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We present a theoretical treatment of the surprisingly large damping observed recently in one-dimensional
Bose-Einstein atomic condensates in optical lattices. We show that time-dependent Hartree-Fock-Bogoliubov
�HFB� calculations can describe qualitatively the main features of the damping observed over a range of lattice
depths. We also derive a formula of the fluctuation-dissipation type for the damping, based on a picture in
which the coherent motion of the condensate atoms is disrupted as they try to flow through the random local
potential created by the irregular motion of noncondensate atoms. When parameters for the characteristic
strength and correlation times of the fluctuations, obtained from the HFB calculations, are substituted in the
damping formula, we find very good agreement with the experimentally observed damping, as long as the
lattice is shallow enough for the fraction of atoms in the Mott insulator phase to be negligible. We also include,
for completeness, the results of other calculations based on the Gutzwiller ansatz, which appear to work better
for the deeper lattices.

DOI: 10.1103/PhysRevA.73.013605 PACS number�s�: 03.75.Kk, 03.75.Lm

I. INTRODUCTION

The transport properties of atomic Bose-Einstein conden-
sates have recently been the subject of much interest. In a
pure harmonic trap, the dipole mode of the motion—where
the cloud of atoms oscillates back and forth without altering
its shape—is known to be stable. On the other hand, if an
optical lattice is used to create a one-dimensional array of
potential wells and barriers, one may find, even in a single-
particle picture, a damping of the oscillations due to the non-
quadratic nature of the resulting dispersion relation �1–6�.
When interactions between atoms are included, at the mean-
field level, one finds dynamical instabilities �7� that may re-
sult in a very large damping �8,9�. All these effects are, how-
ever, only expected to be substantial when the
quasimomentum of the cloud of atoms is sufficiently large
�typically, of the order of �� /�, where � /2 is the lattice
spacing�.

In recent experiments with 87Rb atoms �10,11�, confined
to move in one-dimensional “tubes,” a surprisingly large
damping of the dipole mode was observed, for very weak
optical lattices and very small cloud displacements. We note
that no �or very little� damping was observed for the same
system in the absence of the tight transverse confinement
�12,13�. In the experiments �10�, the oscillation frequency in
the harmonic trap �0 /2� was about 60 Hz, whereas the pho-
ton recoil energy ER=h2 / �2m�2� corresponded to a fre-
quency ER /h=3.47 kHz. Under these conditions, for a shal-
low lattice, the maximum displacement of the condensate in
the experiment �7 to 8 lattice sites� should not result in a
momentum larger than about 0.1��� /��, which is well

within the quadratic part of the lattice dispersion curve. Like-
wise, the quasimomentum spread arising from the finite size
of the cloud itself was also quite small �of the order of
2�� /13�, since the Thomas-Fermi radius of the cloud is
about 13��.

Since these results were first presented �and, in some
cases, predating them�, a number of theoretical treatments
have been put forward that, directly or indirectly, address
various relevant aspects of the underlying dynamics, from
different perspectives. It has been shown, for instance
�14–16�, that the momentum cutoff for the dynamical insta-
bility may be substantially lowered for commensurate lat-
tices, and, probably more relevant for the experimental situ-
ation, that the boundary between regular and irregular
motion becomes “smeared out” due to quantum fluctuations.
Numerical calculations based on a truncated Wigner repre-
sentation �17� have also shown that the fraction of atoms
with momenta in the unstable region can indeed cause damp-
ing of the center of mass motion of the whole system. As we
shall show below, this fraction is, in fact, a non-negligible
number, for the experimental parameters, even for relatively
shallow lattices, because of the large depletion caused by the
very tight transverse confinement.

In a recent series of papers �6,18�, several of us have
characterized the damping mechanisms that may dominate,
for these systems, in different parameter ranges. Perhaps the
most important conclusion of these papers is that the very
deep lattices �lattice potential V larger than about 5ER� can
be described very well by an extended fermionization model,
in which most atoms localize in a Mott-insulator state with
unit filling of the lattice, and the remaining atoms are free to
move above the Mott state with a renormalized kinetic en-
ergy. Both the atoms in the Mott state and the remaining
atoms are treated as effective noninteracting fermions whose*Email address: jgeabana@uark.edu
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dynamics are governed by a combination of the trap potential
and appropriate kinetic energy terms. These references also
show, however, that there is a region of values of the ratio of
interaction energy to kinetic energy �referred to as the “inter-
mediate region” in �6�� where the single-particle models,
whether bosonic or fermonic, are inadequate to describe the
dynamics of the Bose-Hubbard model, which is the main
underlying theoretical tool for most of the studies described
above. This intermediate region, in the experiments of �10�,
covers all the lattices studied with V smaller than about 5ER,
although there is some concern that for the shallowest lat-
tices the tight-binding approximation leading to the Bose-
Hubbard model itself may not be entirely accurate.

The present paper is an attempt to fill in this gap by pre-
senting mean-field-based calculations for the Bose-Hubbard
dynamics in the “intermediate region” where the fraction of
atoms having undergone the transition to the Mott insulator
state is still negligible, and the system is mostly superfluid,
yet the interaction energy cannot be neglected. Our main
calculational tool is time-dependent Hartree-Fock-
Bogoliubov �HFB� theory, and we show that this approach
does indeed reproduce qualitatively many of the features of
the damping observed in the experiments, although it gener-
ally underestimates its magnitude for any given lattice depth.
We also report the results of calculations based on the
Gutzwiller ansatz, which fail to show any damping for the
shallower lattices but do so for depths greater than about
3ER.

An important feature common to both calculations is that
they show fairly large, and seemingly random, fluctuations in
the particle density difference for neighboring sites. Further-
more, in the Gutzwiller ansatz calculation, this randomness
is clearly tied to the damping of the center of mass motion
�see Fig. 5 below�. Since the site-to-site distance is � /2,
spatial fluctuations on this scale are clearly associated with
large quasimomentum components, and hence, at least ini-
tially, with the dynamics of the noncondensate fraction
�since, as argued above, the momentum of the condensate in
these experiments should always be much smaller than � /��.
This has motivated us to develop a phenomenological model
for the damping in which these site-to-site density fluctua-
tions are treated as providing, through the interaction term,
an effective “external” random potential for the motion of
the whole cloud. This approach yields a formula for the
damping which exhibits good agreement with the experimen-
tal data when parameters for the characteristic strength and
correlation times of the fluctuations, obtained from the HFB
calculations, are substituted in it.

Our HFB calculations also show that the motion of the
center of mass of the noncondensate fraction is typically
more strongly damped than the condensate. This nonconden-
sate damping is consistent with the results of single-particle
models based on Fermi statistics �1,6�. The results of �6�, in
particular, show this damping to be related to the overlap of
the displaced cloud with localized eigenstates of the com-
bined quadratic and periodic potentials. �Such localized
eigenstates, when expressed in terms of Bloch waves, natu-
rally involve states of high momentum.� Note also that a
damping of the center of mass motion of a system of nonin-
teracting particles is also consistent with the notion that their

individual dynamics are irregular �i.e., chaotic or quasicha-
otic�, since in that case their contributions to the center of
mass position get out of step over time, and eventually aver-
age to zero �19�. Although in our “intermediate” regime it is
probably not warranted to treat the noncondensate atoms as
noninteracting fermions, the results quoted above strongly
suggest that irregular dynamics will be obtained generically
for any atomic gas in a combination of periodic and qua-
dratic potentials when sufficiently high-momentum states are
involved, regardless of whether it is a condensate or not.
What we envision, then, as characteristic of this regime is a
situation in which a non-negligible fraction of the �noncon-
densate� atoms undergoes this randomlike motion, and even-
tually causes, through the interaction term, a breaking up of
the regular motion of the entire cloud.

The layout of the paper is as follows. In Sec. II we present
the results of quantum Monte-Carlo ground-state calcula-
tions that establish the existence, for the experimental param-
eters, of a large noncondensate fraction that arises as a direct
consequence of the enhanced effective on-site interaction
�due to the tight transverse confinement�; we also show a
non-negligible occupation of high-momentum states. In Sec.
III the “effective external potential” treatment of the interac-
tion term is developed, leading to our phenomenological
damping formula. Section IV then presents the results of
Hartree-Fock-Bogoliubov calculations, which we use to esti-
mate the parameters appearing in the damping formula. Re-
sults from calculations based on the Gutzwiller ansatz are
presented in Sec. V. Finally, Sec. VI is devoted to further
discussions and conclusions.

II. HAMILTONIAN AND STATIC (GROUND-STATE)
RESULTS

The starting point for our theoretical treatment is a Hamil-
tonian of the “tight binding” or Bose-Hubbard form �20�,

Ĥ = − J�
�j,i�

âj
†âi + ��

j

j2n̂j +
U

2 �
j

n̂j�n̂j − 1� . �1�

In this expression, the sum �i , j� is taken over nearest
neighbors, âj �âj

†� are bosonic field operators that annihilate
�create� an atom at the lattice site j, n̂j = âj

†âj, and
�=m�̃0

2�2 / �8ER� characterizes the strength of the harmonic
trap. The on-site interaction energy is

U =
2a�

�2�ER

	 �̃x�̃y�̃z

axayaz

1/3

, �2�

where �̃x,y,z are the oscillation frequencies at individual
lattice sites along the three axes, obtained with a harmonic
approximation expanding around the minima of the potential
wells, ax,y,z=�� /m�̃x,y,z are the effective harmonic oscillator
lengths and a=5.31�10−9 m is the s-wave scattering
length. For the experiment �̃x /2�= �̃y /2�=35 kHz and
�̃z=�4ER

2s /�, where s is the longitudinal periodic potential
strength in units of the recoil energy, s=V /ER. Recalling that
the recoil energy is only of the order of 3.47 kHz�2��, and
that, for the cases considered here, s�6, it is easy to see that
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the transverse confinement is much stronger than the longi-
tudinal one and the system is effectively one-dimensional.
Alternatively, the “hopping” energy J, which is defined in the
usual way as

J = −� w0
*�x�H0w0�x + �/2�dx �3�

�where w0 are the first-band Wannier functions, H0 is the
lattice Hamiltonian, and � /2 is the lattice constant� is ex-
tremely small in the transverse directions because of the ex-
ponentially small overlap of the corresponding Wannier
functions.

The definition �2� above implies that the parameters U, J,
and � in �1� are understood to be in units of ER. The sum-
mation indices in Eq. �1� range from −M /2 to M /2, where
M +1 is the total number of wells �100–200 in our numerical
calculations�, and j=0 at the center of the trap.

We have used a numerical quantum Monte-Carlo �21�
method to derive the single-particle density matrix for the
Hamiltonian �1� at very low temperature �0.01 J, in our cal-
culations�, for a total number of atoms N=80. The latter is
the estimated number of atoms in the central tube of the
experiment of Ref. �10�. We point out that the computation
of average properties by this method for systems’ sizes com-
parable to the experimental ones is typically unfeasible in
dimensions larger than one. From the computed density ma-
trix we obtain the quantum depletion shown in Fig. 1. The
curve is a fit to the formula

1 −
nc

n
= ��U

nJ
�4�

which gives the depletion in the homogeneous case �that is,
in the absence of the harmonic trap, �=0�. nc is the density
of condensate atoms, n the total density, and � a parameter
that can be calculated from the Bogoliubov spectrum of ex-
citations �22,23�. To be precise, for a homogeneous conden-
sate in a lattice, the usual Bogoliubov analysis yields, in D
dimensions and with M lattice sites, a formula like �4� with a
constant � given by

� =
1

M

1

4�2
�
q�0

��
i=1

D

sin2	qi�

M

−1/2

. �5�

Here, the numbers qi give the quasimomentum of the exci-
tations. In the continuous limit, the expression �5� diverges in
one dimension, in accordance with the Mermin-Wagner-
Hohenberg theorem that establishes that one cannot have a
totally homogeneous �translationally invariant� condensate in
one dimension; however, for a bounded system the sum �5�
always yields a finite value for D=1, although, in general, a
much larger one than in the two- or three-dimensional case.
This is, qualitatively speaking, the main reason why one
finds a much larger depletion in these one-dimensional
“tubes” than in two- or three-dimensional geometries at com-
parable densities.

Since, in the harmonic trap potential, the spectrum of ex-
citations is modified and n is not uniform, � in Fig. 1 has
been treated as an adjustable parameter. We find that, even
for very shallow lattices, some 20–40% of the atoms are not
part of the condensate. The figure also shows �open circles�
the fraction of these noncondensed atoms that have quasimo-
menta greater than �� /� �also calculated from the numerical
single-particle density matrix�.

We note Eq. �4� was derived under the tight-binding ap-
proximation which assumes that atoms only populate at
the lowest vibrational level of each lattice site and neglects
tunneling to next-to-nearest-neighbors sites. These assump-
tions become invalid in the limit s→0 and therefore Eq. �4�
becomes questionable for the very shallow lattices. Never-
theless, recent studies done in Ref. �17� for shallow lattices
using parameters appropriate to the experiments of Ref. �10�
have shown that for s	0.25 most of the atoms still remain in
the first band. This observation together with the fact that
tunneling to next-nearest neighbor sites only introduces
corrections to the value of �, indicate that Eq. �4� can ac-
count for the correct physics for s	0.25. Moreover the
model to be developed in Sec. III below can be generalized
to include corrections due to next-nearest-neighbor couplings
if necessary.

For the s=0 case �no lattice� the noncondensate popula-
tion is no longer a relevant quantity for the dipole dynamics.
In fact, according to the generalized Kohn theorem �24� the
dipole oscillations of a harmonically confined gas are always
undamped independently of the temperature, dimensionality,
quantum statistics, and interaction effects.

In other studies, we have observed that the Mott insulator
begins to form around V=3ER in this system, as character-
ized by a small decrease in the density fluctuations around
the center of the trap that first becomes visible at this point.
Nonetheless, Fig. 1 shows that the Bogoliubov result �4� for
ñ remains approximately valid until around V=5ER, which
inspires some confidence that the mean-field analysis that
follows may be at least semiquantitatively valid even for
those very highly depleted systems.

III. A DAMPING MODEL

In some recent work, one of us �25� has developed a
formalism to describe the effect on matter waves of

FIG. 1. Black dots: fractional quantum depletion �ñ /n=1
−nc /n� vs lattice depth V. Open circles: the fraction of ñ with mo-
menta 	�� /�. Solid line: Eq. �4� with n=2.2 �approximate atom
density in the experiment at the center of the trap� and �=0.37 �best
fit�.
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coherence-breaking processes such as random “localizing”
events, momentum kicks, or perturbation by �time-
dependent� random external potentials. All these processes
can be shown to lead to a damping of the center of mass
motion of the system.

Given the relatively large fraction of atoms, calculated in
the previous section, with quasimomenta large enough to
cause local density fluctuations on a scale of one or two
lattice sites, it seems natural to consider these density fluc-
tuations �whose existence, in the relevant parameter regime,
will be established by the numerical HFB and Gutzwiller
calculations in the next couple of sections� as providing a
sort of random potential for the atomic cloud to flow
through, and to expect the damping to arise as a consequence
of this. The goal of this section is to make this picture plau-
sible and quantitative, first by rederiving the damping due to
an external random potential, then by showing how the
Heisenberg equations of motion derived from the Hamil-
tonian �1� can be cast into a similar form through a standard
factorization ansatz, and, finally, deriving from all of this a
damping formula.

In our tight-binding model, the center of mass position
operator is

x̂cm =
�

2N
�

j

jn̂j . �6�

The commutator of x̂cm with the Hamiltonian �1� yields a
center of mass velocity operator

v̂ = −
iJ�

2N�
�

j

�âj
†âj+1 − âj+1

† âj� , �7�

which is essentially the same as the current operator in �23�.
A further commutation yields the time derivative of âj

†âj+1:

i�
d

dt
âj

†âj+1 = �2j + 1��âj
†âj+1 + Uâj

†�n̂j+1 − n̂j�âj+1

+ J�âj−1
† âj+1 − âj

†âj+2 + n̂j+1 − n̂j� �8�

with an analogous result for the derivative of âj+1
† âj. In the

“intermediate region” in which we are interested here, where
the evolution of the system is not adequately described by
single-particle models �bosonic or pseudofermionic�, we ex-
pect the overall damping to arise from the interaction term
�proportional to U� in �8�.

Before we get to work on that term, however, consider
what would happen if one were to replace it in �1� by a
random external potential, proportional to �Vjn̂j. Equations
�6� and �7� would be unchanged, whereas Eq. �8� would
become

i�
d

dt
âj

†âj+1 = �2j + 1��âj
†âj+1 + �Vj+1 − Vj�âj

†âj+1

+ J�âj−1
† âj+1 − âj

†âj+2 + n̂j+1 − n̂j� . �9�

Now consider formally taking the ordinary quantum-
mechanical expectation value of Eq. �9� and integrating it
over an interval �t−
t , t�, to get

�âj
†âj+1�t�� = �âj

†âj+1�t − 
t�� −
i

�
�

t−
t

t

�Vj+1 − Vj��t��

��âj
†âj+1�t���dt� + ¯ , �10�

where ¯ represents terms that do not contain Vj’s. Substi-
tuting �10� back into the �expectation value of the� second
term on the right-hand side of �9�, one obtains two kinds of
terms: some linear in the Vj, and some quadratic in Vj. The
linear ones involve products of a Vj at the time t and field
operators at an earlier time, and we may assume that they
vanish in an ensemble average over different realizations of
the random process Vj, provided it has a sufficiently short
correlation time. The ensemble average of the quadratic
terms, on the other hand, yields

−
i

�
�

t−
t

t

��Vj+1 − Vj��t��Vj+1 − Vj��t����âj
†âj+1�t���dt�

� −
i

�
�c��Vj+1 − Vj�2��âj

†âj+1�t�� , �11�

where �c is the characteristic correlation time for the ran-
domly fluctuating potential, ��Vj+1−Vj�2� is the average
�squared� strength of the fluctuations, and it has been as-
sumed that �âj

†âj+1� �essentially, the velocity of the system�
does not change appreciably over the time scale of �c. �This
is, basically, the Markov approximation.� The result, since
the left-hand side of �9� is multiplied by i�, is clearly a
damping term for �âj

†âj+1�, or, by �7�, for the on-site velocity
v j � i�âj

†âj+1− âj+1
† âj�:

dv j

dt
= − 2� jv j + ¯ �12�

with

� j =
1

2�2�c��Vj+1 − Vj�2� . �13�

The question now is whether it is possible to extract, from
the interaction term in �8�, something that looks like an “ex-
ternal” random potential, as in Eq. �9�. That this is, in fact,
possible follows if one replaces the bosonic field operators âj

by âj =zj + ̂ j, where zj is a c number equal to �âj� �the local

mean field�, and ̂ j a zero-average operator. Substituting in
the interaction term in �8�, we get

âj
†�n̂j+1 − n̂j�âj+1 = ��zj+1�2 − �zj�2�âj

†âj+1 + âj
†�zj+1

* ̂ j+1

+ zj+1̂ j+1
† + ̂ j+1

† ̂ j+1 − zj
*̂ j − zĵ j

†

− ̂ j
†̂ j�âj+1. �14�

The first term on the right-hand side of �14� is a “determin-
istic” term which can be combined with the first term on the
right-hand side of �9�; indeed, it is the combination of these
two terms that yields the Thomas-Fermi profile in the ground
state when the kinetic energy term �the J term� in �9� is
negligible. The second term in �14�, on the other hand, is
where we expect the main “noise” to arise. To determine its
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contribution to the equation of motion for the expectation
value �âj

†âj+1�, we express the remaining âj operators in

terms of ̂ j, assume expectation values of the form ��̂†�p̂q�
vanish unless p=q, and factor terms such as �̂ j

†̂ j
†̂ ĵ j+1� in a

standard way, as 2�̂ j
†̂ j��̂ j

†̂ j+1�. The result is

�âj
†�zj+1

* ̂ j+1 + zj+1̂ j+1
† + ̂ j+1

† ̂ j+1 − zj
*̂ j − zĵ j

† − ̂ j
†̂ j�âj+1�

= 2��̂ j+1
† ̂ j+1� − �̂ j

†̂ j���zj
*zj+1 + �̂ j

†̂ j+1�� + ��zj+1�2 − �zj�2�

��̂ j
†̂ j+1� = 2�ñj+1 − ñj��âj

†âj+1� + ��zj+1�2 − �zj�2��̂ j
†̂ j+1� ,

�15�

where the noncondensate density ñj ��n̂j�− �zj�2 has been in-
troduced. The second term on the right-hand side of �15�
appears to be a small noise-induced contribution to the de-
terministic part of �14�. The first term has the desired form.
We can then replace the expectation value of the interaction
term in �8� by a deterministic term, which we shall not con-
sider further, and a noiselike term

2U�ñj+1 − ñj��âj
†âj+1� . �16�

If the evolution of the ñj is sufficiently chaotic, one could
imagine integrating the Heisenberg equations many times for
very slightly different initial conditions and obtaining each
time a different realization of the “random process” ñj. Then,
if the Markovian condition holds, one can follow the same
steps as for the external potential Vj in Eqs. �9�–�13� above
and, by identifying Vj with 2Uñj, conclude that, on average,
a damping

� j =
2U2

�2 �c��ñj+1 − ñj�2� �
2U2

�2 �c�f j
2� �17�

will be observed in this system, for the on-site velocity v j.
�For conciseness, we have introduced the notation f j � ñj+1
− ñj�. The overall damping of the center of mass motion
could be estimated by taking a weighted average of the � j
�although, if the � j are very different from site to site, the
assumption of a single damping constant for the center of
mass motion may not be a very good approximation�.

Our model is, therefore, that the condensate atoms are
slowed down as they attempt to move through a randomly
fluctuating effective potential created �through the interaction
term� by the noncondensate atoms, as the latter are “shaken”
out of equilibrium by the displacement of the trap. It may be
worthwhile, at this point, to go over and attempt to justify the
various assumptions that have been made.

The interpretation of ñj+1− ñj as an essentially random
variable appears justified from time-dependent HFB calcula-
tions �about which much more will be said in the next sec-
tion� such as the one illustrated in Fig. 2 for a lattice of depth
V=1ER: the top part shows the time trace of ñ1− ñ0, and
the bottom figure the logarithm of the absolute value of its
�time-�autocorrelation function, with a linear fit showing an
approximately exponentially decaying envelope. It is, how-
ever, not quite as clear whether the Markov approximation is
valid: after all, ñj is not an external field, but one of the
system’s dynamical variables, and it certainly must develop

correlations and become entangled with other dynamical
variables as the system evolves. Still, we take this as the
simplest approximation, and note that, as will be seen in the
next section, over the range considered, the time scale �c for
the decay of correlations in ñj+1− ñj �which is, essentially,
� /J� is indeed well-separated from the time scale of the
damping of the center of mass oscillations.

Besides the above approximations, we have neglected
“anomalous averages” such as, e.g., �̂ ĵ j�, and we have used
a standard “bosonic” ansatz to factor expectation values of
products of four operators into expectation values of prod-
ucts of two operators. We do this in the spirit of all mean-
field theories; namely, as something to try and see how it
works. We certainly do not expect it to be a good approxi-
mation once �extended� fermionization becomes important.

Note that if, instead of using the bosonic ansatz, we had
taken the simplest approach of factoring �âj

†�n̂j+1− n̂j�âj+1� as
��âj

†âj+1��n̂j+1− n̂j� �and then separated out the condensate
part from �n̂j+1− n̂j��, the resulting “noise” term would have
differed from �16� by a factor of 2, and hence the damping
formula �17� would have been four times smaller. This may
be a reasonable estimate of the possible error involved in our
factorization assumptions.

Equation �17� does not, by itself, tell us what the actual
damping is; for that, one needs to know the parameters char-
acterizing the strength of the noise, �f j

2�, and its characteristic
correlation time �c. A possible way to obtain a very rough
order-of-magnitude estimate for these quantities has been
sketched in �25�, by rewriting Eq. �17� in terms of the dis-
crete Fourier transform �momentum components� of the ñj
�the order of magnitude of which can be estimated from Fig.
1�, and assuming that �c should be of the order of magnitude
of � /J, since this is the “hopping rate,” and that is the time
scale over which one would expect local density fluctuations
to decay. This simple approach does indeed yield the order of
magnitude of the experimentally observed damping.

As we shall show below, using values for �f j
2� and �c

derived from HFB calculations in the formula �17� does lead
to very good agreement with the experimentally observed
damping.

IV. HFB CALCULATIONS

In this section we report on the results of calculations
using the time-dependent Hartree-Fock-Bogoliubov approxi-

FIG. 2. �a� ñj+1− ñj for V=1ER and j=0; �b� Fit �dashed line� to
ln�F−1��F�f j�t���2��, for the first 30 time steps, for the f j shown in
�a�. The slope of this line is taken to be 1/�c, for this particular
value of j. Time is in units of � /ER in both cases.
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mation �26,27�. The starting point of this approximation is
the Heisenberg equation of motion for the field operator:

i�
d

dt
âj = �K̂ + �j2 + Uâj

†âj�âj , �18�

with K̂ the tight binding kinetic energy operator: K̂Aj
=−J�Aj+1+Aj−1� �here Aj can be any function or operator
defined at the point j�, and �j2 the external confining poten-
tial, which is quadratic in our system. By expressing the field

operator, as before, as âj =zj + ̂ j, replacing this ansatz in Eq.
�18�, and treating the cubic term in a self-consistent mean-
field approximation, coupled equations of motion for the

condensate, zj, and the fluctuating field ̂ j can be obtained:

i�
d

dt
zj = �K̂ + �j2 + U��zj�2 + 2ñj��zj + Um̃jzj

*, �19�

i�
d

dt
̂ j = �K̂ + �j2 + 2Unj�̂ j + Umĵ j

†, �20�

here nj = �âj
†âj�, ñj = �̂ j

†̂ j�, mj = �âjâj�, and m̃j = �̂ ĵ j�. By us-
ing a Bogoliubov transformation that expresses the operators

̂ j in terms of quasiparticle creation and annihilation opera-

tors �̂k, �̂k
† and amplitudes �uj

k�t��, �v j
k�t��, as ̂ j =�k�uj

k�t��̂k

−v j
k*

�t��̂k
†�, one obtains equations of motion for the ampli-

tudes �zj�, �uj
k�t��, and �v j

k�t�� known as HFB equations. They
describe the coupled dynamics of condensate and noncon-
densate atoms and conserve particle number and energy. As
coupled, nonlinear equations, they have the potential to de-
scribe a wide range of dynamics, including deterministic
chaos.

A difficulty with the time-independent HFB equations is
that they violate the Hugenholtz-Pines theorem and yield an
initial ground state with a depletion that is too small �22�,
when compared to the exact numerical results in Fig. 1. We
have, therefore, used the Popov approximation �27� �which
ignores the anomalous terms m̃j� to calculate the ground state
of the undisplaced trap, but then, after displacing the trap, we
propagate in time using the full HFB equations �without the
Popov approximation�, because propagating in time with the
Popov approximation does not conserve particle number or
energy. Due to this mixing of approximations �in a sense, we
are starting from the “wrong” initial state�, as well as to the
intrinsic limitations of the HFB approximation, our HFB re-
sults must be taken with some caution. Nonetheless, one may
gain at least some qualitative insights from them, as illus-
trated, for instance, in Fig. 3, which shows how the noncon-
densate atoms relax rather rapidly �in agreement with the
expectation of strongly inhibited transport for the high-
momentum states�, and with a substantial amount of noise.

Our HFB calculations do exhibit damped center of mass
oscillations for all the values of V in the experiment, and for
sufficiently deep lattices �about V	4ER in our calculations�
they even exhibit the overdamped relaxation seen in the ex-
periments �i.e., the value of the damping exceeds the oscil-
lation frequency�, although in the experiments this transition
to overdamped motion was seen already for shallower lat-

tices, between V=2ER and V=3ER. Quantitatively speaking,
the HFB results do predict, in general, a smaller damping
than is seen experimentally for any given lattice depth V, and
also, even with the Popov approximation, a smaller ground-
state depletion than the Monte-Carlo calculations in Fig. 1.
This lack of precise quantitative agreement is not terribly
surprising, given the fact that for all of these systems the
depletion of the condensate is really not very small when
compared to the mean-field density; hence neglecting higher

powers of the ̂ j operators cannot be very accurate. The
qualitative agreement, however, suggests that the HFB ap-
proximation does retain all the physical ingredients needed
to predict the kind of damped oscillations seen in the experi-
ments in this regime.

With all of the above in mind, we have attempted to use
the results of the HFB calculations to estimate the quantities
�f j

2� and �c in the damping formula �17�, in the following
manner. First, we generate a time series for ñj�t� for all j and
for a relatively large number of oscillation periods, and we
simply average all these values to estimate �f j

2�t��. We also

calculate the Fourier transform f̃ j����F�f j� of each time
series, and then calculate the inverse Fourier transform, F−1,

of the power spectrum � f̃ j����2; by the convolution theorem
of Fourier transforms, this should equal the autocorrelation

FIG. 3. �Color online� Result of the direct numerical integration
of the HFB equations for, from top to bottom, V=3ER, V=4ER, and
V=5ER. In all cases the position of the center of mass of the non-
condensate atoms is given by the noisier top trace, that of the con-
densate by the lighter lower trace �small crosses�, and the total is
given by the line drawn with the circles. Time is in units of � /ER

and the position is in units of the lattice spacing.
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of f j�t�. We therefore estimate a correlation time by fitting an

exponential to the decay of the absolute value of F−1�� f̃ j�2�,
for relatively short times �of the order of 30� /ER�. �Repre-
sentative results are shown in Fig. 2�b�.� We obtain in this
way a �generally different� value of �c and �f j

2�t�� for every
lattice site j. The final estimate of the overall damping � is
obtained by taking a weighted average of all the � j, using the
equilibrium density as the weighting function. This results in
the gray dots in Fig. 4, which are to be compared to the
experimental data shown as the black dots in the same figure.

We are faced with the somewhat paradoxical result that,
while the HFB calculations generally underestimate the
damping, the formula �17�, using HFB values, agrees quite
well with the experiments and even appears to overestimate
the damping in places �such as around V=2ER�.

We do not have, in principle, a reason to doubt the relative
accuracy of the HFB estimate of the fluctuations’ correlation
time �c �which does turn out to be between 2� /J and 3� /J
for the values of V considered�. On the other hand, the fact,
pointed out above, that the HFB calculations predict a non-
condensate density lower than the true one, suggests that the
HFB estimate of �f j

2�t�� may be proportionately low as well.
If this is the case, it would indicate that the formula �17�
generally overestimates the damping, perhaps because of the
assumption of totally uncorrelated condensate and noncon-
densate fluctuations that goes into its derivation. The agree-
ment with the experiment shown in Fig. 4 would then appear
to be more precise than it is actually supposed to be. None-
theless, generally speaking, the physical picture invoked in
the derivation of the damping formula appears to be correct,
even if oversimplified in some details �e.g., validity of the
Markov approximation�.

V. RESULTS FROM GUTZWILLER-ANSATZ
CALCULATIONS

It is well known that an alternative to the HFB calcula-
tions is provided by a mean-field theory based on the
Gutzwiller ansatz. While in the HFB method the interaction
term in �1� is treated approximately, and the kinetic energy
term is treated exactly, yielding a theory best suited for
weakly interacting superfluids, the Gutzwiller ansatz is
equivalent to treating the interaction term in �1� exactly and

approximating the kinetic energy term as follows

âj+1
† âj = ��âj+1

† � + �âj+1
† − �âj+1

† �����âj� + �âj − �âj���

� �âj+1�*âj + âj+1
† �âj� − �âj+1�*�âj� . �21�

As a result of this, the Gutzwiller ansatz works best for very
strongly interacting systems, and it is, in fact, capable of
describing qualitatively the Mott transition �28�, which the
HFB method cannot do.

In Eq. �21�, the mean field �âj� is obtained self-
consistently by diagonalization of the resultant effective
Hamiltonian, to which a chemical potential term −��nj is
added in order to get the desired average number of particles.
Once the initial state has been calculated, the relevant equa-
tions of motion are as given, for instance, in �15,28�.

What we find from the Gutzwiller approach is that the
predicted depletion for the ground state is substantially lower
than the one calculated numerically in Fig. 1, for all except
the deepest lattices, and accordingly no appreciable damping
is seen, for the experimental parameters, until V=4ER or so.
For V=3ER a displacement of the trap potential by six lattice
sites fails to give any visible damping, but a displacement of
eight lattice sites does give substantial damping, as shown in
Fig. 5�a�.

The other graphs in Fig. 5, also for V=3ER, highlight
other interesting features of this transition from undamped to
damped motion, which are in rough agreement with our prior
expectations. Figure 5�b� shows the fractional depletion as a
function of time for the two displacements d=6 �solid� and
d=8 �dashed�. Although the initial depletion is the same �the
ground-state value�, the time evolution leads to a depletion
that, in the case of regular motion, is largest at the times
when the condensate is moving faster. In the case d=8 one
can see the depletion initially growing as the speed �the slope
of the corresponding curve in Fig. 5�a�� increases, and even-
tually becoming rather large, after which damped motion fol-
lows. Note, for reference, that the Monte-Carlo prediction

FIG. 4. Gray dots �connected by dashed lines�: the value of �
calculated from Eq. �3�, using the time series that results from in-
tegrating the HFB equations. Black dots: experimental data.

FIG. 5. Results of Gutzwiller calculations for V=3ER and initial
displacements d=6 �solid line� and d=8 �dashed line�. �See text for
details.�
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from Fig. 1 for this case would be a ground-state depletion of
about 0.5. On the other hand, the smallest depletion calcu-
lated in Fig. 1, for V=0.25ER, is 0.24, which here would
appear to be just large enough to result in damped motion.

Figure 5�c� shows the time dependence of ñ0− ñ1 �the sub-
script “0” refers to the center of the trap�. The regular case,
for d=6, is a solid line invisible on the scale of the figure
��0.005 in magnitude�. Again, the damping appears to be
strongly correlated with the site-to-site density fluctuations.

As we did for the HFB calculation, we can extract values
for �f j

2� and �c from the time series obtained by the
Gutzwiller approach, and substitute them in Eq. �17�. The
results, for V /ER=4,5, are actually quite close to those ob-
tained from the HFB calculation. For smaller V, of course,
the calculation would not make sense, since the time depen-
dence of ñj − ñj+1 predicted by the Gutzwiller ansatz in this
region is always regular, rather than noiselike.

It is perhaps worth noting that the strong dependence on
the displacement d exhibited by the Gutzwiller calculations
is not seen in the HFB calculations, which always yield
damped motion, even for very small displacements, although
the strength of the damping does decrease continuously with
d, as does the size of the density fluctuations. The strong
dependence on the displacement exhibited by the Gutzwiller
calculations is a signature of its mean-field character: The
factorization approximation used in the Gutzwiller ansatz
completely neglects nonlocal correlations. In contrast, the
HFB approximation goes beyond mean field and accounts
for quantum fluctuations around the condensate and nonlocal
correlations. In Ref. �16� the authors present a detailed analy-
sis of the role of quantum fluctuations and nonlocal correla-
tions in the dynamics. They show that in one-dimensional
�1D� systems classical mean-field theories such as the
Gutzwiller ansatz predict a very sharp transition from under-
damped to overdamped dynamics. The mean-field transition
depends on the interactions’ strength and interpolates be-
tween the classical modulation instability at pc=�� /� deep
in the superfluid regime to pc=0 near the Mott insulator tran-
sition. Quantum fluctuations, included in an analysis beyond
mean field such as the HFB approximation, lead to substan-
tial broadening of the nonequilibrium transition and induce a
decay of the center of mass oscillations before the classical
equations of motion become unstable.

VI. DISCUSSION AND CONCLUSIONS

To recapitulate, then, we believe that the damping in this
“intermediate” regime can be explained as arising from the

large depletion due to the tight transverse confinement,
which leads to the population of high-momentum states in
the nonquadratic part of the lattice dispersion curve. The
condensate atoms’ motion is then damped through their in-
teractions with the random field created by these nonconden-
sate atoms when their equilibrium state is perturbed. The
dramatic growth of � with V illustrated in Fig. 4 arises from
several causes: first, the depletion increases with lattice
depth, as shown by Fig. 1 and Eq. �4�; second, the interaction
U itself increases, albeit weakly �as V1/4�; third, the tunneling
rate J decreases, and the correlation time �c�� /J in �17�
increases accordingly �the “damping medium” becomes
more “sluggish”�.

The main limitations of the formula �17� have
been pointed out when it was derived. Since it only accounts
for the damping induced by the interactions, it vanishes in
the U→0 limit, even though, as we mentioned in the Intro-
duction, a noninteracting bosonic gas exhibits a sort of
damping in a lattice, associated with the nonharmonic nature
of the total potential �see, e.g., �6��. At the other limit point,
U→�, Eq. �17� predicts an infinite damping, which is
clearly also not correct. The reason is that Eq. �17� is based
on a self-consistent factorization approximation that, strictly
speaking, is only valid in the weakly interacting limit.

We note that, in these regimes where Eq. �17� does not
apply, previous studies �1,3,4,17,18� have shown that treat-
ments based on single-particle solutions can provide a very
accurate description of the damping. On the other hand, in
the complex intermediate regime where it is not possible to
use the simplicity of the single-particle solutions, we have
shown that Eq. �17� does manage to describe the damping.
Moreover, it connects in a simple way the damping rate to
physical parameters and therefore allows a clearer under-
standing of the physics responsible for the dissipative dy-
namics exhibited by 1D lattice systems in this regime.
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