�2 + �B̃�22m�E − �−�
��− − �+�2

� 1.

If �±, Ã and B̃ depend on x, we may use the condition

max
x�I

�
Ã�x��2 + �
B̃�x��22m�E − �−�x��
��−�x� − �+�x��2

� 1

where I is chosen in such a way that the assumption
�0,+�x�=0 is approximately valid.

In Eq. �A1�, we have not included any diagonal elements
in the coupling, compare with Eq. �9�. We neglect them in
the condition �15� but in principle it would be also possible

to absorb them by defining effective adiabatic potentials �̃±
=�±+mB2 /2.
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