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Collective dynamics and expansion of a Bose-Einstein condensate in a random potential
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We investigate the dynamics of a Bose-Einstein condensate in the presence of a random potential created by
optical speckles. We first consider the effect of a weak disorder on the dipole and quadrupole collective
oscillations, finding uncorrelated frequency shifts of the two modes with respect to the pure harmonic case.

This behavior, predicted by a sum-rules approach, is confirmed by the numerical solution of the Gross-
Pitaevskii equation. Then we analyze the role of disorder on the one-dimensional expansion in an optical guide,
discussing possible localization effects. Our theoretical analysis provides a useful insight into the recent
experiments performed at LENS [J. E. Lye, L. Fallani, M. Modugno, D. S. Wiersma, C. Fort, and M. Inguscio,
Phys. Rev. Lett. 95, 070401 (2005); C. Fort, L. Fallani, V. Guarrera, J. E. Lye, M. Modugno, D. S. Wiersma,

and M. Inguscio, Phys. Rev. Lett. 95, 170410 (2005)].
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I. INTRODUCTION

The investigation of Bose-Einstein condensates (BECs) in
the presence of disorder is rapidly becoming a central topic
in ultracold atom physics [1-9]. Bosonic systems in disor-
dered potentials have been extensively investigated in the
recent past, both experimentally and theoretically [10]. Ex-
periments with superfluid “He in porous materials have dem-
onstrated the suppression of superfluid transport and the
critical behavior at the phase transition in presence of disor-
der [11]. From the theoretical point of view, a rich variety of
phenomena is expected to occur in these systems, among
which the most fascinating are Anderson localization, ini-
tially proposed in the context of electron transport in disor-
dered solids [12] and later predicted and observed for non-
interacting wave phenomena (such as light [13,14]), and the
quantum transition to the Bose glass phase that originates
from the interplay of interactions and disorder [15].

The demonstrated capability of using BECs as versatile
tools to revisit condensed-matter physics [16], as, for ex-
ample, the transition from superfluid to Mott insulator [17],
suggests that these are also promising tools to engineer dis-
ordered quantum systems [ 1-3]. Recently, the effects of dis-
order created by a laser speckle have been observed on the
dynamics of a BEC, including uncorrelated shifts of the
quadrupole and dipole modes [4] and localization phenom-
ena during the expansion in a one-dimensional (1D) wave-
guide [5,6]. Effects of disorder have also been observed for
BECs in microtraps as a consequence of intrinsic defects in
the fabrication of the microchip [18,19].

In Refs. [4,6], we have shown that the main features ob-
served in that experiment can be explained within the Gross-
Pitaevskii (GP) theory. In this paper we report a detailed
analysis and discussion of the theoretical approach used,
comparing the effects of different kinds of random potentials.
We also make a systematic comparison with the case of a
periodic lattice with spacing of the order of the length scale
of disorder. This helps to discriminate the effects due to the
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particular realization of the random potential from those that
are intimately connected to the disorder.

We show that, in the presence of a weak disorder, the
dipole and quadrupole modes of a harmonically trapped con-
densate are undamped in the small amplitude regime,
whereas a superfluid breakdown may occur for larger oscil-
lations. In the first case, the two modes are characterized by
uncorrelated frequency shifts, both in sign and amplitude,
that depend on the particular realization of the perturbing
potential. The average features, however, do not depend cru-
cially on the particular kind of disorder, but still evidence
significant differences with the periodic case. We also show
that the localization effects observed during the expansion in
a 1D waveguide are mainly due to a classical trapping into
single wells or between barriers of the random potential. The
qualitative behavior in this case is very similar to that of a
periodic system.

The paper is organized as follows: we start in Sec. II by
describing the system and the various kinds of disorder con-
sidered. In Sec. III, we discuss the effect of the random po-
tential on the dipole and quadrupole collective oscillations of
the system by means of a sum-rules approach and the direct
solution of the GP equation. In Sec. IV, we address the role
of disorder on the BEC expansion in a 1D waveguide by
analyzing the results of the GP calculations in terms of the
quantum behavior of a single defect (well instead barrier) of
the potential. A detailed description on the numerical charac-
terization of the random potentials is reported in the
Appendix.

II. DESCRIPTION OF THE SYSTEM

In this paper, we will consider the case of an elongated
condensate confined in a cylindrically symmetric harmonic
potential

Vio(r1,2) = %mwirl + %mwgzz (1)
and subjected to an additional random potential Vy(z) along
the axial direction. The latter is characterized by the correla-

©2006 The American Physical Society


http://dx.doi.org/10.1103/PhysRevA.73.013606

MICHELE MODUGNO

L@ ' ' ' ' ' ' i
—
VAW ALY /\/V\M/\ %
AR ENTAY Py

Vs

A A A A DDA AL AN
RVAVATRVAVATRVAVATAVAVATATAVAVATAVAVATR

200  -150  -100  -50 0 50 100 150 200
z (Um)

YL

YG
bLbrorRrPwblbilo—nwREc—RWLWAL

FIG. 1. (Color online) Typical shape of the potentials considered
in this paper: (a) (blue detuned) speckles (red speckles would have
the same shape but reversed sign), (b) Gaussian random, and (c)
periodic. In all cases, the correlation length is /,.=10 um.

tion length /. and the amplitude V|, and can be written as
Vr(z)=V,v(z) with the distribution of intensities of v(z) be-
ing normalized to unit standard deviation. Here we will ad-
dress three kinds of disorder: two corresponding to a laser
speckle potential +v¢(z), where the + indicates whether it is
red or blue detuned (that is, the potential can be attractive or
repulsive), and another generated by a Gaussian random po-
tential v;(z). A detailed description on how the potentials are
constructed and characterized is reported in the Appendix.

In some cases, it will also be useful to compare the effect
of disorder to the case of a periodic lattice V;(z)=Vyv.(2).
For this purpose a suitable choice is a sinusoidal potential
v, (2)=2v2 sin*(wz/21,) with intensity normalized as before
and whose wave vector is chosen to match the correlation
length of the random potential, as discussed in the Appendix.
The typical shape of the various potentials for a correlation
length [.=10 um is depicted in Fig. 1.

III. COLLECTIVE EXCITATIONS

Let us start by discussing the effect of a random potential
on the collective excitations of the system, considering, in
particular, the dipole and quadrupole modes. First we will
consider the regime of weak disorder and small-amplitude
oscillations by comparing the prediction of sum rules with
the numerical solution of the GP equation, analyzing, in
more detail, the theoretical description of the experiments
reported in [4]. At the end of the section, we will also briefly
discuss the possibility of a superfluidity breakdown that may
occur for larger-amplitude oscillations.

A. Sum-rules approach

A powerful tool for characterizing the collective frequen-
cies of the system is the sum-rules approach [20,21]. Within
this approach, an upper bound for the frequencies of the
low-lying collective excitations of a many-body system is
given by
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where the moments m; are defined via the following commu-
tators:

my =([F.[H,F]] 3)

ms=([[F.H][H,[H,F]]]) (4)

between the many-body Hamiltonian H and a suitable exci-
tation operator F' that is chosen as follows:

FDZZ (5)

Fop= -2, (6)

a being a variational parameter. In our case, the Hamiltonian
can be written as

A2 i-1
pA

N
H=2 _I+Vho+VR+g25(Xj_xi) ) (7)
i1 | 2m j=1

where the interaction strength g is related to the interatomic
scattering length a by g=4mh%a/m, m being the atomic
mass.

In case of the harmonic potential V,, alone (unperturbed
case), the dipole and quadrupole collective frequencies have
the well-known expressions wp=w, for the dipole mode
along z and wy= 5/ 2w, for the quadrupole mode in case of
an elongated condensate in the large N Thomas-Fermi (TF)
limit.

Let us now discuss the effect of a shallow random poten-
tial Vg(z). Treating the Vj as a small perturbation and writing

w2=w3+ o, we get

Op = nl1<(9§VR>O (8)

1 (20, Vg + 22 Vi)o

0= ©)
m (2o

where the averages (--), are calculated on the unperturbed

ground state, and the second line is obtained assuming a

strongly elongated condensate.

Equations (8) and (9) imply that, in general, the shifts of
two frequencies are uncorrelated and depend on the particu-
lar shape of the perturbing potential and on its relative posi-
tion with respect to the harmonic potential.

To show how this works in a particular example, we con-
sider here the typical parameters of the LENS experiment in
[4]: frequencies w,=27X9 Hz and w, =27X90 Hz, total
number of atoms N=1X 103, Vy=2.5% _, and [,=10 um. A
picture of the total potential resulting from these parameters
and of the corresponding ground state is shown in Fig. 2. The
latter is obtained by solving the stationary GP equation for
the condensate wave function y(r, ,z) [22,23]
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FIG. 2. (Color online) (top) Column density of a typical ground-

state configuration in the presence of a red-detuned speckle poten-

tial (Vy=2.5h w,). (bottom) Solid line: profile of the combined po-
tential Vi+V,,, (dashed line).

ﬁZ
_%V2+Vho+VR+g|¢|2 b= u (10)

in the presence of both harmonic and random potentials, w
being the chemical potential. The unperturbed ground state
i that enters the averages in Egs. (8) and (9) is obtained
from the same equation in the limit of vanishing disorder,
VRZO.

In Fig. 3 we show the frequency shifts Aw=w-w,
= /2w, and their statistical distributions, respectively, for
100 and 1000 different realizations of the speckle potential.
The picture shows that the dipole and quadrupole shifts are
uncorrelated, in contrast to what happens in case of a pure
harmonic potential or in the presence of a periodic potential
[24]. This behavior does not depend on whether the speckles
are red or blue detuned (according to Egs. (8) and (9), this
corresponds to a change of sign, and therefore, the statistical
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FIG. 3. (Color online) Top: dipole (filled circles) and quadrupole
(empty circles) frequency shifts for 100 different realizations of the
speckle potential as obtained from the sum rules. Bottom: their
probability distribution P for 1000 realizations (left: dipole, right:
quadrupole); the dashed lines are a Gaussian fit.
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FIG. 4. (Color online) Top: dipole (filled circles) and quadrupole
(empty circles) frequency shifts for 100 different realizations of the
Gaussian random potential as obtained from the sum rules. Bottom:
their probability distribution P for 1000 realizations (left: dipole,
right: quadrupole); the dashed lines are a Gaussian fit.

properties in Fig. 3 remain unchanged). We have also veri-
fied that the behavior is essentially the same also in case of a
Gaussian disorder, see Fig. 4.

It is useful also to comment on the behavior in the pres-
ence of a periodic potential. When the wavelength 7/g=2I.
of the potential is much smaller than the axial extent of the
condensate, one can apply the Bloch picture and resort to the
effective mass approximation. As stated above, this yields
the same renormalization for both the dipole and quadrupole
frequencies w=\m/m"w,, m" being the effective mass [24].
Differently, in the case considered here ([.=10 wm), the con-
densate extends over only few wells of the periodic potential
and the Bloch picture cannot be applied. In this case, the
sum-rules approach predicts a sign-correlated shift for the
two frequencies, whose magnitude, however, still depends on
the relative position between the condensate and the periodic
potential. Therefore, although Aw,/Awp~ constant, the fact
that the ratio w,/w;, depends at first order on the difference
Awp—Awy, eventually yields an uncorrelated renormaliza-
tion of the two frequencies (see Fig. 5).

B. GP dynamics

The prediction of the sum rules can be directly compared
to the solution of the GP equation [23,26]

ﬁZ
if dp= —EV2+V;10+vR+ngI2 W (11)

by preparing the condensate in the ground state of the com-
bined potential and then exciting the collective modes with a
sudden displacement of the harmonic trap (for the dipole) or
a change of the axial trapping frequency (for the quadru-
pole).

The results from some sample realization of the random
potential are shown in Fig. 6 (they correspond to the first ten
realizations in Fig. 3). The dipole oscillations are induced
after a displacement Az=5 um of the harmonic potential,
corresponding to an oscillation of the order of 10% of the
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FIG. 5. (Color online) Ratios between quadrupole and dipole
shifts (top) and the corresponding frequencies (bottom) for speckle
(filled circles) and periodic (empty circles) potentials with [,
=10 um. Note that although the shifts for the periodic case are
correlated in sign, the two frequencies are uncorrelated and depend
on the actual position of the condensate in the periodic potential.

axial size of the condensate. For the quadrupole mode, an
oscillation of the same order of magnitude is obtained by
releasing the condensate from a tighter trap of axial fre-
quency o, =1.1w,.

In this regime of small amplitude oscillations, the solution
of the GP equation shows that the condensate oscillates co-
herently with no appreciable damping on a time scale of
several oscillations. The corresponding frequencies show a
remarkable agreement with the sum-rules predictions, re-
garding both the sign and order of magnitude of the shift, as
shown in Fig. 6 [25]. As mentioned above, these features
have been observed in the experiment reported in [4].

We have also explored the behavior of the system for
larger amplitudes in case of dipole oscillations, as shown in
Fig. 7. As the amplitude is increased, the frequency shift
reduces owing to the fact that the condensate experiences
outer regions of the harmonic potential where the effect of
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FIG. 6. (Color online) Dipole (top) and quadrupole (bottom)
frequency shifts as obtained from the GP equation (squares) and
compared to the sum-rules predictions (circles), for ten different
speckle realizations. The agreement is remarkable [25].
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FIG. 7. (Color online) Dipole oscillations in the speckle poten-
tial (Vy=2.5h w,) for three different displacements Az of the har-
monic potential (Az=6,15,24 um). The insets show a density plot
for Az=24 um at r=75 ms (left), Az=15 um at r=250 ms (center),
and Az=6 um at t=500 ms (right).

the random potential is negligible, yielding an average fre-
quency that is closer to the unperturbed value. However, as
the center-of-mass velocity increases, the oscillations also
get damped due to the presence of the speckle potential that
acts as an external perturbation or roughness of the medium.
In this regime, the condensate develops short-wavelength
density modulation that may eventually lead to a breakdown
of the superfluid flow, as shown in the left and center insets
in Fig. 7 (respectively, for Az=24 um at =75 ms and Az
=15 um at =250 ms). The rightmost inset demonstrates in-
stead that for small displacements, the condensate remains
coherent even after several oscillations (Az=6 um at ¢
=500 ms).

IV. EXPANSION IN A WAVEGUIDE

Let us now consider the expansion of the condensate in an
optical waveguide, in the presence of disorder. In this case
we will refer to a second experiment performed at LENS [6].
Similar experiments have also been performed by Clément et
al. [5]. The condensate is initially confined in an optical har-
monic trap of frequencies w,=27X30Hz and w, =27
X300 Hz in the presence of a speckle potential of intensity
Vo=02urp, (urr=87h w, is TF chemical potential of the
condensate in the optical harmonic trap). The condensate is
prepared in the ground state of the combined potential and
then allowed to expand through the waveguide by switching
off the axial trapping.

Owing to the strong radial confinement, the expansion of
the system can be conveniently described in terms of an axial
wave function ¢(z,7), solution of the nonpolynomial
Schrédinger equation (NPSE) [22,30,31]. The latter can be
written in a compact form as

ho, 1
2 (302_ 02)}(”’ (12)

with 0?=\1+2aN|¢[* and V(z)=mw>z2/2+ Vg(2).

d K2
ih—p=|-—V>+V(z) +
a® 2m © @
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FIG. 8. (Color online) (a)—(d) Density profiles of the condensate
(red continuous line) during the expansion in the waveguide in the
presence of a red-detuned speckle potential [shown in (e)], for dif-
ferent times [¢=0, 25, 50, 75 ms, from (a) to (d)], compared to the
free-expansion case (blue dashed line). Note that the y-axis scale
changes from (a) to (d).

In Figs. 8—11 we show the density profiles of the conden-
sate at different times during the expansion in the waveguide,
for different choices of the random potential. For compari-
son, we also show the corresponding profiles in case of a free
expansion in the waveguide.

Let us discuss the figures by starting from the red-detuned
speckles (the case of Ref. [6]) in Fig. 8. In this case, the
dynamics is characterized by an almost free expansion of the
lateral wings of the condensate, whereas the central part re-
mains localized in the deepest wells of the potential. This
behavior can be easily explained by recalling that in the TF
regime, and in the absence of disorder, the velocity field has

a linear dependence on z, v(z,t)=z)§z(t)/)\z(t) (N\,(2) is a scal-
ing parameter [23]), indicating that the most energetic atoms
reside at the edges of the condensate, whereas the atoms
close to the center have a nearly vanishing velocity. The
presence of a weak disorder does not substantially modify
this picture. This means that the outer part of the condensate
can be sufficiently energetic to pass over the defects of the
potential expanding as in the unperturbed case, whereas the
central part remains partially localized in the initially occu-
pied wells (see the two density peaks in the center of the
figures). A closer look at Fig. 8 also shows that, in the inter-
mediate region, the density distribution shows peaks that are
instead in correspondence of the maxima of the potential as a
consequence of the acceleration acquired across the potential
wells during the expansion.
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FIG. 9. (Color online) (a)—(d) Density profiles of the condensate
(red continuous line) during the expansion in the waveguide in the
presence of a blue-detuned speckle potential [shown in (e)], for
different times [7=0, 25, 50, 75 ms, from (a) to (d)], compared to
the free expansion case (blue dashed line). Note that the y-axis scale
changes from (a) to (d).

In the presence of blue-detuned speckles (see Fig. 9), the
behavior is similar; although, in this case, the condensate
may undergo a reflection from the highest barriers that even-
tually stop the expansion, as happens at the left side of the
particular disorder realization in the figure. Even in this case
the central part of the condensate gets localized, being
trapped by two barriers that act as a potential well in the
previous case [5]. We have also verified that, as one would
expect, the case of a Gaussian random disorder is character-
ized by an intermediate behavior between the former two,
with part that is reflected by the highest barriers and part that
is localized in the central wells.

A central question is whether the observed behavior is of
a classical or quantum nature. Indeed, to observe nontrivial
localization effects caused by multiple interference of the
condensate in the speckle potential, the single wells instead
barriers should behave as quantum reflectors [32]. A qualita-
tive insight on the behavior of the random potential can be
therefore obtained by considering the case of a single defect.
In case of the speckles, a suitable model is a sech-squared
potential of the form

U(z) = ansechz( ) (13)
BLy
where a and B are scaling factors for energies and lengths,

respectively. The transmission coefficient of this potential is
known analytically [33]
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FIG. 10. (Color online) Density plots of the function ¢(k, «, B)
(see text) for a potential well [(a) and (b)] and a barrier [(c) and (d)],
as a function of the incident momentum k and the length scale S of
the potential. The maximum value of k in the figures corresponds to
an energy E=U|. Left and right columns refer to different potential
intensities: (a)—(c) a=0.2, (b)—(d) a=1. The plot in Figs. 8 and 9
must be compared to the case =1 in (a) and (c), respectively. Dark
regions indicate complete reflection or transmission, light gray
(color online) corresponds to a 50% transparency.
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with 7=2mUyL2/%> and k=kLy=\2mELy/%, E being the
energy of the incoming wave packet. For convenience, here
we set the energy scale to the TF chemical potential of the
condensate, Uy=utr. The length scale instead is fixed to
Ly=7vl., with y=2.72, in order to match, for =1, the cor-
relation length of the potential in Eq. (13) with that of the
random potential. With this choice, the correspondence with
the cases shown in Figs. 8 and 9 is for @=0.2 and B=1.
The ability of the above potential to act as a quantum
reflector can be suitably quantified by introducing the func-
tion g(k,a,B)=2|0.5-T(k,a,B)|-1, which vanishes in
case of complete transmission or reflection, and equals one
for a 50% transparency. In Fig. 10, we show a density plot of
q as a function of k and B for two values of «, considering
both the case of a potential well and of a barrier (that are
relevant, respectively, for the comparison to the red- and
blue-detuned speckles). The range chosen for the incident
momentum k corresponds to energies up to U, (the maximal
energy of the atoms in the condensate is of the order of the
TF chemical potential wrp=U,). Figure 10 shows that, in
case of the speckles with a correlation length as in the ex-
periment (B=1, @=0.2), the range of energies where quan-
tum effects are evident is just a very narrow region close to
the top of the barrier or at the well border. For this value of
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FIG. 11. (Color online) (a)-(d) Density profiles of the conden-
sate (red continuous line) during the expansion in the waveguide in
the presence of a periodic lattice [shown in (e)], for different times
[¢=0,25,50,75 ms, from (a) to (d)], compared to the free-
expansion case (blue dashed line). Note that the y-axis scale
changes from (a) to (d).

the correlation length even increasing the intensity of the
potential (a factor of 5 in the figure) the situation does not
change substantially: the effect is just an increase of the sinu-
soidal modulation in the case of a well [see Figs. 10(a) and
10(b)], and a shift to the right in case of a barrier [Figs. 10(d)
and 10(c)], the overall shape remaining unchanged. Instead,
by reducing the length scale of the disorder (88— 0) quantum
effects may eventually become predominant in a wide range
of energies. This corresponds to the fact that the height of the
single defect should vary by a quantity at least of the order of
the energy E of the incoming wave packet in a distance short
compared to its de Broglie wavelength A4g; that is,
|dU/dz|\gg>E. As discussed and experimentally demon-
strated in [6], the above condition becomes very difficult to
fulfill when the defects are created by near-infrared light as
for a speckle potential.

These considerations suggest the interpretation of the ob-
served localization as a classical effect due to the actual
shape of the potential. In this picture, the condensate gets
partially localized by the presence of high barriers [5] or
deep wells [6] in the potential that they act as single traps
when the local chemical potential becomes of the order of
their height. This is also confirmed by the comparison to the
case of the periodic potential, which presents a qualitatively
similar behavior as shown in Fig. 11. Even in this case, the
most energetic part of the condensate expands nearly as free,
whereas the bulk remains trapped in the central wells of the
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potential. The same picture holds even in the case of a single
well, as discussed in [6].

Concerning the role of interactions, we note that they in-
troduce the dephasing at the origin of the fast density modu-
lations shown in the figures, which may eventually lead to a
breakdown of the superfluid flow as discussed in Sec. III B.
Their possible contribution to localization instead is not evi-
dent. Rather they act against localization, since they are re-
sponsible for the fast expansion of the lateral wings (the
expansion in the noninteracting case would be much slower).
This behavior is not surprising since, in general, interactions
are expected to produce a screening of disorder due to the
effect of the nonlinear meanfield potential [8,34]. This be-
havior has been discussed, for example, in [9] where it has
been demonstrated that, in correspondence to a critical inter-
action, the transport of a BEC through a disordered potential
of length L undergoes a transition from an Anderson regime
(the flow decays exponentially with L) to a regime charac-
terized by an algebraic decay of the flow.

V. DISCUSSION AND CONCLUSIONS

A general analysis of the effects of a weak disorder cre-
ated by speckle light on the collective modes and the expan-
sion of an harmonically trapped condensate has been pre-
sented by using the Gross-Pitaevskii (GP) theory. The effects
of different kinds of random potentials and a systematic
comparison to the case of a periodic lattice with spacing of
the order of the length scale of the disorder have been also
discussed.

In the small amplitude regime, the dipole and quadrupole
modes are undamped and characterized by uncorrelated fre-
quency shifts that depend on the particular realization of dis-
order. This behavior, predicted by a perturbative sum-rules
approach, has been confirmed by the direct solution of the
GP equation and observed in the experiment [4]. The theo-
retical analysis shows also that the average features do not
depend crucially on the particular kind of disorder but are,
however, significantly different from the periodic case.

When released in a 1D waveguide, the condensate may be
trapped into single wells or between barriers of the random
potential, yielding a reduced expansion. These phenomena
are of a classical nature and take place preferably near the
trap center where the less energetic atoms reside. The outer
part of the condensate, instead, expands almost freely, unless
it encounters a high-enough (reflecting) barrier. This behav-
ior has been observed in recent experiments where the con-
densate is allowed to expand in the presence of potential
wells [6] or barriers [5]. In the first case, the qualitative be-
havior is very similar to that of a periodic system or even of
a single well.

We note that in order to observe nontrivial localization
phenomena in a 1D waveguide, one should, instead, have
interference of multiple quantum reflections of matter waves.
This regime could be achieved by reducing the correlation
length of the random potential, but may be not straightfor-
ward due to the diffraction limit on the size of the defect
created by light [6].

In this respect, the present analysis, besides providing
useful information on the superfluid behavior of a conden-
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sate in the presence of a rough surface potential, suggests
that it would be interesting to engineer other kinds of poten-
tials by reducing the spacing or increasing the steepness.
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APPENDIX: RANDOM DISTRIBUTIONS

In this section, we discuss how the random distributions
used in the paper are constructed and characterized. For sim-
plicity, here we will use dimensionless units (lengths are ex-
pressed in units of an arbitrary scale & whose actual value is
irrelevant here).

Following [35] the speckle distribution is constructed by
starting from a random complex field ¢(x) (on a grid) whose
real and imaginary part are obtained from two independent
Gaussian random distributions #7(x) with zero mean
{7m(x))=0, unit standard deviation, and correlation function
(n(x)n(y)) ~ 8x—y). The speckle intensity field is then de-
fined as

1(x) = |F W) F e 111, (A1)

where the operator F indicates the Fourier transform

Hel= J dxe(x)e”™ (A2)
and W(y) indicates the aperture function
1 if |y| < D2
W(y) = : (A3)
0 elsewhere

The resulting distribution probability of the speckle intensi-
ties is [36]

=
Ax (arb. units)

1 T T T T T T T T T
0.8 F E
0.6 | 1
= o4t ]
02 | | || [ Tl .

0 = o i
0 0.5 1 1.5 2 2:5 3 3.5 4 4.5 5

I (arb. units)

FIG. 12. (Color online) Continuous line (red): autocorrelation
function (top) and intensity distribution (bottom) for the speckle
potential in Fig. 1. The (blue) dashed lines represent the expected
average values over several realizations.
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FIG. 13. (Color online) Autocorrelation function (top) and in-
tensity distribution (bottom) for the Gaussian random potential in
Fig. 1. The blue dashed lines represent the expected average values
over several realizations.

—IKIy

W

P(1)="

(A4)

and can be further normalized to o;=(I)=1 [the normalized
speckle distribution is indicated in the text as vg(x)]. The
spatial (auto)correlation is

T(Ax) = {I(x)I(x + Ax)) = 1 + sinc(DAx)? (A5)

(the average (--) stands for an integration over x and an
average over many realizations)  with  sinc(x)
=sin(7x)/(mx). The correlation properties can be summa-
rized by the correlation length [. defined as the width at the
half value of the maximum of I'(Ax) (in Ax=0) with respect
to the background. In case of a one-dimensional speckle dis-
tribution as that considered here, [. is related to the aperture
width by /,=0.88/D.

As a second source of disorder, we consider a Gaussian
random distribution defined by [37]
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0 0.5 1 1.5 2 2.5
I (arb. units)

FIG. 14. (Color online) Autocorrelation function (top) and in-
tensity distribution (bottom) for the periodic potential in Fig. 1. The
blue dashed lines represent the expected average values over sev-
eral realizations.

g(x) = FIINAW) 1n0:)],

where 7(y) itself is a Gaussian random distribution (defined
as above) and the aperture function is W(x)=exp(-x>/2d7).
By using the properties of 7, it is then easy to demonstrate
that both the real and imaginary parts of g(x) are Gaussian
random distributions with a correlation function I'(Ax)
=W(Ax) and correlation length /.=2+2In 2. Here we will
consider, in particular, the imaginary component, I(x)
=Im[g(x)] [in the text the normalized distribution is indi-
cated as vg(x)].

Finally, let us discuss how to choose the wave vector of
the periodic potential v;(x). In this case, the periodicity of
the potential reflects in the periodic structure of the correla-
tion function I'(Ax)~ 1+2 cos?(¢Ax). By restricting over a
single period, the correlation length can be defined as above
and a straightforward calculation yields g=/2l.. A suitable
choice to compare the effect of disorder to the case of an
ordered lattice described by the periodic potential v;(x) is
therefore to require the two potentials to have the same cor-
relation length. This seems a reasonable choice as shown in
Fig. 1. The autocorrelation functions and the intensity distri-
butions of the three potentials are shown in Figs. 12-14.
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